mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-03-09 11:48:47 +00:00
Both endpoints provide OpenAI-compatible servers. The only difference is that Vllm doesn't support passing tools as a separate parameter. Even if the tool param is supported, it ultimately relies on the model's ability to handle native functions, which is not the case with the models we have today. As a part of this change, we are dropping support for StableBeluga/Llama2 models. They don't have a chat_template, meaning the new API can translate them. These changes let us remove some of our existing dialects and are a first step in our plan to support any LLM by defining them as data-driven concepts. I rewrote the "translate" method to use a template method and extracted the tool support strategies into its classes to simplify the code. Finally, these changes bring support for Ollama when running in dev mode. It only works with Mistral for now, but it will change soon..
363 lines
12 KiB
Ruby
363 lines
12 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
module DiscourseAi
|
|
module Completions
|
|
module Endpoints
|
|
class Base
|
|
CompletionFailed = Class.new(StandardError)
|
|
TIMEOUT = 60
|
|
|
|
class << self
|
|
def endpoint_for(provider_name, model_name)
|
|
endpoints = [
|
|
DiscourseAi::Completions::Endpoints::AwsBedrock,
|
|
DiscourseAi::Completions::Endpoints::OpenAi,
|
|
DiscourseAi::Completions::Endpoints::HuggingFace,
|
|
DiscourseAi::Completions::Endpoints::Gemini,
|
|
DiscourseAi::Completions::Endpoints::Vllm,
|
|
DiscourseAi::Completions::Endpoints::Anthropic,
|
|
DiscourseAi::Completions::Endpoints::Cohere,
|
|
]
|
|
|
|
endpoints << DiscourseAi::Completions::Endpoints::Ollama if Rails.env.development?
|
|
|
|
if Rails.env.test? || Rails.env.development?
|
|
endpoints << DiscourseAi::Completions::Endpoints::Fake
|
|
end
|
|
|
|
endpoints.detect(-> { raise DiscourseAi::Completions::Llm::UNKNOWN_MODEL }) do |ek|
|
|
ek.can_contact?(provider_name, model_name)
|
|
end
|
|
end
|
|
|
|
def configuration_hint
|
|
settings = dependant_setting_names
|
|
I18n.t(
|
|
"discourse_ai.llm.endpoints.configuration_hint",
|
|
settings: settings.join(", "),
|
|
count: settings.length,
|
|
)
|
|
end
|
|
|
|
def display_name(model_name)
|
|
to_display = endpoint_name(model_name)
|
|
|
|
return to_display if correctly_configured?(model_name)
|
|
|
|
I18n.t("discourse_ai.llm.endpoints.not_configured", display_name: to_display)
|
|
end
|
|
|
|
def dependant_setting_names
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def endpoint_name(_model_name)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def can_contact?(_endpoint_name, _model_name)
|
|
raise NotImplementedError
|
|
end
|
|
end
|
|
|
|
def initialize(model_name, tokenizer)
|
|
@model = model_name
|
|
@tokenizer = tokenizer
|
|
end
|
|
|
|
def native_tool_support?
|
|
false
|
|
end
|
|
|
|
def use_ssl?
|
|
true
|
|
end
|
|
|
|
def perform_completion!(dialect, user, model_params = {}, &blk)
|
|
allow_tools = dialect.prompt.has_tools?
|
|
model_params = normalize_model_params(model_params)
|
|
|
|
@streaming_mode = block_given?
