first commit
This commit is contained in:
commit
df361407d9
|
@ -0,0 +1,8 @@
|
|||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
|
@ -0,0 +1,8 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
|
@ -0,0 +1,97 @@
|
|||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="Eslint" enabled="true" level="WARNING" enabled_by_default="true" />
|
||||
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||
<option name="ignoredPackages">
|
||||
<value>
|
||||
<list size="83">
|
||||
<item index="0" class="java.lang.String" itemvalue="jax" />
|
||||
<item index="1" class="java.lang.String" itemvalue="jaxlib" />
|
||||
<item index="2" class="java.lang.String" itemvalue="numpy" />
|
||||
<item index="3" class="java.lang.String" itemvalue="absl-py" />
|
||||
<item index="4" class="java.lang.String" itemvalue="scipy" />
|
||||
<item index="5" class="java.lang.String" itemvalue="opencv-python" />
|
||||
<item index="6" class="java.lang.String" itemvalue="opt-einsum" />
|
||||
<item index="7" class="java.lang.String" itemvalue="immutabledict" />
|
||||
<item index="8" class="java.lang.String" itemvalue="tqdm" />
|
||||
<item index="9" class="java.lang.String" itemvalue="flax" />
|
||||
<item index="10" class="java.lang.String" itemvalue="tensorflow" />
|
||||
<item index="11" class="java.lang.String" itemvalue="imageio" />
|
||||
<item index="12" class="java.lang.String" itemvalue="matplotlib" />
|
||||
<item index="13" class="java.lang.String" itemvalue="oauthlib" />
|
||||
<item index="14" class="java.lang.String" itemvalue="optax" />
|
||||
<item index="15" class="java.lang.String" itemvalue="Markdown" />
|
||||
<item index="16" class="java.lang.String" itemvalue="Pillow" />
|
||||
<item index="17" class="java.lang.String" itemvalue="nerfies" />
|
||||
<item index="18" class="java.lang.String" itemvalue="pycolmap" />
|
||||
<item index="19" class="java.lang.String" itemvalue="mediapipe" />
|
||||
<item index="20" class="java.lang.String" itemvalue="xatlas" />
|
||||
<item index="21" class="java.lang.String" itemvalue="torch-ema" />
|
||||
<item index="22" class="java.lang.String" itemvalue="transformers" />
|
||||
<item index="23" class="java.lang.String" itemvalue="diffusers" />
|
||||
<item index="24" class="java.lang.String" itemvalue="scikit-learn" />
|
||||
<item index="25" class="java.lang.String" itemvalue="PyMCubes" />
|
||||
<item index="26" class="java.lang.String" itemvalue="imageio-ffmpeg" />
|
||||
<item index="27" class="java.lang.String" itemvalue="rich" />
|
||||
<item index="28" class="java.lang.String" itemvalue="torch" />
|
||||
<item index="29" class="java.lang.String" itemvalue="trimesh" />
|
||||
<item index="30" class="java.lang.String" itemvalue="pandas" />
|
||||
<item index="31" class="java.lang.String" itemvalue="tensorboard" />
|
||||
<item index="32" class="java.lang.String" itemvalue="pymeshlab" />
|
||||
<item index="33" class="java.lang.String" itemvalue="ninja" />
|
||||
<item index="34" class="java.lang.String" itemvalue="tensorboardX" />
|
||||
<item index="35" class="java.lang.String" itemvalue="dearpygui" />
|
||||
<item index="36" class="java.lang.String" itemvalue="accelerate" />
|
||||
<item index="37" class="java.lang.String" itemvalue="huggingface_hub" />
|
||||
<item index="38" class="java.lang.String" itemvalue="controlnet_aux" />
|
||||
<item index="39" class="java.lang.String" itemvalue="envlight" />
|
||||
<item index="40" class="java.lang.String" itemvalue="ftfy" />
|
||||
<item index="41" class="java.lang.String" itemvalue="ipywidgets" />
|
||||
<item index="42" class="java.lang.String" itemvalue="lightning" />
|
||||
<item index="43" class="java.lang.String" itemvalue="nvdiffrast" />
|
||||
<item index="44" class="java.lang.String" itemvalue="gradio" />
|
||||
<item index="45" class="java.lang.String" itemvalue="xformers" />
|
||||
<item index="46" class="java.lang.String" itemvalue="libigl" />
|
||||
<item index="47" class="java.lang.String" itemvalue="nerfacc" />
|
||||
<item index="48" class="java.lang.String" itemvalue="typeguard" />
|
||||
<item index="49" class="java.lang.String" itemvalue="omegaconf" />
|
||||
<item index="50" class="java.lang.String" itemvalue="pysdf" />
|
||||
<item index="51" class="java.lang.String" itemvalue="bitsandbytes" />
|
||||
<item index="52" class="java.lang.String" itemvalue="CLIP" />
|
||||
<item index="53" class="java.lang.String" itemvalue="kornia" />
|
||||
<item index="54" class="java.lang.String" itemvalue="taming-transformers-rom1504" />
|
||||
<item index="55" class="java.lang.String" itemvalue="sentencepiece" />
|
||||
<item index="56" class="java.lang.String" itemvalue="safetensors" />
|
||||
<item index="57" class="java.lang.String" itemvalue="wandb" />
|
||||
<item index="58" class="java.lang.String" itemvalue="jaxtyping" />
|
||||
<item index="59" class="java.lang.String" itemvalue="einops" />
|
||||
<item index="60" class="java.lang.String" itemvalue="lang-segment-anything" />
|
||||
<item index="61" class="java.lang.String" itemvalue="kiuikit" />
|
||||
<item index="62" class="java.lang.String" itemvalue="scikit-image" />
|
||||
<item index="63" class="java.lang.String" itemvalue="transforms3d" />
|
||||
<item index="64" class="java.lang.String" itemvalue="torchmetrics" />
|
||||
<item index="65" class="java.lang.String" itemvalue="matplotlib-inline" />
|
||||
<item index="66" class="java.lang.String" itemvalue="tabulate" />
|
||||
<item index="67" class="java.lang.String" itemvalue="plyfile" />
|
||||
<item index="68" class="java.lang.String" itemvalue="ballpark" />
|
||||
<item index="69" class="java.lang.String" itemvalue="flash-attn" />
|
||||
<item index="70" class="java.lang.String" itemvalue="plotly" />
|
||||
<item index="71" class="java.lang.String" itemvalue="easydict" />
|
||||
<item index="72" class="java.lang.String" itemvalue="prettytable" />
|
||||
<item index="73" class="java.lang.String" itemvalue="pytorch-lightning" />
|
||||
<item index="74" class="java.lang.String" itemvalue="einops-exts" />
|
||||
<item index="75" class="java.lang.String" itemvalue="hydra-core" />
|
||||
<item index="76" class="java.lang.String" itemvalue="lightning-utilities" />
|
||||
<item index="77" class="java.lang.String" itemvalue="moviepy" />
|
||||
<item index="78" class="java.lang.String" itemvalue="vispy" />
|
||||
<item index="79" class="java.lang.String" itemvalue="vector-quantize-pytorch" />
|
||||
<item index="80" class="java.lang.String" itemvalue="torch_geometric" />
|
||||
<item index="81" class="java.lang.String" itemvalue="randomname" />
|
||||
<item index="82" class="java.lang.String" itemvalue="pyrender" />
|
||||
</list>
|
||||
</value>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
|
@ -0,0 +1,6 @@
|
|||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
|
@ -0,0 +1,9 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
<component name="SshConsoleOptionsProvider">
|
||||
<option name="myEncoding" value="UTF-8" />
|
||||
<option name="myConnectionType" value="NONE" />
|
||||
<option name="myConnectionId" value="" />
|
||||
</component>
|
||||
</project>
|
|
@ -0,0 +1,8 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/MeshAnything.iml" filepath="$PROJECT_DIR$/.idea/MeshAnything.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
|
@ -0,0 +1,6 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
|
@ -0,0 +1,35 @@
|
|||
S-Lab License 1.0
|
||||
|
||||
Copyright 2023 S-Lab
|
||||
|
||||
Redistribution and use for non-commercial purpose in source and
|
||||
binary forms, with or without modification, are permitted provided
|
||||
that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
In the event that redistribution and/or use for commercial purpose in
|
||||
source or binary forms, with or without modification is required,
|
||||
please contact the contributor(s) of the work.
