mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-03-08 18:29:32 +00:00
Previoulsy on GPT-4-vision was supported, change introduces support for Google/Anthropic and new OpenAI models Additionally this makes vision work properly in dev environments cause we sent the encoded payload via prompt vs sending urls
243 lines
8.5 KiB
Ruby
243 lines
8.5 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
# A facade that abstracts multiple LLMs behind a single interface.
|
|
#
|
|
# Internally, it consists of the combination of a dialect and an endpoint.
|
|
# After receiving a prompt using our generic format, it translates it to
|
|
# the target model and routes the completion request through the correct gateway.
|
|
#
|
|
# Use the .proxy method to instantiate an object.
|
|
# It chooses the correct dialect and endpoint for the model you want to interact with.
|
|
#
|
|
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
|
|
# instead of relying on WebMock stubs like we did in the past.
|
|
#
|
|
module DiscourseAi
|
|
module Completions
|
|
class Llm
|
|
UNKNOWN_MODEL = Class.new(StandardError)
|
|
|
|
class << self
|
|
def provider_names
|
|
providers = %w[aws_bedrock anthropic vllm hugging_face cohere open_ai google azure]
|
|
providers << "ollama" if Rails.env.development?
|
|
providers
|
|
end
|
|
|
|
def tokenizer_names
|
|
DiscourseAi::Tokenizer::BasicTokenizer.available_llm_tokenizers.map(&:name)
|
|
end
|
|
|
|
def vision_models_by_provider
|
|
@vision_models_by_provider ||= {
|
|
aws_bedrock: %w[claude-3-sonnet claude-3-opus claude-3-haiku],
|
|
anthropic: %w[claude-3-sonnet claude-3-opus claude-3-haiku],
|
|
open_ai: %w[gpt-4-vision-preview gpt-4-turbo gpt-4o],
|
|
google: %w[gemini-1.5-pro gemini-1.5-flash],
|
|
}
|
|
end
|
|
|
|
def models_by_provider
|
|
# ChatGPT models are listed under open_ai but they are actually available through OpenAI and Azure.
|
|
# However, since they use the same URL/key settings, there's no reason to duplicate them.
|
|
@models_by_provider ||=
|
|
{
|
|
aws_bedrock: %w[
|
|
claude-instant-1
|
|
claude-2
|
|
claude-3-haiku
|
|
claude-3-sonnet
|
|
claude-3-opus
|
|
],
|
|
anthropic: %w[claude-instant-1 claude-2 claude-3-haiku claude-3-sonnet claude-3-opus],
|
|
vllm: %w[mistralai/Mixtral-8x7B-Instruct-v0.1 mistralai/Mistral-7B-Instruct-v0.2],
|
|
hugging_face: %w[
|
|
mistralai/Mixtral-8x7B-Instruct-v0.1
|
|
mistralai/Mistral-7B-Instruct-v0.2
|
|
],
|
|
cohere: %w[command-light command command-r command-r-plus],
|
|
open_ai: %w[
|
|
gpt-3.5-turbo
|
|
gpt-4
|
|
gpt-3.5-turbo-16k
|
|
gpt-4-32k
|
|
gpt-4-turbo
|
|
gpt-4-vision-preview
|
|
gpt-4o
|
|
],
|
|
google: %w[gemini-pro gemini-1.5-pro gemini-1.5-flash],
|
|
}.tap do |h|
|
|
h[:ollama] = ["mistral"] if Rails.env.development?
|
|
h[:fake] = ["fake"] if Rails.env.test? || Rails.env.development?
|
|
end
|
|
end
|
|
|
|
def valid_provider_models
|
|
return @valid_provider_models if defined?(@valid_provider_models)
|
|
|
|
valid_provider_models = []
|
|
models_by_provider.each do |provider, models|
|
|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
|
|
end
|
|
@valid_provider_models = Set.new(valid_provider_models)
|
|
end
|
|
|
|
def with_prepared_responses(responses, llm: nil)
|
|
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
|
|
@canned_llm = llm
|
|
@prompts = []
|
|
|
|
yield(@canned_response, llm, @prompts)
|
|
ensure
|
|
# Don't leak prepared response if there's an exception.
|
|
@canned_response = nil
|
|
@canned_llm = nil
|
|
@prompts = nil
|
|
end
|
|
|
|
def record_prompt(prompt)
|
|
@prompts << prompt if @prompts
|
|
end
|
|
|
|
def proxy(model_name)
|
|
provider_and_model_name = model_name.split(":")
