# frozen_string_literal: true require_relative "endpoint_examples" RSpec.describe DiscourseAi::Completions::Endpoints::Gemini do subject(:model) { described_class.new(model_name, DiscourseAi::Tokenizer::OpenAiTokenizer) } let(:model_name) { "gemini-pro" } let(:generic_prompt) { { insts: "You are a helpful bot.", input: "write 3 words" } } let(:dialect) { DiscourseAi::Completions::Dialects::Gemini.new(generic_prompt, model_name) } let(:prompt) { dialect.translate } let(:tool_payload) do { name: "get_weather", description: "Get the weather in a city", parameters: [ { name: "location", type: "string", description: "the city name" }, { name: "unit", type: "string", description: "the unit of measurement celcius c or fahrenheit f", enum: %w[c f], }, ], required: %w[location unit], } end let(:request_body) do model .default_options .merge(contents: prompt) .tap { |b| b[:tools] = [{ function_declarations: [tool_payload] }] if generic_prompt[:tools] } .to_json end let(:stream_request_body) do model .default_options .merge(contents: prompt) .tap { |b| b[:tools] = [{ function_declarations: [tool_payload] }] if generic_prompt[:tools] } .to_json end let(:tool_deltas) do [ { "functionCall" => { name: "get_weather", args: {} } }, { "functionCall" => { name: "get_weather", args: { location: "" } } }, { "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } }, ] end let(:tool_call) do { "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } } end def response(content, tool_call: false) { candidates: [ { content: { parts: [(tool_call ? content : { text: content })], role: "model", }, finishReason: "STOP", index: 0, safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, ], promptFeedback: { safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, } end def stub_response(prompt, response_text, tool_call: false) WebMock .stub_request( :post, "https://generativelanguage.googleapis.com/v1beta/models/#{model_name}:generateContent?key=#{SiteSetting.ai_gemini_api_key}", ) .with(body: request_body) .to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call))) end def stream_line(delta, finish_reason: nil, tool_call: false) { candidates: [ { content: { parts: [(tool_call ? delta : { text: delta })], role: "model", }, finishReason: finish_reason, index: 0, safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, ], }.to_json end def stub_streamed_response(prompt, deltas, tool_call: false) chunks = deltas.each_with_index.map do |_, index| if index == (deltas.length - 1) stream_line(deltas[index], finish_reason: "STOP", tool_call: tool_call) else stream_line(deltas[index], tool_call: tool_call) end end chunks = chunks.join("\n,\n").prepend("[").concat("\n]").split("") WebMock .stub_request( :post, "https://generativelanguage.googleapis.com/v1beta/models/#{model_name}:streamGenerateContent?key=#{SiteSetting.ai_gemini_api_key}", ) .with(body: stream_request_body) .to_return(status: 200, body: chunks) end it_behaves_like "an endpoint that can communicate with a completion service" end