|
|
@ -0,0 +1,674 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
|
@ -0,0 +1,73 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import argparse
|
||||
from omegaconf import OmegaConf
|
||||
import numpy as np
|
||||
import torch
|
||||
from .michelangelo.utils.misc import instantiate_from_config
|
||||
|
||||
def load_surface(fp):
|
||||
|
||||
with np.load(fp) as input_pc:
|
||||
surface = input_pc['points']
|
||||
normal = input_pc['normals']
|
||||
|
||||
rng = np.random.default_rng()
|
||||
ind = rng.choice(surface.shape[0], 4096, replace=False)
|
||||
surface = torch.FloatTensor(surface[ind])
|
||||
normal = torch.FloatTensor(normal[ind])
|
||||
|
||||
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
|
||||
|
||||
return surface
|
||||
|
||||
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
|
||||
|
||||
surface = load_surface(args.pointcloud_path)
|
||||
# old_surface = surface.clone()
|
||||
|
||||
# surface[0,:,0]*=-1
|
||||
# surface[0,:,1]*=-1
|
||||
surface[0,:,2]*=-1
|
||||
|
||||
# encoding
|
||||
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
|
||||
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
|
||||
|
||||
# decoding
|
||||
latents = model.model.shape_model.decode(shape_zq)
|
||||
# geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
|
||||
|
||||
return 0
|
||||
|
||||
def load_model(ckpt_path="MeshAnything/miche/shapevae-256.ckpt"):
|
||||
model_config = OmegaConf.load("MeshAnything/miche/shapevae-256.yaml")
|
||||
# print(model_config)
|
||||
if hasattr(model_config, "model"):
|
||||
model_config = model_config.model
|
||||
|
||||
model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
|
||||
model = model.cuda()
|
||||
model = model.eval()
|
||||
|
||||
return model
|
||||
if __name__ == "__main__":
|
||||
'''
|
||||
1. Reconstruct point cloud
|
||||
2. Image-conditioned generation
|
||||
3. Text-conditioned generation
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config_path", type=str, required=True)
|
||||
parser.add_argument("--ckpt_path", type=str, required=True)
|
||||
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz', help='Path to the input point cloud')
|
||||
parser.add_argument("--image_path", type=str, help='Path to the input image')
|
||||
parser.add_argument("--text", type=str, help='Input text within a format: A 3D model of motorcar; Porsche 911.')
|
||||
parser.add_argument("--output_dir", type=str, default='./output')
|
||||
parser.add_argument("-s", "--seed", type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f'-----------------------------------------------------------------------------')
|
||||
print(f'>>> Output directory: {args.output_dir}')
|
||||
print(f'-----------------------------------------------------------------------------')
|
||||
|
||||
reconstruction(args, load_model(args))
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1,69 @@
|
|||
{
|
||||
"shape": [
|
||||
"a point cloud model of {}.",
|
||||
"There is a {} in the scene.",
|
||||
"There is the {} in the scene.",
|
||||
"a photo of a {} in the scene.",
|
||||
"a photo of the {} in the scene.",
|
||||
"a photo of one {} in the scene.",
|
||||
"itap of a {}.",
|
||||
"itap of my {}.",
|
||||
"itap of the {}.",
|
||||
"a photo of a {}.",
|
||||
"a photo of my {}.",
|
||||
"a photo of the {}.",
|
||||
"a photo of one {}.",
|
||||
"a photo of many {}.",
|
||||
"a good photo of a {}.",
|
||||
"a good photo of the {}.",
|
||||
"a bad photo of a {}.",
|
||||
"a bad photo of the {}.",
|
||||
"a photo of a nice {}.",
|
||||
"a photo of the nice {}.",
|
||||
"a photo of a cool {}.",
|
||||
"a photo of the cool {}.",
|
||||
"a photo of a weird {}.",
|
||||
"a photo of the weird {}.",
|
||||
"a photo of a small {}.",
|
||||
"a photo of the small {}.",
|
||||
"a photo of a large {}.",
|
||||
"a photo of the large {}.",
|
||||
"a photo of a clean {}.",
|
||||
"a photo of the clean {}.",
|
||||
"a photo of a dirty {}.",
|
||||
"a photo of the dirty {}.",
|
||||
"a bright photo of a {}.",
|
||||
"a bright photo of the {}.",
|
||||
"a dark photo of a {}.",
|
||||
"a dark photo of the {}.",
|
||||
"a photo of a hard to see {}.",
|
||||
"a photo of the hard to see {}.",
|
||||
"a low resolution photo of a {}.",
|
||||
"a low resolution photo of the {}.",
|
||||
"a cropped photo of a {}.",
|
||||
"a cropped photo of the {}.",
|
||||
"a close-up photo of a {}.",
|
||||
"a close-up photo of the {}.",
|
||||
"a jpeg corrupted photo of a {}.",
|
||||
"a jpeg corrupted photo of the {}.",
|
||||
"a blurry photo of a {}.",
|
||||
"a blurry photo of the {}.",
|
||||
"a pixelated photo of a {}.",
|
||||
"a pixelated photo of the {}.",
|
||||
"a black and white photo of the {}.",
|
||||
"a black and white photo of a {}",
|
||||
"a plastic {}.",
|
||||
"the plastic {}.",
|
||||
"a toy {}.",
|
||||
"the toy {}.",
|
||||
"a plushie {}.",
|
||||
"the plushie {}.",
|
||||
"a cartoon {}.",
|
||||
"the cartoon {}.",
|
||||
"an embroidered {}.",
|
||||
"the embroidered {}.",
|
||||
"a painting of the {}.",
|
||||
"a painting of a {}."
|
||||
]
|
||||
|
||||
}
|
|
@ -0,0 +1,407 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
import warnings
|
||||
import random
|
||||
from omegaconf.listconfig import ListConfig
|
||||
from webdataset import pipelinefilter
|
||||
import torch
|
||||
import torchvision.transforms.functional as TVF
|
||||
from torchvision.transforms import InterpolationMode
|
||||
from torchvision.transforms.transforms import _interpolation_modes_from_int
|
||||
from typing import Sequence
|
||||
|
||||
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
||||
|
||||
|
||||
def _uid_buffer_pick(buf_dict, rng):
|
||||
uid_keys = list(buf_dict.keys())
|
||||
selected_uid = rng.choice(uid_keys)
|
||||
buf = buf_dict[selected_uid]
|
||||
|
||||
k = rng.randint(0, len(buf) - 1)
|
||||
sample = buf[k]
|
||||
buf[k] = buf[-1]
|
||||
buf.pop()
|
||||
|
||||
if len(buf) == 0:
|
||||
del buf_dict[selected_uid]
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
def _add_to_buf_dict(buf_dict, sample):
|
||||
key = sample["__key__"]
|
||||
uid, uid_sample_id = key.split("_")
|
||||
if uid not in buf_dict:
|
||||
buf_dict[uid] = []
|
||||
buf_dict[uid].append(sample)
|
||||
|
||||
return buf_dict
|
||||
|
||||
|
||||
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
|
||||
"""Shuffle the data in the stream.
