Roman Rizzi d72ad84f8f
FIX: Retry parsing escaped inner JSON to handle control chars. (#1357)
The structured output JSON comes embedded inside the API response, which is also a JSON. Since we have to parse the response to process it, any control characters inside the structured output are unescaped into regular characters, leading to invalid JSON and breaking during parsing. This change adds a retry mechanism that escapes
the string again if parsing fails, preventing the parser from breaking on malformed input and working around this issue.

For example:

```
  original = '{ "a": "{\\"key\\":\\"value with \\n newline\\"}" }'
  JSON.parse(original) => { "a" => "{\"key\":\"value with \n newline\"}" }
  # At this point, the inner JSON string contains an actual newline.
```
2025-05-21 11:25:59 -03:00

864 lines
27 KiB
Ruby

# frozen_string_literal: true
require_relative "endpoint_compliance"
RSpec.describe DiscourseAi::Completions::Endpoints::Anthropic do
let(:url) { "https://api.anthropic.com/v1/messages" }
fab!(:model) { Fabricate(:anthropic_model, name: "claude-3-opus", vision_enabled: true) }
let(:llm) { DiscourseAi::Completions::Llm.proxy("custom:#{model.id}") }
let(:image100x100) { plugin_file_from_fixtures("100x100.jpg") }
let(:upload100x100) do
UploadCreator.new(image100x100, "image.jpg").create_for(Discourse.system_user.id)
end
let(:prompt) do
DiscourseAi::Completions::Prompt.new(
"You are hello bot",
messages: [type: :user, id: "user1", content: "hello"],
)
end
let(:echo_tool) do
{
name: "echo",
description: "echo something",
parameters: [{ name: "text", type: "string", description: "text to echo", required: true }],
}
end
let(:google_tool) do
{
name: "google",
description: "google something",
parameters: [
{ name: "query", type: "string", description: "text to google", required: true },
],
}
end
let(:prompt_with_echo_tool) do
prompt_with_tools = prompt
prompt.tools = [echo_tool]
prompt_with_tools
end
let(:prompt_with_google_tool) do
prompt_with_tools = prompt
prompt.tools = [echo_tool]
prompt_with_tools
end
it "does not eat spaces with tool calls" do
body = <<~STRING
event: message_start
data: {"type":"message_start","message":{"id":"msg_01Ju4j2MiGQb9KV9EEQ522Y3","type":"message","role":"assistant","model":"claude-3-haiku-20240307","content":[],"stop_reason":null,"stop_sequence":null,"usage":{"input_tokens":1293,"output_tokens":1}} }
event: content_block_start
data: {"type":"content_block_start","index":0,"content_block":{"type":"tool_use","id":"toolu_01DjrShFRRHp9SnHYRFRc53F","name":"search","input":{}} }
event: ping
data: {"type": "ping"}
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":""} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"{\\"searc"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"h_qu"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"er"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"y\\": \\"s"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"<a>m"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":" "} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"sam\\""} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":", \\"cate"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"gory"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"\\": \\"gene"} }
event: content_block_delta
data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"ral\\"}"} }
event: content_block_stop
data: {"type":"content_block_stop","index":0 }
event: message_delta
data: {"type":"message_delta","delta":{"stop_reason":"tool_use","stop_sequence":null},"usage":{"output_tokens":70} }
event: message_stop
data: {"type":"message_stop"}
STRING
result = []
body = body.scan(/.*\n/)
EndpointMock.with_chunk_array_support do
stub_request(:post, url).to_return(status: 200, body: body)
llm.generate(
prompt_with_google_tool,
user: Discourse.system_user,
partial_tool_calls: true,
) { |partial| result << partial.dup }
end
tool_call =
DiscourseAi::Completions::ToolCall.new(
name: "search",
id: "toolu_01DjrShFRRHp9SnHYRFRc53F",
parameters: {
search_query: "s<a>m sam",
category: "general",
},
)
expect(result.last).to eq(tool_call)
search_queries = result.filter(&:partial).map { |r| r.parameters[:search_query] }
categories = result.filter(&:partial).map { |r| r.parameters[:category] }
expect(categories).to eq([nil, nil, nil, nil, "gene", "general"])
expect(search_queries).to eq(["s", "s<a>m", "s<a>m ", "s<a>m sam", "s<a>m sam", "s<a>m sam"])
end
it "can stream a response" do
body = (<<~STRING).strip
event: message_start
data: {"type": "message_start", "message": {"id": "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY", "type": "message", "role": "assistant", "content": [], "model": "claude-3-opus-20240229", "stop_reason": null, "stop_sequence": null, "usage": {"input_tokens": 25, "output_tokens": 1}}}
event: content_block_start
data: {"type": "content_block_start", "index":0, "content_block": {"type": "text", "text": ""}}
event: ping
data: {"type": "ping"}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "Hello"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "!"}}
event: content_block_stop
data: {"type": "content_block_stop", "index": 0}
event: message_delta
data: {"type": "message_delta", "delta": {"stop_reason": "end_turn", "stop_sequence":null, "usage":{"output_tokens": 15}}}
event: message_stop
data: {"type": "message_stop"}
STRING
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
result = +""
llm.generate(prompt, user: Discourse.system_user, feature_name: "testing") do |partial, cancel|
result << partial
end
expect(result).to eq("Hello!")
