Sam c34fcc8a95
FEATURE: forum researcher persona for deep research (#1313)
This commit introduces a new Forum Researcher persona specialized in deep forum content analysis along with comprehensive improvements to our AI infrastructure.

Key additions:

    New Forum Researcher persona with advanced filtering and analysis capabilities
    Robust filtering system supporting tags, categories, dates, users, and keywords
    LLM formatter to efficiently process and chunk research results

Infrastructure improvements:

    Implemented CancelManager class to centrally manage AI completion cancellations
    Replaced callback-based cancellation with a more robust pattern
    Added systematic cancellation monitoring with callbacks

Other improvements:

    Added configurable default_enabled flag to control which personas are enabled by default
    Updated translation strings for the new researcher functionality
    Added comprehensive specs for the new components

    Renames Researcher -> Web Researcher

This change makes our AI platform more stable while adding powerful research capabilities that can analyze forum trends and surface relevant content.
2025-05-14 12:36:16 +10:00

168 lines
5.3 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Completions
module Endpoints
class OpenAi < Base
def self.can_contact?(model_provider)
%w[open_ai azure].include?(model_provider)
end
def normalize_model_params(model_params)
model_params = model_params.dup
# max_tokens is deprecated however we still need to support it
# on older OpenAI models and older Azure models, so we will only normalize
# if our model name starts with o (to denote all the reasoning models)
if llm_model.name.starts_with?("o")
max_tokens = model_params.delete(:max_tokens)
model_params[:max_completion_tokens] = max_tokens if max_tokens
end
# temperature is already supported
if model_params[:stop_sequences]
model_params[:stop] = model_params.delete(:stop_sequences)
end
model_params.delete(:top_p) if llm_model.lookup_custom_param("disable_top_p")
model_params.delete(:temperature) if llm_model.lookup_custom_param("disable_temperature")
model_params
end
def default_options
{ model: llm_model.name }
end
def provider_id
AiApiAuditLog::Provider::OpenAI
end
def perform_completion!(
dialect,
user,
model_params = {},
feature_name: nil,
feature_context: nil,
partial_tool_calls: false,
output_thinking: false,
cancel_manager: nil,
&blk
)
@disable_native_tools = dialect.disable_native_tools?
super
end
private
def disable_streaming?
@disable_streaming ||= llm_model.lookup_custom_param("disable_streaming")
end
def reasoning_effort
return @reasoning_effort if defined?(@reasoning_effort)
@reasoning_effort = llm_model.lookup_custom_param("reasoning_effort")
@reasoning_effort = nil if !%w[low medium high].include?(@reasoning_effort)
@reasoning_effort
end
def model_uri
if llm_model.url.to_s.starts_with?("srv://")
service = DiscourseAi::Utils::DnsSrv.lookup(llm_model.url.sub("srv://", ""))
api_endpoint = "https://#{service.target}:#{service.port}/v1/chat/completions"
else
api_endpoint = llm_model.url
end
@uri ||= URI(api_endpoint)
end
def prepare_payload(prompt, model_params, dialect)
payload = default_options.merge(model_params).merge(messages: prompt)
payload[:reasoning_effort] = reasoning_effort if reasoning_effort
if @streaming_mode
payload[:stream] = true
# Usage is not available in Azure yet.
# We'll fallback to guess this using the tokenizer.
payload[:stream_options] = { include_usage: true } if llm_model.provider == "open_ai"
end
if !xml_tools_enabled?
if dialect.tools.present?
payload[:tools] = dialect.tools
if dialect.tool_choice.present?
if dialect.tool_choice == :none
payload[:tool_choice] = "none"
else
payload[:tool_choice] = {
type: "function",
function: {
name: dialect.tool_choice,
},
}
end
end
end
end
payload
end
def prepare_request(payload)
headers = { "Content-Type" => "application/json" }
api_key = llm_model.api_key
if llm_model.provider == "azure"
headers["api-key"] = api_key
else
headers["Authorization"] = "Bearer #{api_key}"
org_id = llm_model.lookup_custom_param("organization")
headers["OpenAI-Organization"] = org_id if org_id.present?
end
Net::HTTP::Post.new(model_uri, headers).tap { |r| r.body = payload }
end
def final_log_update(log)
log.request_tokens = processor.prompt_tokens if processor.prompt_tokens
log.response_tokens = processor.completion_tokens if processor.completion_tokens
log.cached_tokens = processor.cached_tokens if processor.cached_tokens
end
def decode(response_raw)
processor.process_message(JSON.parse(response_raw, symbolize_names: true))
end
def decode_chunk(chunk)
@decoder ||= JsonStreamDecoder.new
elements =
(@decoder << chunk)
.map { |parsed_json| processor.process_streamed_message(parsed_json) }
.flatten
.compact
# Remove duplicate partial tool calls
# sometimes we stream weird chunks
seen_tools = Set.new
elements.select { |item| !item.is_a?(ToolCall) || seen_tools.add?(item) }
end
def decode_chunk_finish
processor.finish
end
def xml_tools_enabled?
!!@disable_native_tools
end
private
def processor
@processor ||= OpenAiMessageProcessor.new(partial_tool_calls: partial_tool_calls)
end
end
end
end
end