mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-07-01 03:52:34 +00:00
This commit introduces a new Forum Researcher persona specialized in deep forum content analysis along with comprehensive improvements to our AI infrastructure. Key additions: New Forum Researcher persona with advanced filtering and analysis capabilities Robust filtering system supporting tags, categories, dates, users, and keywords LLM formatter to efficiently process and chunk research results Infrastructure improvements: Implemented CancelManager class to centrally manage AI completion cancellations Replaced callback-based cancellation with a more robust pattern Added systematic cancellation monitoring with callbacks Other improvements: Added configurable default_enabled flag to control which personas are enabled by default Updated translation strings for the new researcher functionality Added comprehensive specs for the new components Renames Researcher -> Web Researcher This change makes our AI platform more stable while adding powerful research capabilities that can analyze forum trends and surface relevant content.
403 lines
14 KiB
Ruby
403 lines
14 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
# A facade that abstracts multiple LLMs behind a single interface.
|
|
#
|
|
# Internally, it consists of the combination of a dialect and an endpoint.
|
|
# After receiving a prompt using our generic format, it translates it to
|
|
# the target model and routes the completion request through the correct gateway.
|
|
#
|
|
# Use the .proxy method to instantiate an object.
|
|
# It chooses the correct dialect and endpoint for the model you want to interact with.
|
|
#
|
|
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
|
|
# instead of relying on WebMock stubs like we did in the past.
|
|
#
|
|
module DiscourseAi
|
|
module Completions
|
|
class Llm
|
|
UNKNOWN_MODEL = Class.new(StandardError)
|
|
|
|
class << self
|
|
def presets
|
|
# Sam: I am not sure if it makes sense to translate model names at all
|
|
@presets ||=
|
|
begin
|
|
[
|
|
{
|
|
id: "anthropic",
|
|
models: [
|
|
{
|
|
name: "claude-3-7-sonnet",
|
|
tokens: 200_000,
|
|
display_name: "Claude 3.7 Sonnet",
|
|
input_cost: 3,
|
|
cached_input_cost: 0.30,
|
|
output_cost: 15,
|
|
},
|
|
{
|
|
name: "claude-3-5-haiku",
|
|
tokens: 200_000,
|
|
display_name: "Claude 3.5 Haiku",
|
|
input_cost: 0.80,
|
|
cached_input_cost: 0.08,
|
|
output_cost: 4,
|
|
},
|
|
{
|
|
name: "claude-3-opus",
|
|
tokens: 200_000,
|
|
display_name: "Claude 3 Opus",
|
|
input_cost: 15,
|
|
cached_input_cost: 1.50,
|
|
output_cost: 75,
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::AnthropicTokenizer,
|
|
endpoint: "https://api.anthropic.com/v1/messages",
|
|
provider: "anthropic",
|
|
},
|
|
{
|
|
id: "google",
|
|
models: [
|
|
{
|
|
name: "gemini-2.5-pro",
|
|
tokens: 800_000,
|
|
endpoint:
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-pro-preview-03-25",
|
|
display_name: "Gemini 2.5 Pro",
|
|
},
|
|
{
|
|
name: "gemini-2.0-flash",
|
|
tokens: 800_000,
|
|
endpoint:
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash",
|
|
display_name: "Gemini 2.0 Flash",
|
|
},
|
|
{
|
|
name: "gemini-2.0-flash-lite",
|
|
tokens: 800_000,
|
|
endpoint:
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-lite",
|
|
display_name: "Gemini 2.0 Flash Lite",
|
|
input_cost: 0.075,
|
|
output_cost: 0.30,
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::GeminiTokenizer,
|
|
provider: "google",
|
|
},
|
|
{
|
|
id: "open_ai",
|
|
models: [
|
|
{
|
|
name: "o3-mini",
|
|
tokens: 200_000,
|
|
display_name: "o3 Mini",
|
|
input_cost: 1.10,
|
|
cached_input_cost: 0.55,
|
|
output_cost: 4.40,
|
|
},
|
|
{
|
|
name: "o1",
|
|