expected_body = {
model: "claude-3-opus-20240229",
max_tokens: 4096,
messages: [{ role: "user", content: "user1: hello" }],
system: "You are hello bot",
stream: true,
}
expect(parsed_body).to eq(expected_body)
log = AiApiAuditLog.order(:id).last
expect(log.provider_id).to eq(AiApiAuditLog::Provider::Anthropic)
expect(log.feature_name).to eq("testing")
expect(log.response_tokens).to eq(15)
expect(log.request_tokens).to eq(25)
expect(log.raw_request_payload).to eq(expected_body.to_json)
expect(log.raw_response_payload.strip).to eq(body.strip)
end
it "supports non streaming tool calls" do
tool = {
name: "calculate",
description: "calculate something",
parameters: [
{
name: "expression",
type: "string",
description: "expression to calculate",
required: true,
},
],
}
prompt =
DiscourseAi::Completions::Prompt.new(
"You a calculator",
messages: [{ type: :user, id: "user1", content: "calculate 2758975 + 21.11" }],
tools: [tool],
)
body = {
id: "msg_01RdJkxCbsEj9VFyFYAkfy2S",
type: "message",
role: "assistant",
model: "claude-3-haiku-20240307",
content: [
{ type: "text", text: "Here is the calculation:" },
{
type: "tool_use",
id: "toolu_012kBdhG4eHaV68W56p4N94h",
name: "calculate",
input: {
expression: "2758975 + 21.11",
},
},
],
stop_reason: "tool_use",
stop_sequence: nil,
usage: {
input_tokens: 345,
output_tokens: 65,
},
}.to_json
stub_request(:post, url).to_return(body: body)
result = llm.generate(prompt, user: Discourse.system_user)
tool_call =
DiscourseAi::Completions::ToolCall.new(
name: "calculate",
id: "toolu_012kBdhG4eHaV68W56p4N94h",
parameters: {
expression: "2758975 + 21.11",
},
)
expect(result).to eq(["Here is the calculation:", tool_call])
log = AiApiAuditLog.order(:id).last
expect(log.request_tokens).to eq(345)
expect(log.response_tokens).to eq(65)
end
it "can send images via a completion prompt" do
prompt =
DiscourseAi::Completions::Prompt.new(
"You are image bot",
messages: [type: :user, id: "user1", content: ["hello", { upload_id: upload100x100.id }]],
)
encoded = prompt.encoded_uploads(prompt.messages.last)
request_body = {
model: "claude-3-opus-20240229",
max_tokens: 4096,
messages: [
{
role: "user",
content: [
{ type: "text", text: "user1: hello" },
{
type: "image",
source: {
type: "base64",
media_type: "image/jpeg",
data: encoded[0][:base64],
},
},
],
},
],
system: "You are image bot",
}
response_body = <<~STRING
{
"content": [
{
"text": "What a cool image",
"type": "text"
}
],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-opus-20240229",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": null,
"type": "message",
"usage": {
"input_tokens": 10,
"output_tokens": 25
}
}
STRING
requested_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
requested_body = JSON.parse(req_body, symbolize_names: true)
true
end,
).to_return(status: 200, body: response_body)
result = llm.generate(prompt, user: Discourse.system_user)
expect(result).to eq("What a cool image")
expect(requested_body).to eq(request_body)
end
it "can support reasoning" do
body = <<~STRING
{
"content": [
{
"text": "Hello!",
"type": "text"
}
],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-opus-20240229",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": null,
"type": "message",
"usage": {
"input_tokens": 10,
"output_tokens": 25
}
}
STRING
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
model.provider_params["enable_reasoning"] = true
model.provider_params["reasoning_tokens"] = 10_000
model.save!
