Sam cc4e9e030f
FIX: normalize keys in structured output (#1468)
* FIX: normalize keys in structured output

Previously we did not validate the hash passed in to structured
outputs which could either be string based or symbol base

Specifically this broke structured outputs for Gemini in some
specific cases.

* comment out flake
2025-06-27 15:42:48 +10:00

439 lines
16 KiB
Ruby

# frozen_string_literal: true
# A facade that abstracts multiple LLMs behind a single interface.
#
# Internally, it consists of the combination of a dialect and an endpoint.
# After receiving a prompt using our generic format, it translates it to
# the target model and routes the completion request through the correct gateway.
#
# Use the .proxy method to instantiate an object.
# It chooses the correct dialect and endpoint for the model you want to interact with.
#
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
# instead of relying on WebMock stubs like we did in the past.
#
module DiscourseAi
module Completions
class Llm
UNKNOWN_MODEL = Class.new(StandardError)
class << self
def presets
# Sam: I am not sure if it makes sense to translate model names at all
@presets ||=
begin
[
{
id: "anthropic",
models: [
{
name: "claude-3-7-sonnet-latest",
tokens: 200_000,
display_name: "Claude 3.7 Sonnet",
input_cost: 3,
cached_input_cost: 0.30,
output_cost: 15,
},
{
name: "claude-sonnet-4-0",
tokens: 200_000,
display_name: "Claude 4 Sonnet",
input_cost: 3,
cached_input_cost: 0.30,
output_cost: 15,
},
{
name: "claude-3-5-haiku-latest",
tokens: 200_000,
display_name: "Claude 3.5 Haiku",
input_cost: 0.80,
cached_input_cost: 0.08,
output_cost: 4,
},
{
name: "claude-opus-4-0",
tokens: 200_000,
display_name: "Claude 4 Opus",
input_cost: 15,
cached_input_cost: 1.50,
output_cost: 75,
},
],
tokenizer: DiscourseAi::Tokenizer::AnthropicTokenizer,
endpoint: "https://api.anthropic.com/v1/messages",
provider: "anthropic",
},
{
id: "google",
models: [
{
name: "gemini-2.5-pro",
tokens: 800_000,
endpoint:
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-pro",
display_name: "Gemini 2.5 Pro",
input_cost: 1.25,
oputput_cost: 10.0,
},
{
name: "gemini-2.5-flash",
tokens: 800_000,
endpoint:
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash",
display_name: "Gemini 2.5 Flash",
input_cost: 0.30,
output_cost: 2.50,
},
{
name: "gemini-2.0-flash",
tokens: 800_000,
endpoint:
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash",
display_name: "Gemini 2.0 Flash",
input_cost: 0.10,
output_cost: 0.40,
},
{
name: "gemini-2.0-flash-lite",
tokens: 800_000,
endpoint:
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-lite",
display_name: "Gemini 2.0 Flash Lite",
input_cost: 0.075,
output_cost: 0.30,
},
],
tokenizer: DiscourseAi::Tokenizer::GeminiTokenizer,
provider: "google",
},
{
id: "open_ai",
models: [
{
name: "o4-mini",
tokens: 200_000,
display_name: "o4 Mini",
input_cost: 1.10,
cached_input_cost: 0.275,
output_cost: 4.40,
},
{
name: "o3",
tokens: 200_000,
display_name: "o3",
input_cost: 2,
cached_input_cost: 0.5,
output_cost: 8,
},
{
name: "gpt-4.1",
tokens: 800_000,
display_name: "GPT-4.1",
input_cost: 2,
cached_input_cost: 0.5,
output_cost: 8,
},
{
name: "gpt-4.1-mini",
tokens: 800_000,
display_name: "GPT-4.1 Mini",
input_cost: 0.40,
cached_input_cost: 0.10,
output_cost: 1.60,
},
{
name: "gpt-4.1-nano",
tokens: 800_000,
display_name: "GPT-4.1 Nano",
input_cost: 0.10,
cached_input_cost: 0.025,
output_cost: 0.40,
},
],
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
endpoint: "https://api.openai.com/v1/chat/completions",
provider: "open_ai",
},
{
id: "samba_nova",
models: [
{
name: "Meta-Llama-3.3-70B-Instruct",
tokens: 131_072,
display_name: "Llama 3.3 70B",
input_cost: 0.60,
output_cost: 1.20,
},
{
name: "Meta-Llama-3.1-8B-Instruct",
tokens: 16_384,
display_name: "Llama 3.1 8B",
input_cost: 0.1,
output_cost: 0.20,
},
],
tokenizer: DiscourseAi::Tokenizer::Llama3Tokenizer,
endpoint: "https://api.sambanova.ai/v1/chat/completions",
provider: "samba_nova",
},
{
id: "mistral",
models: [
{
name: "mistral-large-latest",
tokens: 128_000,
display_name: "Mistral Large",
},
{
name: "pixtral-large-latest",
tokens: 128_000,
display_name: "Pixtral Large",
},
],
tokenizer: DiscourseAi::Tokenizer::MixtralTokenizer,
endpoint: "https://api.mistral.ai/v1/chat/completions",
provider: "mistral",
},
{
id: "open_router",
models: [
{
name: "x-ai/grok-3-beta",
tokens: 131_072,
display_name: "xAI Grok 3 Beta",
input_cost: 3,
output_cost: 15,
},
{
name: "deepseek/deepseek-r1-0528:free",
tokens: 163_000,
display_name: "DeepSeek R1 0528 - free",
},
{
name: "meta-llama/llama-3.3-70b-instruct",
tokens: 131_072,
display_name: "Llama 3.3 70B Instruct",
input_cost: 0.05,
output_cost: 0.25,
},
],
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
endpoint: "https://openrouter.ai/api/v1/chat/completions",
provider: "open_router",
},
]
end
end
def provider_names
providers = %w[
aws_bedrock
anthropic
vllm
hugging_face
cohere
open_ai
google
azure
samba_nova
mistral
open_router
]
if !Rails.env.production?
providers << "fake"
providers << "ollama"
end
providers
end
