This change moves all the personas code into its own module. We want to treat them as a building block features can built on top of, same as `Completions::Llm`.
The code to title a message was moved from `Bot` to `Playground`.
* DEV: refactor bot internals
This introduces a proper object for bot context, this makes
it simpler to improve context management as we go cause we
have a nice object to work with
Starts refactoring allowing for a single message to have
multiple uploads throughout
* transplant method to message builder
* chipping away at inline uploads
* image support is improved but not fully fixed yet
partially working in anthropic, still got quite a few dialects to go
* open ai and claude are now working
* Gemini is now working as well
* fix nova
* more dialects...
* fix ollama
* fix specs
* update artifact fixed
* more tests
* spam scanner
* pass more specs
* bunch of specs improved
* more bug fixes.
* all the rest of the tests are working
* improve tests coverage and ensure custom tools are aware of new context object
* tests are working, but we need more tests
* resolve merge conflict
* new preamble and expanded specs on ai tool
* remove concept of "standalone tools"
This is no longer needed, we can set custom raw, tool details are injected into tool calls
This allows for a new mode in persona triage where nothing is posted on topics.
This allows people to perform all triage actions using tools
Additionally introduces new APIs to create chat messages from tools which can be useful in certain moderation scenarios
Co-authored-by: Natalie Tay <natalie.tay@gmail.com>
* remove TODO code
---------
Co-authored-by: Natalie Tay <natalie.tay@gmail.com>
- Fix search API to only include column_names when present to make the API less confusing
- Ensure correct LLM is used in PMs by tracking and preferring the last bot user
- Fix persona_id conversion from string to integer in custom fields
- Add missing test for PM triage with no replies - ensure we don't try to auto title topic
- Ensure bot users are properly added to PMs
- Make title setting optional when replying to posts
- Add ability to control stream_reply behavior
These changes improve reliability and fix edge cases in bot interactions,
particularly in private messages with multiple LLMs and while triaging posts using personas
This PR enhances the LLM triage automation with several important improvements:
- Add ability to use AI personas for automated replies instead of canned replies
- Add support for whisper responses
- Refactor LLM persona reply functionality into a reusable method
- Add new settings to configure response behavior in automations
- Improve error handling and logging
- Fix handling of personal messages in the triage flow
- Add comprehensive test coverage for new features
- Make personas configurable with more flexible requirements
This allows for more dynamic and context-aware responses in automated workflows, with better control over visibility and attribution.
## LLM Persona Triage
- Allows automated responses to posts using AI personas
- Configurable to respond as regular posts or whispers
- Adds context-aware formatting for topics and private messages
- Provides special handling for topic metadata (title, category, tags)
## LLM Tool Triage
- Enables custom AI tools to process and respond to posts
- Tools can analyze post content and invoke personas when needed
- Zero-parameter tools can be used for automated workflows
- Not enabled in production yet
## Implementation Details
- Added new scriptable registration in discourse_automation/ directory
- Created core implementation in lib/automation/ modules
- Enhanced PromptMessagesBuilder with topic-style formatting
- Added helper methods for persona and tool selection in UI
- Extended AI Bot functionality to support whisper responses
- Added rate limiting to prevent abuse
## Other Changes
- Added comprehensive test coverage for both automation types
- Enhanced tool runner with LLM integration capabilities
- Improved error handling and logging
This feature allows forum admins to configure AI personas to automatically respond to posts based on custom criteria and leverage AI tools for more complex triage workflows.
Tool Triage has been disabled in production while we finalize details of new scripting capabilities.
adds support for "thinking tokens" - a feature that exposes the model's reasoning process before providing the final response. Key improvements include:
- Add a new Thinking class to handle thinking content from LLMs
- Modify endpoints (Claude, AWS Bedrock) to handle thinking output
- Update AI bot to display thinking in collapsible details section
- Fix SEARCH/REPLACE blocks to support empty replacement strings and general improvements to artifact editing
- Allow configurable temperature in triage and report automations
- Various bug fixes and improvements to diff parsing
### Why
This pull request fundamentally restructures how AI bots create and update web artifacts to address critical limitations in the previous approach:
1. **Improved Artifact Context for LLMs**: Previously, artifact creation and update tools included the *entire* artifact source code directly in the tool arguments. This overloaded the Language Model (LLM) with raw code, making it difficult for the LLM to maintain a clear understanding of the artifact's current state when applying changes. The LLM would struggle to differentiate between the base artifact and the requested modifications, leading to confusion and less effective updates.