tokens: 200_000,
|
|
display_name: "o1",
|
|
input_cost: 15,
|
|
cached_input_cost: 7.50,
|
|
output_cost: 60,
|
|
},
|
|
{
|
|
name: "gpt-4.1",
|
|
tokens: 800_000,
|
|
display_name: "GPT-4.1",
|
|
input_cost: 2,
|
|
cached_input_cost: 0.5,
|
|
output_cost: 8,
|
|
},
|
|
{
|
|
name: "gpt-4.1-mini",
|
|
tokens: 800_000,
|
|
display_name: "GPT-4.1 Mini",
|
|
input_cost: 0.40,
|
|
cached_input_cost: 0.10,
|
|
output_cost: 1.60,
|
|
},
|
|
{
|
|
name: "gpt-4.1-nano",
|
|
tokens: 800_000,
|
|
display_name: "GPT-4.1 Nano",
|
|
input_cost: 0.10,
|
|
cached_input_cost: 0.025,
|
|
output_cost: 0.40,
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
|
|
endpoint: "https://api.openai.com/v1/chat/completions",
|
|
provider: "open_ai",
|
|
},
|
|
{
|
|
id: "samba_nova",
|
|
models: [
|
|
{
|
|
name: "Meta-Llama-3.3-70B-Instruct",
|
|
tokens: 131_072,
|
|
display_name: "Llama 3.3 70B",
|
|
input_cost: 0.60,
|
|
output_cost: 1.20,
|
|
},
|
|
{
|
|
name: "Meta-Llama-3.1-8B-Instruct",
|
|
tokens: 16_384,
|
|
display_name: "Llama 3.1 8B",
|
|
input_cost: 0.1,
|
|
output_cost: 0.20,
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::Llama3Tokenizer,
|
|
endpoint: "https://api.sambanova.ai/v1/chat/completions",
|
|
provider: "samba_nova",
|
|
},
|
|
{
|
|
id: "mistral",
|
|
models: [
|
|
{
|
|
name: "mistral-large-latest",
|
|
tokens: 128_000,
|
|
display_name: "Mistral Large",
|
|
},
|
|
{
|
|
name: "pixtral-large-latest",
|
|
tokens: 128_000,
|
|
display_name: "Pixtral Large",
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::MixtralTokenizer,
|
|
endpoint: "https://api.mistral.ai/v1/chat/completions",
|
|
provider: "mistral",
|
|
},
|
|
{
|
|
id: "open_router",
|
|
models: [
|
|
{
|
|
name: "meta-llama/llama-3.3-70b-instruct",
|
|
tokens: 128_000,
|
|
display_name: "Llama 3.3 70B",
|
|
},
|
|
{
|
|
name: "google/gemini-flash-1.5-exp",
|
|
tokens: 1_000_000,
|
|
display_name: "Gemini Flash 1.5 Exp",
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
|
|
endpoint: "https://openrouter.ai/api/v1/chat/completions",
|
|
provider: "open_router",
|
|
},
|
|
]
|
|
end
|
|
end
|
|
|
|
def provider_names
|
|
providers = %w[
|
|
aws_bedrock
|
|
anthropic
|
|
vllm
|
|
hugging_face
|
|
cohere
|
|
open_ai
|
|
google
|
|
azure
|
|
samba_nova
|
|
mistral
|
|
open_router
|
|
]
|
|
if !Rails.env.production?
|
|
providers << "fake"
|
|
providers << "ollama"
|
|
end
|
|
|
|
providers
|
|
end
|
|
|
|
def tokenizer_names
|
|
DiscourseAi::Tokenizer::BasicTokenizer.available_llm_tokenizers.map(&:name)
|
|
end
|
|
|
|
def valid_provider_models
|
|
return @valid_provider_models if defined?(@valid_provider_models)
|
|
|
|
valid_provider_models = []
|
|
models_by_provider.each do |provider, models|
|
|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
|
|
end
|
|
@valid_provider_models = Set.new(valid_provider_models)
|
|
end
|
|
|
|
def with_prepared_responses(responses, llm: nil)
|
|
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
|
|
@canned_llm = llm
|
|
@prompts = []
|
|
@prompt_options = []
|
|
|
|
yield(@canned_response, llm, @prompts, @prompt_options)
|
|
ensure
|
|
# Don't leak prepared response if there's an exception.
|
|
@canned_response = nil
|
|
@canned_llm = nil
|
|
@prompts = nil
|
|
end
|
|
|
|
def record_prompt(prompt, options)
|
|
@prompts << prompt.dup if @prompts
|
|
@prompt_options << options if @prompt_options
|
|
end
|
|
|
|
def prompt_options
|
|
@prompt_options
|
|
end
|
|
|
|
def prompts
|
|
@prompts
|
|
end
|
|
|
|
def proxy(model)
|
|
llm_model =
|
|
if model.is_a?(LlmModel)
|
|
model
|
|
else
|
|
model_name_without_prov = model.split(":").last.to_i
|
|
|
|
LlmModel.find_by(id: model_name_without_prov)
|
|
end
|
|
|
|
raise UNKNOWN_MODEL if llm_model.nil?