proxy = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
result = proxy.generate(prompt, user: Discourse.system_user)
expect(result).to eq("Hello!")
expected_body = {
model: "claude-3-opus-20240229",
max_tokens: 40_000,
thinking: {
type: "enabled",
budget_tokens: 10_000,
},
messages: [{ role: "user", content: "user1: hello" }],
system: "You are hello bot",
}
expect(parsed_body).to eq(expected_body)
log = AiApiAuditLog.order(:id).last
expect(log.provider_id).to eq(AiApiAuditLog::Provider::Anthropic)
expect(log.request_tokens).to eq(10)
expect(log.response_tokens).to eq(25)
end
it "can operate in regular mode" do
body = <<~STRING
{
"content": [
{
"text": "Hello!",
"type": "text"
}
],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-opus-20240229",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": null,
"type": "message",
"usage": {
"input_tokens": 10,
"output_tokens": 25
}
}
STRING
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
proxy = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
result = proxy.generate(prompt, user: Discourse.system_user)
expect(result).to eq("Hello!")
expected_body = {
model: "claude-3-opus-20240229",
max_tokens: 4096,
messages: [{ role: "user", content: "user1: hello" }],
system: "You are hello bot",
}
expect(parsed_body).to eq(expected_body)
log = AiApiAuditLog.order(:id).last
expect(log.provider_id).to eq(AiApiAuditLog::Provider::Anthropic)
expect(log.request_tokens).to eq(10)
expect(log.response_tokens).to eq(25)
end
it "can send through thinking tokens via a completion prompt" do
body = {
id: "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY",
type: "message",
role: "assistant",
content: [{ type: "text", text: "world" }],
model: "claude-3-7-sonnet-20250219",
stop_reason: "end_turn",
usage: {
input_tokens: 25,
output_tokens: 40,
},
}.to_json
parsed_body = nil
stub_request(:post, url).with(
body: ->(req_body) { parsed_body = JSON.parse(req_body) },
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
prompt = DiscourseAi::Completions::Prompt.new("system prompt")
prompt.push(type: :user, content: "hello")
prompt.push(
type: :model,
id: "user1",
content: "hello",
thinking: "I am thinking",
thinking_signature: "signature",
redacted_thinking_signature: "redacted_signature",
)
result = llm.generate(prompt, user: Discourse.system_user)
expect(result).to eq("world")
expected_body = {
"model" => "claude-3-opus-20240229",
"max_tokens" => 4096,
"messages" => [
{ "role" => "user", "content" => "hello" },
{
"role" => "assistant",
"content" => [
{ "type" => "thinking", "thinking" => "I am thinking", "signature" => "signature" },
{ "type" => "redacted_thinking", "data" => "redacted_signature" },
{ "type" => "text", "text" => "hello" },
],
},
],
"system" => "system prompt",
}
expect(parsed_body).to eq(expected_body)
end
it "can handle a response with thinking blocks in non-streaming mode" do
body = {
id: "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY",
type: "message",
role: "assistant",
content: [
{
type: "thinking",
thinking: "This is my thinking process about prime numbers...",
signature: "abc123signature",
},
{ type: "redacted_thinking", data: "abd456signature" },
{ type: "text", text: "Yes, there are infinitely many prime numbers where n mod 4 = 3." },
],
model: "claude-3-7-sonnet-20250219",
stop_reason: "end_turn",
usage: {
input_tokens: 25,
output_tokens: 40,
},
}.to_json
stub_request(:post, url).with(
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
result =
llm.generate(
"hello",
user: Discourse.system_user,
feature_name: "testing",
output_thinking: true,
)
# Result should be an array with both thinking and text content
expect(result).to be_an(Array)
expect(result.length).to eq(3)
# First item should be a Thinking object
expect(result[0]).to be_a(DiscourseAi::Completions::Thinking)
expect(result[0].message).to eq("This is my thinking process about prime numbers...")
