Roman Rizzi 4f1a3effe0
REFACTOR: Migrate Vllm/TGI-served models to the OpenAI format. (#588)
Both endpoints provide OpenAI-compatible servers. The only difference is that Vllm doesn't support passing tools as a separate parameter. Even if the tool param is supported, it ultimately relies on the model's ability to handle native functions, which is not the case with the models we have today.

As a part of this change, we are dropping support for StableBeluga/Llama2 models. They don't have a chat_template, meaning the new API can translate them.

These changes let us remove some of our existing dialects and are a first step in our plan to support any LLM by defining them as data-driven concepts.

 I rewrote the "translate" method to use a template method and extracted the tool support strategies into its classes to simplify the code.

Finally, these changes bring support for Ollama when running in dev mode. It only works with Mistral for now, but it will change soon..
2024-05-07 10:02:16 -03:00

134 lines
3.4 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Completions
module Dialects
class ChatGpt < Dialect
class << self
def can_translate?(model_name)
model_name.starts_with?("gpt-")
end
def tokenizer
DiscourseAi::Tokenizer::OpenAiTokenizer
end
end
VALID_ID_REGEX = /\A[a-zA-Z0-9_]+\z/
def native_tool_support?
true
end
def translate
@embed_user_ids =
prompt.messages.any? do |m|
m[:id] && m[:type] == :user && !m[:id].to_s.match?(VALID_ID_REGEX)
end
super
end
def max_prompt_tokens
# provide a buffer of 120 tokens - our function counting is not
# 100% accurate and getting numbers to align exactly is very hard
buffer = (opts[:max_tokens] || 2500) + 50
if tools.present?
# note this is about 100 tokens over, OpenAI have a more optimal representation
@function_size ||= self.class.tokenizer.size(tools.to_json.to_s)
buffer += @function_size
end
model_max_tokens - buffer
end
private
def tools_dialect
@tools_dialect ||= DiscourseAi::Completions::Dialects::OpenAiTools.new(prompt.tools)
end
def system_msg(msg)
{ role: "system", content: msg[:content] }
end
def model_msg(msg)
{ role: "assistant", content: msg[:content] }
end
def tool_call_msg(msg)
tools_dialect.from_raw_tool_call(msg)
end
def tool_msg(msg)
tools_dialect.from_raw_tool(msg)
end
def user_msg(msg)
user_message = { role: "user", content: msg[:content] }
if msg[:id]
if @embed_user_ids
user_message[:content] = "#{msg[:id]}: #{msg[:content]}"
else
user_message[:name] = msg[:id]
end
end
user_message[:content] = inline_images(user_message[:content], msg)
user_message
end
def inline_images(content, message)
if model_name.include?("gpt-4-vision") || model_name == "gpt-4-turbo"
content = message[:content]
encoded_uploads = prompt.encoded_uploads(message)
if encoded_uploads.present?
new_content = []
new_content.concat(
encoded_uploads.map do |details|
{
type: "image_url",
image_url: {
url: "data:#{details[:mime_type]};base64,#{details[:base64]}",
},
}
end,
)
new_content << { type: "text", text: content }
content = new_content
end
end
content
end
def per_message_overhead
# open ai defines about 4 tokens per message of overhead
4
end
def calculate_message_token(context)
self.class.tokenizer.size(context[:content].to_s + context[:name].to_s)
end
def model_max_tokens
case model_name
when "gpt-3.5-turbo-16k"
16_384
when "gpt-4"
8192
when "gpt-4-32k"
32_768
when "gpt-4-turbo"
131_072
else
8192
end
end
end
end
end
end