|
|
|
|
dialect_klass = DiscourseAi::Completions::Dialects::Dialect.dialect_for(llm_model)
|
|
|
|
if @canned_response
|
|
if @canned_llm && @canned_llm != model
|
|
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model}"
|
|
end
|
|
|
|
return new(dialect_klass, nil, llm_model, gateway: @canned_response)
|
|
end
|
|
|
|
model_provider = llm_model.provider
|
|
gateway_klass = DiscourseAi::Completions::Endpoints::Base.endpoint_for(model_provider)
|
|
|
|
new(dialect_klass, gateway_klass, llm_model)
|
|
end
|
|
end
|
|
|
|
def initialize(dialect_klass, gateway_klass, llm_model, gateway: nil)
|
|
@dialect_klass = dialect_klass
|
|
@gateway_klass = gateway_klass
|
|
@gateway = gateway
|
|
@llm_model = llm_model
|
|
end
|
|
|
|
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
|
|
# @param user { User } - User requesting the summary.
|
|
# @param temperature { Float - Optional } - The temperature to use for the completion.
|
|
# @param top_p { Float - Optional } - The top_p to use for the completion.
|
|
# @param max_tokens { Integer - Optional } - The maximum number of tokens to generate.
|
|
# @param stop_sequences { Array<String> - Optional } - The stop sequences to use for the completion.
|
|
# @param feature_name { String - Optional } - The feature name to use for the completion.
|
|
# @param feature_context { Hash - Optional } - The feature context to use for the completion.
|
|
# @param partial_tool_calls { Boolean - Optional } - If true, the completion will return partial tool calls.
|
|
# @param output_thinking { Boolean - Optional } - If true, the completion will return the thinking output for thinking models.
|
|
# @param response_format { Hash - Optional } - JSON schema passed to the API as the desired structured output.
|
|
# @param [Experimental] extra_model_params { Hash - Optional } - Other params that are not available accross models. e.g. response_format JSON schema.
|
|
#
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response.
|
|
#
|
|
# @returns String | ToolCall - Completion result.
|
|
# if multiple tools or a tool and a message come back, the result will be an array of ToolCall / String objects.
|
|
#
|
|
def generate(
|
|
prompt,
|
|
temperature: nil,
|
|
top_p: nil,
|
|
max_tokens: nil,
|
|
stop_sequences: nil,
|
|
user:,
|
|
feature_name: nil,
|
|
feature_context: nil,
|
|
partial_tool_calls: false,
|
|
output_thinking: false,
|
|
response_format: nil,
|
|
extra_model_params: nil,
|
|
cancel_manager: nil,
|
|
&partial_read_blk
|
|
)
|
|
self.class.record_prompt(
|
|
prompt,
|
|
{
|
|
temperature: temperature,
|
|
top_p: top_p,
|
|
max_tokens: max_tokens,
|
|
stop_sequences: stop_sequences,
|
|
user: user,
|
|
feature_name: feature_name,
|
|
feature_context: feature_context,
|
|
partial_tool_calls: partial_tool_calls,
|
|
output_thinking: output_thinking,
|
|
response_format: response_format,
|
|
extra_model_params: extra_model_params,
|
|
},
|
|
)
|
|
|
|
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
|
|
|
|
model_params[:temperature] = temperature if temperature
|
|
model_params[:top_p] = top_p if top_p
|
|
model_params[:response_format] = response_format if response_format
|
|
model_params.merge!(extra_model_params) if extra_model_params
|
|
|
|
if prompt.is_a?(String)
|
|
prompt =
|
|
DiscourseAi::Completions::Prompt.new(
|
|
"You are a helpful bot",
|
|
messages: [{ type: :user, content: prompt }],
|
|
)
|
|
elsif prompt.is_a?(Array)
|
|
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
|
|
end
|
|
|
|
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
|
|
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
|
|
end
|
|
|
|
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
|
|
|
|
dialect = dialect_klass.new(prompt, llm_model, opts: model_params)
|
|
|
|
gateway = @gateway || gateway_klass.new(llm_model)
|
|
gateway.perform_completion!(
|
|
dialect,
|
|
user,
|
|
model_params,
|
|
feature_name: feature_name,
|
|
feature_context: feature_context,
|
|
partial_tool_calls: partial_tool_calls,
|
|
output_thinking: output_thinking,
|
|
cancel_manager: cancel_manager,
|
|
&partial_read_blk
|
|
)
|
|
end
|
|
|
|
def max_prompt_tokens
|
|
llm_model.max_prompt_tokens
|
|
end
|
|
|
|
def tokenizer
|
|
llm_model.tokenizer_class
|
|
end
|
|
|
|
attr_reader :llm_model
|
|
|
|
private
|
|
|
|
attr_reader :dialect_klass, :gateway_klass
|
|
end
|
|
end
|
|
end
|