expect(result[0].signature).to eq("abc123signature")
expect(result[1]).to be_a(DiscourseAi::Completions::Thinking)
expect(result[1].signature).to eq("abd456signature")
expect(result[1].redacted).to eq(true)
# Second item should be the text response
expect(result[2]).to eq("Yes, there are infinitely many prime numbers where n mod 4 = 3.")
# Verify audit log
log = AiApiAuditLog.order(:id).last
expect(log.provider_id).to eq(AiApiAuditLog::Provider::Anthropic)
expect(log.feature_name).to eq("testing")
expect(log.response_tokens).to eq(40)
end
it "can stream a response with thinking blocks" do
body = (<<~STRING).strip
event: message_start
data: {"type": "message_start", "message": {"id": "msg_01...", "type": "message", "role": "assistant", "content": [], "model": "claude-3-opus-20240229", "stop_reason": null, "stop_sequence": null, "usage": {"input_tokens": 25}}}
event: content_block_start
data: {"type": "content_block_start", "index": 0, "content_block": {"type": "thinking", "thinking": ""}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "thinking_delta", "thinking": "Let me solve this step by step:\\n\\n1. First break down 27 * 453"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "thinking_delta", "thinking": "\\n2. 453 = 400 + 50 + 3"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "signature_delta", "signature": "EqQBCgIYAhIM1gbcDa9GJwZA2b3hGgxBdjrkzLoky3dl1pkiMOYds..."}}
event: content_block_stop
data: {"type": "content_block_stop", "index": 0}
event: content_block_start
data: {"type":"content_block_start","index":0,"content_block":{"type":"redacted_thinking","data":"AAA=="} }
event: ping
data: {"type": "ping"}
event: content_block_stop
data: {"type":"content_block_stop","index":0 }
event: content_block_start
data: {"type": "content_block_start", "index": 1, "content_block": {"type": "text", "text": ""}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 1, "delta": {"type": "text_delta", "text": "27 * 453 = 12,231"}}
event: content_block_stop
data: {"type": "content_block_stop", "index": 1}
event: message_delta
data: {"type": "message_delta", "delta": {"stop_reason": "end_turn", "stop_sequence": null, "usage": {"output_tokens": 30}}}
event: message_stop
data: {"type": "message_stop"}
STRING
parsed_body = nil
stub_request(:post, url).with(
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
thinking_chunks = []
text_chunks = []
llm.generate(
"hello there",
user: Discourse.system_user,
feature_name: "testing",
output_thinking: true,
) do |partial, cancel|
if partial.is_a?(DiscourseAi::Completions::Thinking)
thinking_chunks << partial
else
text_chunks << partial
end
end
expected_thinking = [
DiscourseAi::Completions::Thinking.new(message: "", signature: "", partial: true),
DiscourseAi::Completions::Thinking.new(
message: "Let me solve this step by step:\n\n1. First break down 27 * 453",
partial: true,
),
DiscourseAi::Completions::Thinking.new(message: "\n2. 453 = 400 + 50 + 3", partial: true),
DiscourseAi::Completions::Thinking.new(
message:
"Let me solve this step by step:\n\n1. First break down 27 * 453\n2. 453 = 400 + 50 + 3",
signature: "EqQBCgIYAhIM1gbcDa9GJwZA2b3hGgxBdjrkzLoky3dl1pkiMOYds...",
partial: false,
),
DiscourseAi::Completions::Thinking.new(message: nil, signature: "AAA==", redacted: true),
]
expect(thinking_chunks).to eq(expected_thinking)
expect(text_chunks).to eq(["27 * 453 = 12,231"])
log = AiApiAuditLog.order(:id).last
expect(log.provider_id).to eq(AiApiAuditLog::Provider::Anthropic)
expect(log.feature_name).to eq("testing")
expect(log.response_tokens).to eq(30)
end
describe "parameter disabling" do
it "excludes disabled parameters from the request" do
model.update!(provider_params: { disable_top_p: true, disable_temperature: true })
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(
status: 200,
body: {
id: "msg_123",
type: "message",
role: "assistant",
content: [{ type: "text", text: "test response" }],
model: "claude-3-opus-20240229",
usage: {
input_tokens: 10,
output_tokens: 5,
},
}.to_json,