|
||||
|
||||
This uses a buffer of size `bufsize`. Shuffling at
|
||||
startup is less random; this is traded off against
|
||||
yielding samples quickly.
|
||||
|
||||
data: iterator
|
||||
bufsize: buffer size for shuffling
|
||||
returns: iterator
|
||||
rng: either random module or random.Random instance
|
||||
|
||||
"""
|
||||
if rng is None:
|
||||
rng = random.Random(int((os.getpid() + time.time()) * 1e9))
|
||||
initial = min(initial, bufsize)
|
||||
buf_dict = dict()
|
||||
current_samples = 0
|
||||
for sample in data:
|
||||
_add_to_buf_dict(buf_dict, sample)
|
||||
current_samples += 1
|
||||
|
||||
if current_samples < bufsize:
|
||||
try:
|
||||
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708
|
||||
current_samples += 1
|
||||
except StopIteration:
|
||||
pass
|
||||
|
||||
if current_samples >= initial:
|
||||
current_samples -= 1
|
||||
yield _uid_buffer_pick(buf_dict, rng)
|
||||
|
||||
while current_samples > 0:
|
||||
current_samples -= 1
|
||||
yield _uid_buffer_pick(buf_dict, rng)
|
||||
|
||||
|
||||
uid_shuffle = pipelinefilter(_uid_shuffle)
|
||||
|
||||
|
||||
class RandomSample(object):
|
||||
def __init__(self,
|
||||
num_volume_samples: int = 1024,
|
||||
num_near_samples: int = 1024):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.num_volume_samples = num_volume_samples
|
||||
self.num_near_samples = num_near_samples
|
||||
|
||||
def __call__(self, sample):
|
||||
rng = np.random.default_rng()
|
||||
|
||||
# 1. sample surface input
|
||||
total_surface = sample["surface"]
|
||||
ind = rng.choice(total_surface.shape[0], replace=False)
|
||||
surface = total_surface[ind]
|
||||
|
||||
# 2. sample volume/near geometric points
|
||||
vol_points = sample["vol_points"]
|
||||
vol_label = sample["vol_label"]
|
||||
near_points = sample["near_points"]
|
||||
near_label = sample["near_label"]
|
||||
|
||||
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
||||
vol_points = vol_points[ind]
|
||||
vol_label = vol_label[ind]
|
||||
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
||||
|
||||
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
||||
near_points = near_points[ind]
|
||||
near_label = near_label[ind]
|
||||
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
||||
|
||||
# concat sampled volume and near points
|
||||
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
||||
|
||||
sample = {
|
||||
"surface": surface,
|
||||
"geo_points": geo_points
|
||||
}
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class SplitRandomSample(object):
|
||||
def __init__(self,
|
||||
use_surface_sample: bool = False,
|
||||
num_surface_samples: int = 4096,
|
||||
num_volume_samples: int = 1024,
|
||||
num_near_samples: int = 1024):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.use_surface_sample = use_surface_sample
|
||||
self.num_surface_samples = num_surface_samples
|
||||
self.num_volume_samples = num_volume_samples
|
||||
self.num_near_samples = num_near_samples
|
||||
|
||||
def __call__(self, sample):
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
# 1. sample surface input
|
||||
surface = sample["surface"]
|
||||
|
||||
if self.use_surface_sample:
|
||||
replace = surface.shape[0] < self.num_surface_samples
|
||||
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
|
||||
surface = surface[ind]
|
||||
|
||||
# 2. sample volume/near geometric points
|
||||
vol_points = sample["vol_points"]
|
||||
vol_label = sample["vol_label"]
|
||||
near_points = sample["near_points"]
|
||||
near_label = sample["near_label"]
|
||||
|
||||
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
||||
vol_points = vol_points[ind]
|
||||
vol_label = vol_label[ind]
|
||||
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
||||
|
||||
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
||||
near_points = near_points[ind]
|
||||
near_label = near_label[ind]
|
||||
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
||||
|
||||
# concat sampled volume and near points
|
||||
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
||||
|
||||
sample = {
|
||||
"surface": surface,
|
||||
"geo_points": geo_points
|
||||
}
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class FeatureSelection(object):
|
||||
|
||||
VALID_SURFACE_FEATURE_DIMS = {
|
||||
"none": [0, 1, 2], # xyz
|
||||
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal
|
||||
"normal": [0, 1, 2, 6, 7, 8]
|
||||
}
|
||||
|
||||
def __init__(self, surface_feature_type: str):
|
||||
|
||||
self.surface_feature_type = surface_feature_type
|
||||
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]
|
||||
|
||||
def __call__(self, sample):
|
||||
sample["surface"] = sample["surface"][:, self.surface_dims]
|
||||
return sample
|
||||
|
||||
|
||||
class AxisScaleTransform(object):
|
||||
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
||||
assert isinstance(interval, (tuple, list, ListConfig))
|
||||
self.interval = interval
|
||||
self.min_val = interval[0]
|
||||
self.max_val = interval[1]
|
||||
self.inter_size = interval[1] - interval[0]
|
||||
self.jitter = jitter
|
||||
self.jitter_scale = jitter_scale
|
||||
|
||||
def __call__(self, sample):
|
||||
|
||||
surface = sample["surface"][..., 0:3]
|
||||
geo_points = sample["geo_points"][..., 0:3]
|
||||
|
||||
scaling = torch.rand(1, 3) * self.inter_size + self.min_val
|
||||
# print(scaling)
|
||||
surface = surface * scaling
|
||||
geo_points = geo_points * scaling
|
||||
|
||||
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
||||
surface *= scale
|
||||
geo_points *= scale
|
||||
|
||||
if self.jitter:
|
||||
surface += self.jitter_scale * torch.randn_like(surface)
|
||||
surface.clamp_(min=-1.015, max=1.015)
|
||||
|
||||
sample["surface"][..., 0:3] = surface
|
||||
sample["geo_points"][..., 0:3] = geo_points
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class ToTensor(object):
|
||||
|
||||
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
|
||||
self.tensor_keys = tensor_keys
|
||||
|
||||
def __call__(self, sample):
|
||||
for key in self.tensor_keys:
|
||||
if key not in sample:
|
||||
continue
|
||||
|
||||
sample[key] = torch.tensor(sample[key], dtype=torch.float32)
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class AxisScale(object):
|
||||
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
||||
assert isinstance(interval, (tuple, list, ListConfig))
|
||||
self.interval = interval
|
||||
self.jitter = jitter
|
||||
self.jitter_scale = jitter_scale
|
||||
|
||||
def __call__(self, surface, *args):
|
||||
scaling = torch.rand(1, 3) * 0.5 + 0.75
|
||||
# print(scaling)
|
||||
surface = surface * scaling
|
||||
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
||||
surface *= scale
|
||||
|
||||
args_outputs = []
|
||||
for _arg in args:
|
||||
_arg = _arg * scaling * scale
|
||||
args_outputs.append(_arg)
|
||||
|
||||
if self.jitter:
|
||||
surface += self.jitter_scale * torch.randn_like(surface)
|
||||
surface.clamp_(min=-1, max=1)
|
||||
|
||||
if len(args) == 0:
|
||||
return surface
|
||||
else:
|
||||
return surface, *args_outputs
|
||||
|
||||
|
||||
class RandomResize(torch.nn.Module):
|
||||
"""Apply randomly Resize with a given probability."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
resize_radio=(0.5, 1),
|
||||
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
|
||||
interpolation=InterpolationMode.BICUBIC,
|
||||
max_size=None,
|
||||
antialias=None,
|
||||
):
|
||||
super().__init__()
|
||||
if not isinstance(size, (int, Sequence)):
|
||||
raise TypeError(f"Size should be int or sequence. Got {type(size)}")
|
||||
if isinstance(size, Sequence) and len(size) not in (1, 2):
|
||||
raise ValueError("If size is a sequence, it should have 1 or 2 values")
|
||||
|
||||
self.size = size
|
||||
self.max_size = max_size
|
||||
# Backward compatibility with integer value
|
||||
if isinstance(interpolation, int):
|
||||
warnings.warn(
|
||||
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
|
||||
"Please use InterpolationMode enum."