|
|
provider_name = provider_and_model_name.first
|
|
model_name_without_prov = provider_and_model_name[1..].join
|
|
|
|
# We are in the process of transitioning to always use objects here.
|
|
# We'll live with this hack for a while.
|
|
if provider_name == "custom"
|
|
llm_model = LlmModel.find(model_name_without_prov)
|
|
raise UNKNOWN_MODEL if !llm_model
|
|
return proxy_from_obj(llm_model)
|
|
end
|
|
|
|
dialect_klass =
|
|
DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name_without_prov)
|
|
|
|
if @canned_response
|
|
if @canned_llm && @canned_llm != model_name
|
|
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model_name}"
|
|
end
|
|
|
|
return new(dialect_klass, nil, model_name, gateway: @canned_response)
|
|
end
|
|
|
|
gateway_klass = DiscourseAi::Completions::Endpoints::Base.endpoint_for(provider_name)
|
|
|
|
new(dialect_klass, gateway_klass, model_name_without_prov)
|
|
end
|
|
|
|
def proxy_from_obj(llm_model)
|
|
provider_name = llm_model.provider
|
|
model_name = llm_model.name
|
|
|
|
dialect_klass = DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name)
|
|
|
|
if @canned_response
|
|
if @canned_llm && @canned_llm != model_name
|
|
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model_name}"
|
|
end
|
|
|
|
return new(dialect_klass, nil, model_name, gateway: @canned_response)
|
|
end
|
|
|
|
gateway_klass = DiscourseAi::Completions::Endpoints::Base.endpoint_for(provider_name)
|
|
|
|
new(dialect_klass, gateway_klass, model_name, llm_model: llm_model)
|
|
end
|
|
end
|
|
|
|
def initialize(dialect_klass, gateway_klass, model_name, gateway: nil, llm_model: nil)
|
|
@dialect_klass = dialect_klass
|
|
@gateway_klass = gateway_klass
|
|
@model_name = model_name
|
|
@gateway = gateway
|
|
@llm_model = llm_model
|
|
end
|
|
|
|
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
|
|
# @param user { User } - User requesting the summary.
|
|
#
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
|
|
#
|
|
# @returns { String } - Completion result.
|
|
#
|
|
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
|
|
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
|
|
#
|
|
# <function_calls>
|
|
# <invoke>
|
|
# <tool_name>get_weather</tool_name>
|
|
# <tool_id>get_weather</tool_id>
|
|
# <parameters>
|
|
# <location>Sydney</location>
|
|
# <unit>c</unit>
|
|
# </parameters>
|
|
# </invoke>
|
|
# </function_calls>
|
|
#
|
|
def generate(
|
|
prompt,
|
|
temperature: nil,
|
|
top_p: nil,
|
|
max_tokens: nil,
|
|
stop_sequences: nil,
|
|
user:,
|
|
feature_name: nil,
|
|
&partial_read_blk
|
|
)
|
|
self.class.record_prompt(prompt)
|
|
|
|
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
|
|
|
|
model_params[:temperature] = temperature if temperature
|
|
model_params[:top_p] = top_p if top_p
|
|
|
|
if prompt.is_a?(String)
|
|
prompt =
|
|
DiscourseAi::Completions::Prompt.new(
|
|
"You are a helpful bot",
|
|
messages: [{ type: :user, content: prompt }],
|
|
)
|
|
elsif prompt.is_a?(Array)
|
|
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
|
|
end
|
|
|
|
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
|
|
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
|
|
end
|
|
|
|
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
|
|
|
|
dialect = dialect_klass.new(prompt, model_name, opts: model_params, llm_model: llm_model)
|
|
|
|
gateway = @gateway || gateway_klass.new(model_name, dialect.tokenizer, llm_model: llm_model)
|
|
gateway.perform_completion!(
|
|
dialect,
|
|
user,
|
|
model_params,
|
|
feature_name: feature_name,
|
|
&partial_read_blk
|
|
)
|
|
end
|
|
|
|
def max_prompt_tokens
|
|
llm_model&.max_prompt_tokens ||
|
|
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).max_prompt_tokens
|
|
end
|
|
|
|
def tokenizer
|
|
llm_model&.tokenizer_class ||
|
|
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).tokenizer
|
|
end
|
|
|
|
attr_reader :model_name
|
|
|
|
private
|
|
|
|
attr_reader :dialect_klass, :gateway_klass, :llm_model
|
|
end
|
|
end
|
|
end
|