|
|
|
|
prompt = dialect.translate
|
|
|
|
FinalDestination::HTTP.start(
|
|
model_uri.host,
|
|
model_uri.port,
|
|
use_ssl: use_ssl?,
|
|
read_timeout: TIMEOUT,
|
|
open_timeout: TIMEOUT,
|
|
write_timeout: TIMEOUT,
|
|
) do |http|
|
|
response_data = +""
|
|
response_raw = +""
|
|
|
|
# Needed to response token calculations. Cannot rely on response_data due to function buffering.
|
|
partials_raw = +""
|
|
request_body = prepare_payload(prompt, model_params, dialect).to_json
|
|
|
|
request = prepare_request(request_body)
|
|
|
|
http.request(request) do |response|
|
|
if response.code.to_i != 200
|
|
Rails.logger.error(
|
|
"#{self.class.name}: status: #{response.code.to_i} - body: #{response.body}",
|
|
)
|
|
raise CompletionFailed
|
|
end
|
|
|
|
log =
|
|
AiApiAuditLog.new(
|
|
provider_id: provider_id,
|
|
user_id: user&.id,
|
|
raw_request_payload: request_body,
|
|
request_tokens: prompt_size(prompt),
|
|
topic_id: dialect.prompt.topic_id,
|
|
post_id: dialect.prompt.post_id,
|
|
)
|
|
|
|
if !@streaming_mode
|
|
response_raw = response.read_body
|
|
response_data = extract_completion_from(response_raw)
|
|
partials_raw = response_data.to_s
|
|
|
|
if native_tool_support?
|
|
if allow_tools && has_tool?(response_data)
|
|
function_buffer = build_buffer # Nokogiri document
|
|
function_buffer =
|
|
add_to_function_buffer(function_buffer, payload: response_data)
|
|
FunctionCallNormalizer.normalize_function_ids!(function_buffer)
|
|
|
|
response_data = +function_buffer.at("function_calls").to_s
|
|
response_data << "\n"
|
|
end
|
|
else
|
|
if allow_tools
|
|
response_data, function_calls = FunctionCallNormalizer.normalize(response_data)
|
|
response_data = function_calls if function_calls.present?
|
|
end
|
|
end
|
|
|
|
return response_data
|
|
end
|
|
|
|
has_tool = false
|
|
|
|
begin
|
|
cancelled = false
|
|
cancel = -> { cancelled = true }
|
|
|
|
wrapped_blk = ->(partial, inner_cancel) do
|
|
response_data << partial
|
|
blk.call(partial, inner_cancel)
|
|
end
|
|
|
|
normalizer = FunctionCallNormalizer.new(wrapped_blk, cancel)
|
|
|
|
leftover = ""
|
|
function_buffer = build_buffer # Nokogiri document
|
|
prev_processed_partials = 0
|
|
|
|
response.read_body do |chunk|
|
|
if cancelled
|
|
http.finish
|
|
break
|
|
end
|
|
|
|
decoded_chunk = decode(chunk)
|
|
if decoded_chunk.nil?
|
|
raise CompletionFailed, "#{self.class.name}: Failed to decode LLM completion"
|
|
end
|
|
response_raw << decoded_chunk
|
|
|
|
redo_chunk = leftover + decoded_chunk
|
|
|
|
raw_partials = partials_from(redo_chunk)
|
|
|
|
raw_partials =
|
|
raw_partials[prev_processed_partials..-1] if prev_processed_partials > 0
|
|
|
|
if raw_partials.blank? || (raw_partials.size == 1 && raw_partials.first.blank?)
|
|
leftover = redo_chunk
|
|
next
|
|
end
|
|
|
|
json_error = false
|
|
|
|
raw_partials.each do |raw_partial|
|
|
json_error = false
|
|
prev_processed_partials += 1
|
|
|
|
next if cancelled
|
|
next if raw_partial.blank?
|
|
|
|
begin
|
|
partial = extract_completion_from(raw_partial)
|
|
next if partial.nil?
|
|
# empty vs blank... we still accept " "
|
|
next if response_data.empty? && partial.empty?
|
|
partials_raw << partial.to_s
|
|
|
|
if native_tool_support?