|
||||
)
|
||||
interpolation = _interpolation_modes_from_int(interpolation)
|
||||
|
||||
self.interpolation = interpolation
|
||||
self.antialias = antialias
|
||||
|
||||
self.resize_radio = resize_radio
|
||||
self.allow_resize_interpolations = allow_resize_interpolations
|
||||
|
||||
def random_resize_params(self):
|
||||
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]
|
||||
|
||||
if isinstance(self.size, int):
|
||||
size = int(self.size * radio)
|
||||
elif isinstance(self.size, Sequence):
|
||||
size = list(self.size)
|
||||
size = (int(size[0] * radio), int(size[1] * radio))
|
||||
else:
|
||||
raise RuntimeError()
|
||||
|
||||
interpolation = self.allow_resize_interpolations[
|
||||
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
|
||||
]
|
||||
return size, interpolation
|
||||
|
||||
def forward(self, img):
|
||||
size, interpolation = self.random_resize_params()
|
||||
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
|
||||
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
|
||||
return img
|
||||
|
||||
def __repr__(self) -> str:
|
||||
detail = f"(size={self.size}, interpolation={self.interpolation.value},"
|
||||
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
|
||||
return f"{self.__class__.__name__}{detail}"
|
||||
|
||||
|
||||
class Compose(object):
|
||||
"""Composes several transforms together. This transform does not support torchscript.
|
||||
Please, see the note below.
|
||||
|
||||
Args:
|
||||
transforms (list of ``Transform`` objects): list of transforms to compose.
|
||||
|
||||
Example:
|
||||
>>> transforms.Compose([
|
||||
>>> transforms.CenterCrop(10),
|
||||
>>> transforms.ToTensor(),
|
||||
>>> ])
|
||||
|
||||
.. note::
|
||||
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
|
||||
|
||||
>>> transforms = torch.nn.Sequential(
|
||||
>>> transforms.CenterCrop(10),
|
||||
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
||||
>>> )
|
||||
>>> scripted_transforms = torch.jit.script(transforms)
|
||||
|
||||
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
|
||||
`lambda` functions or ``PIL.Image``.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, transforms):
|
||||
self.transforms = transforms
|
||||
|
||||
def __call__(self, *args):
|
||||
for t in self.transforms:
|
||||
args = t(*args)
|
||||
return args
|
||||
|
||||
def __repr__(self):
|
||||
format_string = self.__class__.__name__ + '('
|
||||
for t in self.transforms:
|
||||
format_string += '\n'
|
||||
format_string += ' {0}'.format(t)
|
||||
format_string += '\n)'
|
||||
return format_string
|
||||
|
||||
|
||||
def identity(*args, **kwargs):
|
||||
if len(args) == 1:
|
||||
return args[0]
|
||||
else:
|
||||
return args
|
||||
|
||||
|
||||
def build_transforms(cfg):
|
||||
|
||||
if cfg is None:
|
||||
return identity
|
||||
|
||||
transforms = []
|
||||
|
||||
for transform_name, cfg_instance in cfg.items():
|
||||
transform_instance = instantiate_from_config(cfg_instance)
|
||||
transforms.append(transform_instance)
|
||||
print(f"Build transform: {transform_instance}")
|
||||
|
||||
transforms = Compose(transforms)
|
||||
|
||||
return transforms
|
||||
|
|
@ -0,0 +1,59 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def worker_init_fn(_):
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
worker_id = worker_info.id
|
||||
|
||||
# dataset = worker_info.dataset
|
||||
# split_size = dataset.num_records // worker_info.num_workers
|
||||
# # reset num_records to the true number to retain reliable length information
|
||||
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
|
||||
# current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
||||
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
||||
|
||||
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
||||
|
||||
|
||||
def collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
samples (list[dict]):
|
||||
combine_tensors:
|
||||
combine_scalars:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
result = {}
|
||||
|
||||
keys = samples[0].keys()
|
||||
|
||||
for key in keys:
|
||||
result[key] = []
|
||||
|
||||
for sample in samples:
|
||||
for key in keys:
|
||||
val = sample[key]
|
||||
result[key].append(val)
|
||||
|
||||
for key in keys:
|
||||
val_list = result[key]
|
||||
if isinstance(val_list[0], (int, float)):
|
||||
if combine_scalars:
|
||||
result[key] = np.array(result[key])
|
||||
|
||||
elif isinstance(val_list[0], torch.Tensor):
|
||||
if combine_tensors:
|
||||
result[key] = torch.stack(val_list)
|
||||
|
||||
elif isinstance(val_list[0], np.ndarray):
|
||||
if combine_tensors:
|
||||
result[key] = np.stack(val_list)
|
||||
|
||||
return result
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1,9 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .volume import generate_dense_grid_points
|
||||
|
||||
from .mesh import (
|
||||
MeshOutput,
|
||||
save_obj,
|
||||
savemeshtes2
|
||||
)
|
|
@ -0,0 +1,114 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
from typing import Optional
|
||||
|
||||
import trimesh
|
||||
|
||||
|
||||
def save_obj(pointnp_px3, facenp_fx3, fname):
|
||||
fid = open(fname, "w")
|
||||
write_str = ""
|
||||
for pidx, p in enumerate(pointnp_px3):
|
||||
pp = p
|
||||
write_str += "v %f %f %f\n" % (pp[0], pp[1], pp[2])
|
||||
|
||||
for i, f in enumerate(facenp_fx3):
|
||||
f1 = f + 1
|
||||
write_str += "f %d %d %d\n" % (f1[0], f1[1], f1[2])
|
||||
fid.write(write_str)
|
||||
fid.close()
|
||||
return
|
||||
|
||||
|
||||
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, tex_map, fname):
|
||||
fol, na = os.path.split(fname)
|
||||
na, _ = os.path.splitext(na)
|
||||
|
||||
matname = "%s/%s.mtl" % (fol, na)
|
||||
fid = open(matname, "w")
|
||||
fid.write("newmtl material_0\n")
|
||||
fid.write("Kd 1 1 1\n")
|
||||
fid.write("Ka 0 0 0\n")
|
||||
fid.write("Ks 0.4 0.4 0.4\n")
|
||||
fid.write("Ns 10\n")
|
||||
fid.write("illum 2\n")
|
||||
fid.write("map_Kd %s.png\n" % na)
|
||||
fid.close()
|
||||
####
|
||||
|
||||
fid = open(fname, "w")
