mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-03-06 17:30:20 +00:00
Previous to this change we relied on explicit loading for a files in Discourse AI. This had a few downsides: - Busywork whenever you add a file (an extra require relative) - We were not keeping to conventions internally ... some places were OpenAI others are OpenAi - Autoloader did not work which lead to lots of full application broken reloads when developing. This moves all of DiscourseAI into a Zeitwerk compatible structure. It also leaves some minimal amount of manual loading (automation - which is loading into an existing namespace that may or may not be there) To avoid needing /lib/discourse_ai/... we mount a namespace thus we are able to keep /lib pointed at ::DiscourseAi Various files were renamed to get around zeitwerk rules and minimize usage of custom inflections Though we can get custom inflections to work it is not worth it, will require a Discourse core patch which means we create a hard dependency.
122 lines
3.8 KiB
Ruby
122 lines
3.8 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
module DiscourseAi
|
|
module Embeddings
|
|
class SemanticSearch
|
|
def self.clear_cache_for(query)
|
|
digest = OpenSSL::Digest::SHA1.hexdigest(query)
|
|
|
|
hyde_key =
|
|
"semantic-search-#{digest}-#{SiteSetting.ai_embeddings_semantic_search_hyde_model}"
|
|
|
|
Discourse.cache.delete(hyde_key)
|
|
Discourse.cache.delete("#{hyde_key}-#{SiteSetting.ai_embeddings_model}")
|
|
end
|
|
|
|
def initialize(guardian)
|
|
@guardian = guardian
|
|
end
|
|
|
|
def cached_query?(query)
|
|
digest = OpenSSL::Digest::SHA1.hexdigest(query)
|
|
embedding_key =
|
|
build_embedding_key(
|
|
digest,
|
|
SiteSetting.ai_embeddings_semantic_search_hyde_model,
|
|
SiteSetting.ai_embeddings_model,
|
|
)
|
|
|
|
Discourse.cache.read(embedding_key).present?
|
|
end
|
|
|
|
def search_for_topics(query, page = 1)
|
|
max_results_per_page = 100
|
|
limit = [Search.per_filter, max_results_per_page].min + 1
|
|
offset = (page - 1) * limit
|
|
search = Search.new(query, { guardian: guardian })
|
|
search_term = search.term
|
|
|
|
return [] if search_term.nil? || search_term.length < SiteSetting.min_search_term_length
|
|
|
|
strategy = DiscourseAi::Embeddings::Strategies::Truncation.new
|
|
vector_rep =
|
|
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy)
|
|
|
|
digest = OpenSSL::Digest::SHA1.hexdigest(search_term)
|
|
hyde_key = build_hyde_key(digest, SiteSetting.ai_embeddings_semantic_search_hyde_model)
|
|
|
|
embedding_key =
|
|
build_embedding_key(
|
|
digest,
|
|
SiteSetting.ai_embeddings_semantic_search_hyde_model,
|
|
SiteSetting.ai_embeddings_model,
|
|
)
|
|
|
|
hypothetical_post =
|
|
Discourse
|
|
.cache
|
|
.fetch(hyde_key, expires_in: 1.week) { hypothetical_post_from(search_term) }
|
|
|
|
hypothetical_post_embedding =
|
|
Discourse
|
|
.cache
|
|
.fetch(embedding_key, expires_in: 1.week) { vector_rep.vector_from(hypothetical_post) }
|
|
|
|
candidate_topic_ids =
|
|
vector_rep.asymmetric_topics_similarity_search(
|
|
hypothetical_post_embedding,
|
|
limit: limit,
|
|
offset: offset,
|
|
)
|
|
|
|
semantic_results =
|
|
::Post
|
|
.where(post_type: ::Topic.visible_post_types(guardian.user))
|
|
.public_posts
|
|
.where("topics.visible")
|
|
.where(topic_id: candidate_topic_ids, post_number: 1)
|
|
.order("array_position(ARRAY#{candidate_topic_ids}, topic_id)")
|
|
|
|
query_filter_results = search.apply_filters(semantic_results)
|
|
|
|
guardian.filter_allowed_categories(query_filter_results)
|
|
end
|
|
|
|
private
|
|
|
|
attr_reader :guardian
|
|
|
|
def build_hyde_key(digest, hyde_model)
|
|
"semantic-search-#{digest}-#{hyde_model}"
|
|
end
|
|
|
|
def build_embedding_key(digest, hyde_model, embedding_model)
|
|
"#{build_hyde_key(digest, hyde_model)}-#{embedding_model}"
|
|
end
|
|
|
|
def hypothetical_post_from(search_term)
|
|
prompt = {
|
|
insts: <<~TEXT,
|
|
You are a content creator for a forum. The forum description is as follows:
|
|
#{SiteSetting.title}
|
|
#{SiteSetting.site_description}
|
|
TEXT
|
|
input: <<~TEXT,
|
|
Using this description, write a forum post about the subject inside the <input></input> XML tags:
|
|
|
|
<input>#{search_term}</input>
|
|
TEXT
|
|
post_insts: "Put the forum post between <ai></ai> tags.",
|
|
}
|
|
|
|
llm_response =
|
|
DiscourseAi::Completions::Llm.proxy(
|
|
SiteSetting.ai_embeddings_semantic_search_hyde_model,
|
|
).completion!(prompt, @guardian.user)
|
|
|
|
Nokogiri::HTML5.fragment(llm_response).at("ai").text
|
|
end
|
|
end
|
|
end
|
|
end
|