|
|
# Stop streaming the response as soon as you find a tool.
|
|
# We'll buffer and yield it later.
|
|
has_tool = true if allow_tools && has_tool?(partials_raw)
|
|
|
|
if has_tool
|
|
function_buffer =
|
|
add_to_function_buffer(function_buffer, partial: partial)
|
|
else
|
|
response_data << partial
|
|
blk.call(partial, cancel) if partial
|
|
end
|
|
else
|
|
if allow_tools
|
|
normalizer << partial
|
|
else
|
|
response_data << partial
|
|
blk.call(partial, cancel) if partial
|
|
end
|
|
end
|
|
rescue JSON::ParserError
|
|
leftover = redo_chunk
|
|
json_error = true
|
|
end
|
|
end
|
|
|
|
if json_error
|
|
prev_processed_partials -= 1
|
|
else
|
|
leftover = ""
|
|
end
|
|
prev_processed_partials = 0 if leftover.blank?
|
|
end
|
|
rescue IOError, StandardError
|
|
raise if !cancelled
|
|
end
|
|
|
|
# Once we have the full response, try to return the tool as a XML doc.
|
|
if has_tool && native_tool_support?
|
|
function_buffer = add_to_function_buffer(function_buffer, payload: partials_raw)
|
|
|
|
if function_buffer.at("tool_name").text.present?
|
|
FunctionCallNormalizer.normalize_function_ids!(function_buffer)
|
|
|
|
invocation = +function_buffer.at("function_calls").to_s
|
|
invocation << "\n"
|
|
|
|
response_data << invocation
|
|
blk.call(invocation, cancel)
|
|
end
|
|
end
|
|
|
|
if !native_tool_support? && function_calls = normalizer.function_calls
|
|
response_data << function_calls
|
|
blk.call(function_calls, cancel)
|
|
end
|
|
|
|
return response_data
|
|
ensure
|
|
if log
|
|
log.raw_response_payload = response_raw
|
|
log.response_tokens = tokenizer.size(partials_raw)
|
|
final_log_update(log)
|
|
log.save!
|
|
|
|
if Rails.env.development?
|
|
puts "#{self.class.name}: request_tokens #{log.request_tokens} response_tokens #{log.response_tokens}"
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
def final_log_update(log)
|
|
# for people that need to override
|
|
end
|
|
|
|
def default_options
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def provider_id
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def prompt_size(prompt)
|
|
tokenizer.size(extract_prompt_for_tokenizer(prompt))
|
|
end
|
|
|
|
attr_reader :tokenizer, :model
|
|
|
|
protected
|
|
|
|
# should normalize temperature, max_tokens, stop_words to endpoint specific values
|
|
def normalize_model_params(model_params)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def model_uri
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def prepare_payload(_prompt, _model_params)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def prepare_request(_payload)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def extract_completion_from(_response_raw)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def decode(chunk)
|
|
chunk
|
|
end
|
|
|
|
def partials_from(_decoded_chunk)
|
|
raise NotImplementedError
|
|
end
|
|
|
|
def extract_prompt_for_tokenizer(prompt)
|
|
prompt.map { |message| message[:content] || message["content"] || "" }.join("\n")
|
|
end
|
|
|
|
def build_buffer
|
|
Nokogiri::HTML5.fragment(<<~TEXT)
|
|
<function_calls>
|
|
#{noop_function_call_text}
|
|
</function_calls>
|
|
TEXT
|
|
end
|
|
|
|
def noop_function_call_text
|
|
(<<~TEXT).strip
|
|
<invoke>
|
|
<tool_name></tool_name>
|
|
<parameters>
|
|
</parameters>
|
|
<tool_id></tool_id>
|
|
</invoke>
|
|
TEXT
|
|
end
|
|
|
|
def has_tool?(response)
|
|
response.include?("<function_calls>")
|
|
end
|
|
|
|
def add_to_function_buffer(function_buffer, partial: nil, payload: nil)
|
|
if payload&.include?("</invoke>")
|
|
matches = payload.match(%r{<function_calls>.*</invoke>}m)
|
|
function_buffer =
|
|
Nokogiri::HTML5.fragment(matches[0] + "\n</function_calls>") if matches
|
|
end
|
|
|
|
function_buffer
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|