|
||||
fid.write("mtllib %s.mtl\n" % na)
|
||||
|
||||
for pidx, p in enumerate(pointnp_px3):
|
||||
pp = p
|
||||
fid.write("v %f %f %f\n" % (pp[0], pp[1], pp[2]))
|
||||
|
||||
for pidx, p in enumerate(tcoords_px2):
|
||||
pp = p
|
||||
fid.write("vt %f %f\n" % (pp[0], pp[1]))
|
||||
|
||||
fid.write("usemtl material_0\n")
|
||||
for i, f in enumerate(facenp_fx3):
|
||||
f1 = f + 1
|
||||
f2 = facetex_fx3[i] + 1
|
||||
fid.write("f %d/%d %d/%d %d/%d\n" % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
|
||||
fid.close()
|
||||
|
||||
PIL.Image.fromarray(np.ascontiguousarray(tex_map), "RGB").save(
|
||||
os.path.join(fol, "%s.png" % na))
|
||||
|
||||
return
|
||||
|
||||
|
||||
class MeshOutput(object):
|
||||
|
||||
def __init__(self,
|
||||
mesh_v: np.ndarray,
|
||||
mesh_f: np.ndarray,
|
||||
vertex_colors: Optional[np.ndarray] = None,
|
||||
uvs: Optional[np.ndarray] = None,
|
||||
mesh_tex_idx: Optional[np.ndarray] = None,
|
||||
tex_map: Optional[np.ndarray] = None):
|
||||
|
||||
self.mesh_v = mesh_v
|
||||
self.mesh_f = mesh_f
|
||||
self.vertex_colors = vertex_colors
|
||||
self.uvs = uvs
|
||||
self.mesh_tex_idx = mesh_tex_idx
|
||||
self.tex_map = tex_map
|
||||
|
||||
def contain_uv_texture(self):
|
||||
return (self.uvs is not None) and (self.mesh_tex_idx is not None) and (self.tex_map is not None)
|
||||
|
||||
def contain_vertex_colors(self):
|
||||
return self.vertex_colors is not None
|
||||
|
||||
def export(self, fname):
|
||||
|
||||
if self.contain_uv_texture():
|
||||
savemeshtes2(
|
||||
self.mesh_v,
|
||||
self.uvs,
|
||||
self.mesh_f,
|
||||
self.mesh_tex_idx,
|
||||
self.tex_map,
|
||||
fname
|
||||
)
|
||||
|
||||
elif self.contain_vertex_colors():
|
||||
mesh_obj = trimesh.Trimesh(vertices=self.mesh_v, faces=self.mesh_f, vertex_colors=self.vertex_colors)
|
||||
mesh_obj.export(fname)
|
||||
|
||||
else:
|
||||
save_obj(
|
||||
self.mesh_v,
|
||||
self.mesh_f,
|
||||
fname
|
||||
)
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def generate_dense_grid_points(bbox_min: np.ndarray,
|
||||
bbox_max: np.ndarray,
|
||||
octree_depth: int,
|
||||
indexing: str = "ij"):
|
||||
length = bbox_max - bbox_min
|
||||
num_cells = np.exp2(octree_depth)
|
||||
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
||||
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
||||
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
||||
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
||||
xyz = np.stack((xs, ys, zs), axis=-1)
|
||||
xyz = xyz.reshape(-1, 3)
|
||||
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
||||
|
||||
return xyz, grid_size, length
|
||||
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1,483 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from omegaconf import DictConfig
|
||||
from typing import List, Tuple, Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.optim import lr_scheduler
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_only
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from diffusers.schedulers import (
|
||||
DDPMScheduler,
|
||||
DDIMScheduler,
|
||||
KarrasVeScheduler,
|
||||
DPMSolverMultistepScheduler
|
||||
)
|
||||
|
||||
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
||||
# from MeshAnything.miche.michelangelo.models.tsal.tsal_base import ShapeAsLatentPLModule
|
||||
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
||||
from MeshAnything.miche.michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
||||
|
||||
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class ASLDiffuser(pl.LightningModule):
|
||||
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
||||
# cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
||||
model: nn.Module
|
||||
|
||||
def __init__(self, *,
|
||||
first_stage_config,
|
||||
denoiser_cfg,
|
||||
scheduler_cfg,
|
||||
optimizer_cfg,
|
||||
loss_cfg,
|
||||
first_stage_key: str = "surface",
|
||||
cond_stage_key: str = "image",
|
||||
cond_stage_trainable: bool = True,
|
||||
scale_by_std: bool = False,
|
||||
z_scale_factor: float = 1.0,
|
||||
ckpt_path: Optional[str] = None,
|
||||
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.first_stage_key = first_stage_key
|
||||
self.cond_stage_key = cond_stage_key
|
||||
self.cond_stage_trainable = cond_stage_trainable
|
||||
|
||||
# 1. initialize first stage.
|
||||
# Note: the condition model contained in the first stage model.
|
||||
self.first_stage_config = first_stage_config
|
||||
self.first_stage_model = None
|
||||
# self.instantiate_first_stage(first_stage_config)
|
||||
|
||||
# 2. initialize conditional stage
|
||||
# self.instantiate_cond_stage(cond_stage_config)
|
||||
self.cond_stage_model = {
|
||||
"image": self.encode_image,
|
||||
"image_unconditional_embedding": self.empty_img_cond,
|
||||
"text": self.encode_text,
|
||||
"text_unconditional_embedding": self.empty_text_cond,
|
||||
"surface": self.encode_surface,
|
||||
"surface_unconditional_embedding": self.empty_surface_cond,
|
||||
}
|
||||
|
||||
# 3. diffusion model
|
||||
self.model = instantiate_from_config(
|
||||
denoiser_cfg, device=None, dtype=None
|
||||
)
|
||||
|
||||
self.optimizer_cfg = optimizer_cfg
|
||||
|
||||
# 4. scheduling strategy
|
||||
self.scheduler_cfg = scheduler_cfg
|
||||
|
||||
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
||||
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
||||
|
||||
# 5. loss configures
|
||||
self.loss_cfg = loss_cfg
|
||||
|
||||
self.scale_by_std = scale_by_std
|
||||
if scale_by_std:
|
||||
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
||||
else:
|
||||
self.z_scale_factor = z_scale_factor
|
||||
|
||||
self.ckpt_path = ckpt_path
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def instantiate_first_stage(self, config):
|
||||
model = instantiate_from_config(config)
|
||||
self.first_stage_model = model.eval()
|
||||
self.first_stage_model.train = disabled_train
|
||||
for param in self.first_stage_model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