)
# Request with parameters that should be ignored
llm.generate(
prompt,
user: Discourse.system_user,
top_p: 0.9,
temperature: 0.8,
max_tokens: 500,
)
# Verify disabled parameters aren't included
expect(parsed_body).not_to have_key(:top_p)
expect(parsed_body).not_to have_key(:temperature)
# Verify other parameters still work
expect(parsed_body).to have_key(:max_tokens)
expect(parsed_body[:max_tokens]).to eq(500)
end
end
describe "disabled tool use" do
it "can properly disable tool use with :none" do
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a bot",
messages: [type: :user, id: "user1", content: "don't use any tools please"],
tools: [echo_tool],
tool_choice: :none,
)
response_body = {
id: "msg_01RdJkxCbsEj9VFyFYAkfy2S",
type: "message",
role: "assistant",
model: "claude-3-haiku-20240307",
content: [
{ type: "text", text: "I won't use any tools. Here's a direct response instead." },
],
stop_reason: "end_turn",
stop_sequence: nil,
usage: {
input_tokens: 345,
output_tokens: 65,
},
}.to_json
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
).to_return(status: 200, body: response_body)
result = llm.generate(prompt, user: Discourse.system_user)
# Verify that tool_choice is set to { type: "none" }
expect(parsed_body[:tool_choice]).to eq({ type: "none" })
# Verify that an assistant message with no_more_tool_calls_text was added
messages = parsed_body[:messages]
expect(messages.length).to eq(2) # user message + added assistant message
last_message = messages.last
expect(last_message[:role]).to eq("assistant")
expect(last_message[:content]).to eq(
DiscourseAi::Completions::Dialects::Dialect.no_more_tool_calls_text,
)
expect(result).to eq("I won't use any tools. Here's a direct response instead.")
end
end
describe "structured output via prefilling" do
it "forces the response to be a JSON and using the given JSON schema" do
schema = {
type: "json_schema",
json_schema: {
name: "reply",
schema: {
type: "object",
properties: {
key: {
type: "string",
},
},
required: ["key"],
additionalProperties: false,
},
strict: true,
},
}
body = (<<~STRING).strip
event: message_start
data: {"type": "message_start", "message": {"id": "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY", "type": "message", "role": "assistant", "content": [], "model": "claude-3-opus-20240229", "stop_reason": null, "stop_sequence": null, "usage": {"input_tokens": 25, "output_tokens": 1}}}
event: content_block_start
data: {"type": "content_block_start", "index":0, "content_block": {"type": "text", "text": ""}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "\\""}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "key"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "\\":\\""}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "Hello!"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "\\n there"}}
event: content_block_delta
data: {"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "\\"}"}}
event: content_block_stop
data: {"type": "content_block_stop", "index": 0}
event: message_delta
data: {"type": "message_delta", "delta": {"stop_reason": "end_turn", "stop_sequence":null, "usage":{"output_tokens": 15}}}
event: message_stop
data: {"type": "message_stop"}
STRING
parsed_body = nil
stub_request(:post, url).with(
body:
proc do |req_body|
parsed_body = JSON.parse(req_body, symbolize_names: true)
true
end,
headers: {
"Content-Type" => "application/json",
"X-Api-Key" => "123",
"Anthropic-Version" => "2023-06-01",
},
).to_return(status: 200, body: body)
structured_output = nil
llm.generate(
prompt,
user: Discourse.system_user,
feature_name: "testing",
response_format: schema,
) { |partial, cancel| structured_output = partial }
expect(structured_output.read_buffered_property(:key)).to eq("Hello!\n there")
expected_body = {
model: "claude-3-opus-20240229",
max_tokens: 4096,
messages: [{ role: "user", content: "user1: hello" }, { role: "assistant", content: "{" }],
system: "You are hello bot",
stream: true,
}
expect(parsed_body).to eq(expected_body)
end
end
end