2. **Reduced Token Usage and History Bloat**: Including the full artifact source code in every tool interaction was extremely token-inefficient. As conversations progressed, this redundant code in the history consumed a significant number of tokens unnecessarily. This not only increased costs but also diluted the context for the LLM with less relevant historical information.
3. **Enabling Updates for Large Artifacts**: The lack of a practical diff or targeted update mechanism made it nearly impossible to efficiently update larger web artifacts. Sending the entire source code for every minor change was both computationally expensive and prone to errors, effectively blocking the use of AI bots for meaningful modifications of complex artifacts.
**This pull request addresses these core issues by**:
* Introducing methods for the AI bot to explicitly *read* and understand the current state of an artifact.
* Implementing efficient update strategies that send *targeted* changes rather than the entire artifact source code.
* Providing options to control the level of artifact context included in LLM prompts, optimizing token usage.
### What
The main changes implemented in this PR to resolve the above issues are:
1. **`Read Artifact` Tool for Contextual Awareness**:
- A new `read_artifact` tool is introduced, enabling AI bots to fetch and process the current content of a web artifact from a given URL (local or external).
- This provides the LLM with a clear and up-to-date representation of the artifact's HTML, CSS, and JavaScript, improving its understanding of the base to be modified.
- By cloning local artifacts, it allows the bot to work with a fresh copy, further enhancing context and control.
2. **Refactored `Update Artifact` Tool with Efficient Strategies**:
- The `update_artifact` tool is redesigned to employ more efficient update strategies, minimizing token usage and improving update precision:
- **`diff` strategy**: Utilizes a search-and-replace diff algorithm to apply only the necessary, targeted changes to the artifact's code. This significantly reduces the amount of code sent to the LLM and focuses its attention on the specific modifications.
- **`full` strategy**: Provides the option to replace the entire content sections (HTML, CSS, JavaScript) when a complete rewrite is required.
- Tool options enhance the control over the update process:
- `editor_llm`: Allows selection of a specific LLM for artifact updates, potentially optimizing for code editing tasks.
- `update_algorithm`: Enables choosing between `diff` and `full` update strategies based on the nature of the required changes.
- `do_not_echo_artifact`: Defaults to true, and by *not* echoing the artifact in prompts, it further reduces token consumption in scenarios where the LLM might not need the full artifact context for every update step (though effectiveness might be slightly reduced in certain update scenarios).
3. **System and General Persona Tool Option Visibility and Customization**:
- Tool options, including those for system personas, are made visible and editable in the admin UI. This allows administrators to fine-tune the behavior of all personas and their tools, including setting specific LLMs or update algorithms. This was previously limited or hidden for system personas.
4. **Centralized and Improved Content Security Policy (CSP) Management**:
- The CSP for AI artifacts is consolidated and made more maintainable through the `ALLOWED_CDN_SOURCES` constant. This improves code organization and future updates to the allowed CDN list, while maintaining the existing security posture.
5. **Codebase Improvements**:
- Refactoring of diff utilities, introduction of strategy classes, enhanced error handling, new locales, and comprehensive testing all contribute to a more robust, efficient, and maintainable artifact management system.
By addressing the issues of LLM context confusion, token inefficiency, and the limitations of updating large artifacts, this pull request significantly improves the practicality and effectiveness of AI bots in managing web artifacts within Discourse.
* FEATURE: first class support for OpenRouter
This new implementation supports picking quantization and provider pref
Also:
- Improve logging for summary generation
- Improve error message when contacting LLMs fails
* Better support for full screen artifacts on iPad
Support back button to close full screen
- Added a new admin interface to track AI usage metrics, including tokens, features, and models.
- Introduced a new route `/admin/plugins/discourse-ai/ai-usage` and supporting API endpoint in `AiUsageController`.
- Implemented `AiUsageSerializer` for structuring AI usage data.
- Integrated CSS stylings for charts and tables under `stylesheets/modules/llms/common/usage.scss`.
- Enhanced backend with `AiApiAuditLog` model changes: added `cached_tokens` column (implemented with OpenAI for now) with relevant DB migration and indexing.
- Created `Report` module for efficient aggregation and filtering of AI usage metrics.
- Updated AI Bot title generation logic to log correctly to user vs bot
- Extended test coverage for the new tracking features, ensuring data consistency and access controls.
* FEATURE: allow mentioning an LLM mid conversation to switch
This is a edgecase feature that allow you to start a conversation
in a PM with LLM1 and then use LLM2 to evaluation or continue
the conversation
* FEATURE: allow auto silencing of spam accounts
New rule can also allow for silencing an account automatically
This can prevent spammers from creating additional posts.