|
||||
# def instantiate_cond_stage(self, config):
|
||||
# if not self.cond_stage_trainable:
|
||||
# if config == "__is_first_stage__":
|
||||
# print("Using first stage also as cond stage.")
|
||||
# self.cond_stage_model = self.first_stage_model
|
||||
# elif config == "__is_unconditional__":
|
||||
# print(f"Training {self.__class__.__name__} as an unconditional model.")
|
||||
# self.cond_stage_model = None
|
||||
# # self.be_unconditional = True
|
||||
# else:
|
||||
# model = instantiate_from_config(config)
|
||||
# self.cond_stage_model = model.eval()
|
||||
# self.cond_stage_model.train = disabled_train
|
||||
# for param in self.cond_stage_model.parameters():
|
||||
# param.requires_grad = False
|
||||
# else:
|
||||
# assert config != "__is_first_stage__"
|
||||
# assert config != "__is_unconditional__"
|
||||
# model = instantiate_from_config(config)
|
||||
# self.cond_stage_model = model
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=()):
|
||||
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del state_dict[k]
|
||||
|
||||
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
@property
|
||||
def zero_rank(self):
|
||||
if self._trainer:
|
||||
zero_rank = self.trainer.local_rank == 0
|
||||
else:
|
||||
zero_rank = True
|
||||
|
||||
return zero_rank
|
||||
|
||||
def configure_optimizers(self) -> Tuple[List, List]:
|
||||
|
||||
lr = self.learning_rate
|
||||
|
||||
trainable_parameters = list(self.model.parameters())
|
||||
# if the conditional encoder is trainable
|
||||
|
||||
# if self.cond_stage_trainable:
|
||||
# conditioner_params = [p for p in self.cond_stage_model.parameters() if p.requires_grad]
|
||||
# trainable_parameters += conditioner_params
|
||||
# print(f"number of trainable conditional parameters: {len(conditioner_params)}.")
|
||||
|
||||
if self.optimizer_cfg is None:
|
||||
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||
schedulers = []
|
||||
else:
|
||||
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
||||
scheduler_func = instantiate_from_config(
|
||||
self.optimizer_cfg.scheduler,
|
||||
max_decay_steps=self.trainer.max_steps,
|
||||
lr_max=lr
|
||||
)
|
||||
scheduler = {
|
||||
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1
|
||||
}
|
||||
optimizers = [optimizer]
|
||||
schedulers = [scheduler]
|
||||
|
||||
return optimizers, schedulers
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_text(self, text):
|
||||
|
||||
b = text.shape[0]
|
||||
text_tokens = rearrange(text, "b t l -> (b t) l")
|
||||
text_embed = self.first_stage_model.model.encode_text_embed(text_tokens)
|
||||
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
||||
text_embed = text_embed.mean(dim=1)
|
||||
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||
|
||||
return text_embed
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_image(self, img):
|
||||
|
||||
return self.first_stage_model.model.encode_image_embed(img)
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_surface(self, surface):
|
||||
|
||||
return self.first_stage_model.model.encode_shape_embed(surface, return_latents=False)
|
||||
|
||||
@torch.no_grad()
|
||||
def empty_text_cond(self, cond):
|
||||
|
||||
return torch.zeros_like(cond, device=cond.device)
|
||||
|
||||
@torch.no_grad()
|
||||
def empty_img_cond(self, cond):
|
||||
|
||||
return torch.zeros_like(cond, device=cond.device)
|
||||
|
||||
@torch.no_grad()
|
||||
def empty_surface_cond(self, cond):
|
||||
|
||||
return torch.zeros_like(cond, device=cond.device)
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
||||
|
||||
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
||||
z_q = self.z_scale_factor * z_q
|
||||
|
||||
return z_q
|
||||
|
||||
@torch.no_grad()
|
||||
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
||||
|
||||
z_q = 1. / self.z_scale_factor * z_q
|
||||
latents = self.first_stage_model.decode(z_q, **kwargs)
|
||||
return latents
|
||||
|
||||
@rank_zero_only
|
||||
@torch.no_grad()
|
||||
def on_train_batch_start(self, batch, batch_idx):
|
||||
# only for very first batch
|
||||
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
||||
and batch_idx == 0 and self.ckpt_path is None:
|
||||
# set rescale weight to 1./std of encodings
|
||||
print("### USING STD-RESCALING ###")
|
||||
|
||||
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
||||
z = z_q.detach()
|
||||
|
||||
del self.z_scale_factor
|
||||
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
||||
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
||||
|
||||
print("### USING STD-RESCALING ###")
|
||||
|
||||
def compute_loss(self, model_outputs, split):
|
||||
"""
|
||||
|
||||
Args:
|
||||
model_outputs (dict):
|
||||
- x_0:
|
||||
- noise:
|
||||
- noise_prior:
|
||||
- noise_pred:
|
||||
- noise_pred_prior:
|
||||
|
||||
split (str):
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
pred = model_outputs["pred"]
|
||||
|
||||
if self.noise_scheduler.prediction_type == "epsilon":
|
||||
target = model_outputs["noise"]
|
||||
elif self.noise_scheduler.prediction_type == "sample":
|
||||
target = model_outputs["x_0"]
|
||||
else:
|
||||
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
||||
|
||||
if self.loss_cfg.loss_type == "l1":
|
||||
simple = F.l1_loss(pred, target, reduction="mean")
|
||||
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
||||
simple = F.mse_loss(pred, target, reduction="mean")
|
||||
else:
|
||||
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
||||
|
||||
total_loss = simple
|
||||
|
||||
loss_dict = {
|
||||
f"{split}/total_loss": total_loss.clone().detach(),
|
||||
f"{split}/simple": simple.detach(),
|
||||
}
|
||||
|
||||
return total_loss, loss_dict
|
||||
|
||||
def forward(self, batch):
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
if self.first_stage_model is None:
|
||||
self.instantiate_first_stage(self.first_stage_config)
|
||||
|
||||
latents = self.encode_first_stage(batch[self.first_stage_key])
|
||||
|
||||
# conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
||||
|
||||
conditions = self.cond_stage_model[self.cond_stage_key](batch[self.cond_stage_key]).unsqueeze(1)
|
||||
|
||||
mask = torch.rand((len(conditions), 1, 1), device=conditions.device, dtype=conditions.dtype) >= 0.1
|
||||
conditions = conditions * mask.to(conditions)
|
||||
|
||||
# Sample noise that we"ll add to the latents
|
||||
# [batch_size, n_token, latent_dim]
|
||||
noise = torch.randn_like(latents)
|
||||
bs = latents.shape[0]
|
||||
# Sample a random timestep for each motion
|
||||
timesteps = torch.randint(
|
||||
0,
|
||||
self.noise_scheduler.config.num_train_timesteps,
|
||||
(bs,),
|
||||
device=latents.device,
|
||||
)
|
||||
timesteps = timesteps.long()
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# diffusion model forward
|
||||
noise_pred = self.model(noisy_z, timesteps, conditions)
|
||||
|
||||
diffusion_outputs = {
|
||||
"x_0": noisy_z,
|
||||
"noise": noise,
|
||||
"pred": noise_pred
|
||||
}
|
||||
|
||||
return diffusion_outputs
|
||||
|
||||
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface (torch.FloatTensor):
|
||||
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
||||
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
||||
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
||||
- text (list of str):
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
diffusion_outputs = self(batch)
|
||||
|
||||
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
||||
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
||||
- surface_feats (torch.FloatTensor): [n_pts, c]
|
||||
- text (list of str):
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
diffusion_outputs = self(batch)
|
||||
|
||||
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
||||
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
||||
sample_times: int = 1,
|
||||
steps: Optional[int] = None,
|
||||
guidance_scale: Optional[float] = None,
|
||||
eta: float = 0.0,
|
||||
return_intermediates: bool = False, **kwargs):
|
||||
|
||||
if self.first_stage_model is None:
|
||||
self.instantiate_first_stage(self.first_stage_config)
|
||||
|
||||
if steps is None:
|
||||
steps = self.scheduler_cfg.num_inference_steps
|
||||
|
||||
if guidance_scale is None:
|
||||
guidance_scale = self.scheduler_cfg.guidance_scale
|
||||
do_classifier_free_guidance = guidance_scale > 0
|
||||
|
||||
# conditional encode
|
||||
xc = batch[self.cond_stage_key]
|
||||
# cond = self.cond_stage_model[self.cond_stage_key](xc)
|
||||
cond = self.cond_stage_model[self.cond_stage_key](xc).unsqueeze(1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
"""
|
||||
Note: There are two kinds of uncond for text.
