Roman Rizzi 9a79afcdbf
DEV: Better strategies for summarization (#88)
* DEV: Better strategies for summarization

The strategy responsibility needs to be "Given a collection of texts, I know how to summarize them most efficiently, using the minimum amount of requests and maximizing token usage".

There are different token limits for each model, so it all boils down to two different strategies:

Fold all these texts into a single one, doing the summarization in chunks, and then build a summary from those.
Build it by combining texts in a single prompt, and truncate it according to your token limits.

While the latter is less than ideal, we need it for "bart-large-cnn-samsum" and "flan-t5-base-samsum", both with low limits. The rest will rely on folding.

* Expose summarized chunks to users
2023-06-27 12:26:33 -03:00

31 lines
717 B
Ruby

# frozen_string_literal: true
module DiscourseAi
module Summarization
module Strategies
class TruncateContent < ::Summarization::Base
def initialize(completion_model)
@completion_model = completion_model
end
attr_reader :completion_model
delegate :correctly_configured?,
:display_name,
:configuration_hint,
:model,
to: :completion_model
def summarize(content)
opts = content.except(:contents)
{
summary: completion_model.summarize_with_truncation(content[:contents], opts),
chunks: [],
}
end
end
end
end
end