This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes:
1. AI Artifacts System:
- Adds a new `AiArtifact` model and database migration
- Allows creation of web artifacts with HTML, CSS, and JavaScript content
- Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution
- Implements artifact rendering in iframes with sandbox protection
- New `CreateArtifact` tool for AI to generate interactive content
2. Tool System Improvements:
- Adds support for partial tool calls, allowing incremental updates during generation
- Better handling of tool call states and progress tracking
- Improved XML tool processing with CDATA support
- Fixes for tool parameter handling and duplicate invocations
3. LLM Provider Updates:
- Updates for Anthropic Claude models with correct token limits
- Adds support for native/XML tool modes in Gemini integration
- Adds new model configurations including Llama 3.1 models
- Improvements to streaming response handling
4. UI Enhancements:
- New artifact viewer component with expand/collapse functionality
- Security controls for artifact execution (click-to-run in strict mode)
- Improved dialog and response handling
- Better error management for tool execution
5. Security Improvements:
- Sandbox controls for artifact execution
- Public/private artifact sharing controls
- Security settings to control artifact behavior
- CSP and frame-options handling for artifacts
6. Technical Improvements:
- Better post streaming implementation
- Improved error handling in completions
- Better memory management for partial tool calls
- Enhanced testing coverage
7. Configuration:
- New site settings for artifact security
- Extended LLM model configurations
- Additional tool configuration options
This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
Implement streaming tool call implementation for Anthropic and Open AI.
When calling:
llm.generate(..., partial_tool_calls: true) do ...
Partials may contain ToolCall instances with partial: true, These tool calls are partially populated with json partially parsed.
So for example when performing a search you may get:
ToolCall(..., {search: "hello" })
ToolCall(..., {search: "hello world" })
The library used to parse json is:
https://github.com/dgraham/json-stream
We use a fork cause we need access to the internal buffer.
This prepares internals to perform partial tool calls, but does not implement it yet.
The custom field "discourse_ai_bypass_ai_reply" was added so
we can signal the post created hook to bypass replying even
if it thinks it should.
Otherwise there are cases where we double answer user questions
leading to much confusion.
This also slightly refactors code making the controller smaller
The new `/admin/plugins/discourse-ai/ai-personas/stream-reply.json` was added.
This endpoint streams data direct from a persona and can be used
to access a persona from remote systems leaving a paper trail in
PMs about the conversation that happened
This endpoint is only accessible to admins.
---------
Co-authored-by: Gabriel Grubba <70247653+Grubba27@users.noreply.github.com>
Co-authored-by: Keegan George <kgeorge13@gmail.com>
Splits persona permissions so you can allow a persona on:
- chat dms
- personal messages
- topic mentions
- chat channels
(any combination is allowed)
Previously we did not have this flexibility.
Additionally, adds the ability to "tether" a language model to a persona so it will always be used by the persona. This allows people to use a cheaper language model for one group of people and more expensive one for other people
Previously we waited 1 minute before automatically titling PMs
The new change introduces adding a title immediately after the the
llm replies
Prompt was also modified to include the LLM reply in title suggestion.
This helps situation like:
user: tell me a joke
llm: a very funy joke about horses
Then the title would be "A Funny Horse Joke"
Specs already covered some auto title logic, amended to also
catch the new message bus message we have been sending.
* DRAFT: Create AI Bot users dynamically and support custom LlmModels
* Get user associated to llm_model
* Track enabled bots with attribute
* Don't store bot username. Minor touches to migrate default values in settings
* Handle scenario where vLLM uses a SRV record
* Made 3.5-turbo-16k the default version so we can remove hack
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)
Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.
We also amended the persona UI to use less DToggles which aligns
with our design guidelines.
Co-authored-by: Martin Brennan <martin@discourse.org>
When the bot is @mentioned, we need to be a lot more careful
about constructing context otherwise bot gets ultra confused.
This changes multiple things:
1. We were omitting all thread first messages (fixed)
2. Include thread title (if available) in context
3. Construct context in a clearer way separating user request from data
* Well, it was quite a journey but now tools have "context" which
can be critical for the stuff they generate
This entire change was so Dall E and Artist generate images in the correct context
* FIX: improve error handling around image generation
- also corrects image markdown and clarifies code
* fix spec
Add support for chat with AI personas
- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context
At the moment unlike posts we do not carry tool calls in the context.
No @mention support yet for ai personas in channels, this is future work
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.
For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.
The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.
This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.
Other integrations will need to be updated to support images.
Several specs were added to test the new functionality at the persona, prompt building and API layers.
- Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.
- Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity
---------
Co-authored-by: Martin Brennan <martin@discourse.org>
- Stop replying as bot, when human replies to another human
- Reply as correct persona when replying directly to a persona
- Fix paper cut where suppressing notifications was not doing so
This allows users to share a static page of an AI conversation with
the rest of the world.
By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings
Precautions are taken when sharing
1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.
* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context
Co-authored-by: Martin Brennan <martin@discourse.org>
Adds support for "name" on functions which can be used for tool calls
For function calls we need to keep track of id/name and previously
we only supported either
Also attempts to improve sql helper
Introduces a new AI Bot persona called 'GitHub Helper' which is specialized in assisting with GitHub-related tasks and questions. It includes the following key changes:
- Implements the GitHub Helper persona class with its system prompt and available tools
- Adds three new AI Bot tools for GitHub interactions:
- github_file_content: Retrieves content of files from a GitHub repository
- github_pull_request_diff: Retrieves the diff for a GitHub pull request
- github_search_code: Searches for code in a GitHub repository
- Updates the AI Bot dialects to support the new GitHub tools
- Implements multiple function calls for standard tool dialect
This provides new support for messages API from Claude.
It is required for latest model access.
Also corrects implementation of function calls.
* Fix message interleving
* fix broken spec
* add new models to automation
- FIX: only update system attributes when updating system persona
- FIX: update participant count by hand so bot messages show in inbox
Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com>
* FIX: support multiple tool calls
Prior to this change we had a hard limit of 1 tool call per llm
round trip. This meant you could not google multiple things at
once or perform searches across two tools.
Also:
- Hint when Google stops working
- Log topic_id / post_id when performing completions
* Also track id for title
* DEV: improve internal design of ai persona and bug fix
- Fixes bug where OpenAI could not describe images
- Fixes bug where mentionable personas could not be mentioned unless overarching bot was enabled
- Improves internal design of playground and bot to allow better for non "bot" users
- Allow PMs directly to persona users (previously bot user would also have to be in PM)
- Simplify internal code
Co-authored-by: Martin Brennan <martin@discourse.org>
1. Personas are now optionally mentionable, meaning that you can mention them either from public topics or PMs
- Mentioning from PMs helps "switch" persona mid conversation, meaning if you want to look up sites setting you can invoke the site setting bot, or if you want to generate an image you can invoke dall e
- Mentioning outside of PMs allows you to inject a bot reply in a topic trivially
- We also add the support for max_context_posts this allow you to limit the amount of context you feed in, which can help control costs
2. Add support for a "random picker" tool that can be used to pick random numbers
3. Clean up routing ai_personas -> ai-personas
4. Add Max Context Posts so users can control how much history a persona can consume (this is important for mentionable personas)
Co-authored-by: Martin Brennan <martin@discourse.org>
Account properly for function calls, don't stream through <details> blocks
- Rush cooked content back to client
- Wait longer (up to 60 seconds) before giving up on streaming
- Clean up message bus channels so we don't have leftover data
- Make ai streamer much more reusable and much easier to read
- If buffer grows quickly, rush update so you are not artificially waiting
- Refine prompt interface
- Fix lost system message when prompt gets long
* REFACTOR: Represent generic prompts with an Object.
* Adds a bit more validation for clarity
* Rewrite bot title prompt and fix quirk handling
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
Previous to this change it was very hard to tell if completion was
stuck or not.
This introduces a "dot" that follows the completion and starts
flashing after 5 seconds.
* FIX: don't include <details> in context
We need to be careful adding <details> into context of conversations
it can cause LLMs to hallucinate results
* Fix Gemini multi-turn ctx flattening
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
It also corrects the syntax around tool support, which was wrong.
Gemini doesn't want us to include messages about previous tool invocations, so I had to shuffle around some code to send the response it generated from those invocations instead. For this, I created the "multi_turn" context, which bundles all the context involved in the interaction.
* DEV: AI bot migration to the Llm pattern.
We added tool and conversation context support to the Llm service in discourse-ai#366, meaning we met all the conditions to migrate this module.
This PR migrates to the new pattern, meaning adding a new bot now requires minimal effort as long as the service supports it. On top of this, we introduce the concept of a "Playground" to separate the PM-specific bits from the completion, allowing us to use the bot in other contexts like chat in the future. Commands are called tools, and we simplified all the placeholder logic to perform updates in a single place, making the flow more one-wayish.
* Followup fixes based on testing
* Cleanup unused inference code
* FIX: text-based tools could be in the middle of a sentence
* GPT-4-turbo support
* Use new LLM API