def tokenizer_names
DiscourseAi::Tokenizer::BasicTokenizer.available_llm_tokenizers.map(&:name)
end
def valid_provider_models
return @valid_provider_models if defined?(@valid_provider_models)
valid_provider_models = []
models_by_provider.each do |provider, models|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
end
@valid_provider_models = Set.new(valid_provider_models)
end
def with_prepared_responses(responses, llm: nil)
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
@canned_llm = llm
@prompts = []
@prompt_options = []
yield(@canned_response, llm, @prompts, @prompt_options)
ensure
# Don't leak prepared response if there's an exception.
@canned_response = nil
@canned_llm = nil
@prompts = nil
end
def record_prompt(prompt, options)
@prompts << prompt.dup if @prompts
@prompt_options << options if @prompt_options
end
def prompt_options
@prompt_options
end
def prompts
@prompts
end
def proxy(model)
llm_model =
if model.is_a?(LlmModel)
model
else
model_name_without_prov = model.split(":").last.to_i
LlmModel.find_by(id: model_name_without_prov)
end
raise UNKNOWN_MODEL if llm_model.nil?
dialect_klass = DiscourseAi::Completions::Dialects::Dialect.dialect_for(llm_model)
if @canned_response
if @canned_llm && @canned_llm != model
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model}"
end
return new(dialect_klass, nil, llm_model, gateway: @canned_response)
end
model_provider = llm_model.provider
gateway_klass = DiscourseAi::Completions::Endpoints::Base.endpoint_for(model_provider)
new(dialect_klass, gateway_klass, llm_model)
end
end
def initialize(dialect_klass, gateway_klass, llm_model, gateway: nil)
@dialect_klass = dialect_klass
@gateway_klass = gateway_klass
@gateway = gateway
@llm_model = llm_model
end
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
# @param user { User } - User requesting the summary.
# @param temperature { Float - Optional } - The temperature to use for the completion.
# @param top_p { Float - Optional } - The top_p to use for the completion.
# @param max_tokens { Integer - Optional } - The maximum number of tokens to generate.
# @param stop_sequences { Array<String> - Optional } - The stop sequences to use for the completion.
# @param feature_name { String - Optional } - The feature name to use for the completion.
# @param feature_context { Hash - Optional } - The feature context to use for the completion.
# @param partial_tool_calls { Boolean - Optional } - If true, the completion will return partial tool calls.
# @param output_thinking { Boolean - Optional } - If true, the completion will return the thinking output for thinking models.
# @param response_format { Hash - Optional } - JSON schema passed to the API as the desired structured output.
# @param [Experimental] extra_model_params { Hash - Optional } - Other params that are not available accross models. e.g. response_format JSON schema.
#
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response.
#
# @returns String | ToolCall - Completion result.
# if multiple tools or a tool and a message come back, the result will be an array of ToolCall / String objects.
#
def generate(
prompt,
temperature: nil,
top_p: nil,
max_tokens: nil,
stop_sequences: nil,
user:,
feature_name: nil,
feature_context: nil,
partial_tool_calls: false,
output_thinking: false,
response_format: nil,
extra_model_params: nil,
cancel_manager: nil,
&partial_read_blk
)
self.class.record_prompt(
prompt,
{
temperature: temperature,
top_p: top_p,
max_tokens: max_tokens,
stop_sequences: stop_sequences,
user: user,
feature_name: feature_name,
feature_context: feature_context,
partial_tool_calls: partial_tool_calls,
output_thinking: output_thinking,
response_format: response_format,
extra_model_params: extra_model_params,
},
)
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
model_params[:temperature] = temperature if temperature
model_params[:top_p] = top_p if top_p
# internals expect symbolized keys, so we normalize here
response_format =
JSON.parse(response_format.to_json, symbolize_names: true) if response_format &&
response_format.is_a?(Hash)
model_params[:response_format] = response_format if response_format
model_params.merge!(extra_model_params) if extra_model_params
if prompt.is_a?(String)
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a helpful bot",
messages: [{ type: :user, content: prompt }],
)
elsif prompt.is_a?(Array)
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
end
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
end
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
dialect = dialect_klass.new(prompt, llm_model, opts: model_params)
gateway = @gateway || gateway_klass.new(llm_model)
gateway.perform_completion!(
dialect,
user,
model_params,
feature_name: feature_name,
feature_context: feature_context,
partial_tool_calls: partial_tool_calls,
output_thinking: output_thinking,
cancel_manager: cancel_manager,
&partial_read_blk
)
end
def max_prompt_tokens
llm_model.max_prompt_tokens
end
def tokenizer
llm_model.tokenizer_class
end
attr_reader :llm_model
private
attr_reader :dialect_klass, :gateway_klass
end
end
end