|
||||
1: using "" as uncond text; (in SAL diffusion)
|
||||
2: zeros_like(cond) as uncond text; (in MDM)
|
||||
"""
|
||||
# un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
||||
un_cond = self.cond_stage_model[f"{self.cond_stage_key}_unconditional_embedding"](cond)
|
||||
# un_cond = torch.zeros_like(cond, device=cond.device)
|
||||
cond = torch.cat([un_cond, cond], dim=0)
|
||||
|
||||
outputs = []
|
||||
latents = None
|
||||
|
||||
if not return_intermediates:
|
||||
for _ in range(sample_times):
|
||||
sample_loop = ddim_sample(
|
||||
self.denoise_scheduler,
|
||||
self.model,
|
||||
shape=self.first_stage_model.latent_shape,
|
||||
cond=cond,
|
||||
steps=steps,
|
||||
guidance_scale=guidance_scale,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=self.device,
|
||||
eta=eta,
|
||||
disable_prog=not self.zero_rank
|
||||
)
|
||||
for sample, t in sample_loop:
|
||||
latents = sample
|
||||
outputs.append(self.decode_first_stage(latents, **kwargs))
|
||||
else:
|
||||
|
||||
sample_loop = ddim_sample(
|
||||
self.denoise_scheduler,
|
||||
self.model,
|
||||
shape=self.first_stage_model.latent_shape,
|
||||
cond=cond,
|
||||
steps=steps,
|
||||
guidance_scale=guidance_scale,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=self.device,
|
||||
eta=eta,
|
||||
disable_prog=not self.zero_rank
|
||||
)
|
||||
|
||||
iter_size = steps // sample_times
|
||||
i = 0
|
||||
for sample, t in sample_loop:
|
||||
latents = sample
|
||||
if i % iter_size == 0 or i == steps - 1:
|
||||
outputs.append(self.decode_first_stage(latents, **kwargs))
|
||||
i += 1
|
||||
|
||||
return outputs
|
|
@ -0,0 +1,104 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
from diffusers.models.embeddings import Timesteps
|
||||
import math
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import MLP
|
||||
from MeshAnything.miche.michelangelo.models.modules.diffusion_transformer import UNetDiffusionTransformer
|
||||
|
||||
|
||||
class ConditionalASLUDTDenoiser(nn.Module):
|
||||
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
input_channels: int,
|
||||
output_channels: int,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
context_dim: int,
|
||||
context_ln: bool = True,
|
||||
skip_ln: bool = False,
|
||||
init_scale: float = 0.25,
|
||||
flip_sin_to_cos: bool = False,
|
||||
use_checkpoint: bool = False):
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
init_scale = init_scale * math.sqrt(1.0 / width)
|
||||
|
||||
self.backbone = UNetDiffusionTransformer(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
layers=layers,
|
||||
heads=heads,
|
||||
skip_ln=skip_ln,
|
||||
init_scale=init_scale,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
|
||||
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
|
||||
|
||||
# timestep embedding
|
||||
self.time_embed = Timesteps(width, flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=0)
|
||||
self.time_proj = MLP(
|
||||
device=device, dtype=dtype, width=width, init_scale=init_scale
|
||||
)
|
||||
|
||||
self.context_embed = nn.Sequential(
|
||||
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
||||
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
||||
)
|
||||
|
||||
if context_ln:
|
||||
self.context_embed = nn.Sequential(
|
||||
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
||||
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
||||
)
|
||||
else:
|
||||
self.context_embed = nn.Linear(context_dim, width, device=device, dtype=dtype)
|
||||
|
||||
def forward(self,
|
||||
model_input: torch.FloatTensor,
|
||||
timestep: torch.LongTensor,
|
||||
context: torch.FloatTensor):
|
||||
|
||||
r"""
|
||||
Args:
|
||||
model_input (torch.FloatTensor): [bs, n_data, c]
|
||||
timestep (torch.LongTensor): [bs,]
|
||||
context (torch.FloatTensor): [bs, context_tokens, c]
|
||||
|
||||
Returns:
|
||||
sample (torch.FloatTensor): [bs, n_data, c]
|
||||
|
||||
"""
|
||||
|
||||
_, n_data, _ = model_input.shape
|
||||
|
||||
# 1. time
|
||||
t_emb = self.time_proj(self.time_embed(timestep)).unsqueeze(dim=1)
|
||||
|
||||
# 2. conditions projector
|
||||
context = self.context_embed(context)
|
||||
|
||||
# 3. denoiser
|
||||
x = self.input_proj(model_input)
|
||||
x = torch.cat([t_emb, context, x], dim=1)
|
||||
x = self.backbone(x)
|
||||
x = self.ln_post(x)
|
||||
x = x[:, -n_data:]
|
||||
sample = self.output_proj(x)
|
||||
|
||||
return sample
|
||||
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class BaseDenoiser(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, t, context):
|
||||
raise NotImplementedError
|
|
@ -0,0 +1,393 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from omegaconf import DictConfig
|
||||
from typing import List, Tuple, Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.optim import lr_scheduler
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_only
|
||||
|
||||
from diffusers.schedulers import (
|
||||
DDPMScheduler,
|
||||
DDIMScheduler,
|
||||
KarrasVeScheduler,
|
||||
DPMSolverMultistepScheduler
|
||||
)
|
||||
|
||||
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
||||
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
||||
from MeshAnything.miche.michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
||||
|
||||
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class ClipASLDiffuser(pl.LightningModule):
|
||||
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
||||
cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
||||
model: nn.Module
|
||||
|
||||
def __init__(self, *,
|
||||
first_stage_config,
|
||||
cond_stage_config,
|
||||
denoiser_cfg,
|
||||
scheduler_cfg,
|
||||
optimizer_cfg,
|
||||
loss_cfg,
|
||||
first_stage_key: str = "surface",
|
||||
cond_stage_key: str = "image",
|
||||
scale_by_std: bool = False,
|
||||
z_scale_factor: float = 1.0,
|
||||
ckpt_path: Optional[str] = None,
|
||||
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.first_stage_key = first_stage_key
|
||||
self.cond_stage_key = cond_stage_key
|
||||
|
||||
# 1. lazy initialize first stage
|
||||
self.instantiate_first_stage(first_stage_config)
|
||||
|
||||
# 2. initialize conditional stage
|
||||
self.instantiate_cond_stage(cond_stage_config)
|
||||
|
||||
# 3. diffusion model
|
||||
self.model = instantiate_from_config(
|
||||
denoiser_cfg, device=None, dtype=None
|
||||
)
|
||||
|
||||
self.optimizer_cfg = optimizer_cfg
|
||||
|
||||
# 4. scheduling strategy
|
||||
self.scheduler_cfg = scheduler_cfg
|
||||
|
||||
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
||||
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
||||
|
||||
# 5. loss configures
|
||||
self.loss_cfg = loss_cfg
|
||||
|
||||
self.scale_by_std = scale_by_std
|
||||
if scale_by_std:
|
||||
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
||||
else:
|
||||
self.z_scale_factor = z_scale_factor
|
||||
|
||||
self.ckpt_path = ckpt_path
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def instantiate_non_trainable_model(self, config):
|
||||
model = instantiate_from_config(config)
|
||||
model = model.eval()
|
||||
model.train = disabled_train
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
return model
|
||||
|
||||
