# frozen_string_literal: true
module DiscourseAi
  module Summarization
    module Models
      class Llama2 < Base
        def display_name
          "Llama2's #{SiteSetting.ai_hugging_face_model_display_name.presence || model}"
        end
        def correctly_configured?
          SiteSetting.ai_hugging_face_api_url.present?
        end
        def configuration_hint
          I18n.t(
            "discourse_ai.summarization.configuration_hint",
            count: 1,
            setting: "ai_hugging_face_api_url",
          )
        end
        def concatenate_summaries(summaries, &on_partial_blk)
          prompt = <<~TEXT
            [INST] <>
            You are a helpful bot
            <>
            Concatenate these disjoint summaries, creating a cohesive narrative:
            #{summaries.join("\n")} [/INST]
          TEXT
          completion(prompt, &on_partial_blk)
        end
        def summarize_with_truncation(contents, opts, &on_partial_blk)
          text_to_summarize = contents.map { |c| format_content_item(c) }.join
          truncated_content = tokenizer.truncate(text_to_summarize, available_tokens)
          prompt = <<~TEXT
            [INST] <>
            #{build_base_prompt(opts)}
            <>
            Summarize the following in up to 400 words:
            #{truncated_content} [/INST]
            Here is a summary of the above topic:
          TEXT
          completion(prompt, &on_partial_blk)
        end
        def summarize_single(chunk_text, opts, &on_partial_blk)
          summarize_chunk(chunk_text, opts.merge(single_chunk: true), &on_partial_blk)
        end
        private
        def summarize_chunk(chunk_text, opts, &on_partial_blk)
          summary_instruction =
            if opts[:single_chunk]
              "Summarize the following forum discussion, creating a cohesive narrative:"
            else
              "Summarize the following in up to 400 words:"
            end
          prompt = <<~TEXT
            [INST] <>
            #{build_base_prompt(opts)}
            <>
            #{summary_instruction}
            #{chunk_text} [/INST]
            Here is a summary of the above topic:
          TEXT
          completion(prompt, &on_partial_blk)
        end
        def build_base_prompt(opts)
          base_prompt = <<~TEXT
            You are a summarization bot.
            You effectively summarise any text and reply ONLY with ONLY the summarized text.
            You condense it into a shorter version.
            You understand and generate Discourse forum Markdown.
          TEXT
          if opts[:resource_path]
            base_prompt +=
              "Try generating links as well the format is #{opts[:resource_path]}. eg: [ref](#{opts[:resource_path]}/77)\n"
          end
          base_prompt += "The discussion title is: #{opts[:content_title]}.\n" if opts[
            :content_title
          ]
          base_prompt
        end
        def completion(prompt, &on_partial_blk)
          if on_partial_blk
            on_partial_read =
              Proc.new { |partial| on_partial_blk.call(partial.dig(:token, :text).to_s) }
            ::DiscourseAi::Inference::HuggingFaceTextGeneration.perform!(
              prompt,
              model,
              &on_partial_read
            )
          else
            ::DiscourseAi::Inference::HuggingFaceTextGeneration.perform!(prompt, model).dig(
              :generated_text,
            )
          end
        end
        def tokenizer
          DiscourseAi::Tokenizer::Llama2Tokenizer
        end
      end
    end
  end
end