def instantiate_first_stage(self, first_stage_config):
|
||||
self.first_stage_model = self.instantiate_non_trainable_model(first_stage_config)
|
||||
self.first_stage_model.set_shape_model_only()
|
||||
|
||||
def instantiate_cond_stage(self, cond_stage_config):
|
||||
self.cond_stage_model = self.instantiate_non_trainable_model(cond_stage_config)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=()):
|
||||
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del state_dict[k]
|
||||
|
||||
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
@property
|
||||
def zero_rank(self):
|
||||
if self._trainer:
|
||||
zero_rank = self.trainer.local_rank == 0
|
||||
else:
|
||||
zero_rank = True
|
||||
|
||||
return zero_rank
|
||||
|
||||
def configure_optimizers(self) -> Tuple[List, List]:
|
||||
|
||||
lr = self.learning_rate
|
||||
|
||||
trainable_parameters = list(self.model.parameters())
|
||||
if self.optimizer_cfg is None:
|
||||
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||
schedulers = []
|
||||
else:
|
||||
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
||||
scheduler_func = instantiate_from_config(
|
||||
self.optimizer_cfg.scheduler,
|
||||
max_decay_steps=self.trainer.max_steps,
|
||||
lr_max=lr
|
||||
)
|
||||
scheduler = {
|
||||
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1
|
||||
}
|
||||
optimizers = [optimizer]
|
||||
schedulers = [scheduler]
|
||||
|
||||
return optimizers, schedulers
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
||||
|
||||
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
||||
z_q = self.z_scale_factor * z_q
|
||||
|
||||
return z_q
|
||||
|
||||
@torch.no_grad()
|
||||
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
||||
|
||||
z_q = 1. / self.z_scale_factor * z_q
|
||||
latents = self.first_stage_model.decode(z_q, **kwargs)
|
||||
return latents
|
||||
|
||||
@rank_zero_only
|
||||
@torch.no_grad()
|
||||
def on_train_batch_start(self, batch, batch_idx):
|
||||
# only for very first batch
|
||||
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
||||
and batch_idx == 0 and self.ckpt_path is None:
|
||||
# set rescale weight to 1./std of encodings
|
||||
print("### USING STD-RESCALING ###")
|
||||
|
||||
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
||||
z = z_q.detach()
|
||||
|
||||
del self.z_scale_factor
|
||||
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
||||
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
||||
|
||||
print("### USING STD-RESCALING ###")
|
||||
|
||||
def compute_loss(self, model_outputs, split):
|
||||
"""
|
||||
|
||||
Args:
|
||||
model_outputs (dict):
|
||||
- x_0:
|
||||
- noise:
|
||||
- noise_prior:
|
||||
- noise_pred:
|
||||
- noise_pred_prior:
|
||||
|
||||
split (str):
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
pred = model_outputs["pred"]
|
||||
|
||||
if self.noise_scheduler.prediction_type == "epsilon":
|
||||
target = model_outputs["noise"]
|
||||
elif self.noise_scheduler.prediction_type == "sample":
|
||||
target = model_outputs["x_0"]
|
||||
else:
|
||||
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
||||
|
||||
if self.loss_cfg.loss_type == "l1":
|
||||
simple = F.l1_loss(pred, target, reduction="mean")
|
||||
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
||||
simple = F.mse_loss(pred, target, reduction="mean")
|
||||
else:
|
||||
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
||||
|
||||
total_loss = simple
|
||||
|
||||
loss_dict = {
|
||||
f"{split}/total_loss": total_loss.clone().detach(),
|
||||
f"{split}/simple": simple.detach(),
|
||||
}
|
||||
|
||||
return total_loss, loss_dict
|
||||
|
||||
def forward(self, batch):
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
latents = self.encode_first_stage(batch[self.first_stage_key])
|
||||
conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
||||
|
||||
# Sample noise that we"ll add to the latents
|
||||
# [batch_size, n_token, latent_dim]
|
||||
noise = torch.randn_like(latents)
|
||||
bs = latents.shape[0]
|
||||
# Sample a random timestep for each motion
|
||||
timesteps = torch.randint(
|
||||
0,
|
||||
self.noise_scheduler.config.num_train_timesteps,
|
||||
(bs,),
|
||||
device=latents.device,
|
||||
)
|
||||
timesteps = timesteps.long()
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# diffusion model forward
|
||||
noise_pred = self.model(noisy_z, timesteps, conditions)
|
||||
|
||||
diffusion_outputs = {
|
||||
"x_0": noisy_z,
|
||||
"noise": noise,
|
||||
"pred": noise_pred
|
||||
}
|
||||
|
||||
return diffusion_outputs
|
||||
|
||||
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface (torch.FloatTensor):
|
||||
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
||||
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
||||
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
||||
- text (list of str):
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
diffusion_outputs = self(batch)
|
||||
|
||||
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
||||
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
||||
- surface_feats (torch.FloatTensor): [n_pts, c]
|
||||
- text (list of str):
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
diffusion_outputs = self(batch)
|
||||
|
||||
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
||||
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
||||
sample_times: int = 1,
|
||||
steps: Optional[int] = None,
|
||||
guidance_scale: Optional[float] = None,
|
||||
eta: float = 0.0,
|
||||
return_intermediates: bool = False, **kwargs):
|
||||
|
||||
if steps is None:
|
||||
steps = self.scheduler_cfg.num_inference_steps
|
||||
|
||||
if guidance_scale is None:
|
||||
guidance_scale = self.scheduler_cfg.guidance_scale
|
||||
do_classifier_free_guidance = guidance_scale > 0
|
||||
|
||||
# conditional encode
|
||||
xc = batch[self.cond_stage_key]
|
||||
|
||||
# print(self.first_stage_model.device, self.cond_stage_model.device, self.device)
|
||||
|
||||
cond = self.cond_stage_model(xc)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
||||
cond = torch.cat([un_cond, cond], dim=0)
|
||||
|
||||
outputs = []
|
||||
latents = None
|
||||
|
||||
if not return_intermediates:
|
||||
for _ in range(sample_times):
|
||||
sample_loop = ddim_sample(
|
||||
self.denoise_scheduler,
|
||||
self.model,
|
||||
shape=self.first_stage_model.latent_shape,
|
||||
cond=cond,
|
||||
steps=steps,
|
||||
guidance_scale=guidance_scale,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=self.device,
|
||||
eta=eta,
|
||||
disable_prog=not self.zero_rank
|
||||
)
|
||||
for sample, t in sample_loop:
|
||||
latents = sample
|
||||
outputs.append(self.decode_first_stage(latents, **kwargs))
|
||||
else:
|
||||
|
||||
sample_loop = ddim_sample(
|
||||
self.denoise_scheduler,
|
||||
self.model,
|
||||
shape=self.first_stage_model.latent_shape,
|
||||
cond=cond,
|
||||
steps=steps,
|
||||
guidance_scale=guidance_scale,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=self.device,
|
||||
eta=eta,
|
||||
disable_prog=not self.zero_rank
|
||||
)
|
||||
|
||||
iter_size = steps // sample_times
|
||||
i = 0
|
||||
for sample, t in sample_loop:
|
||||
latents = sample
|
||||
if i % iter_size == 0 or i == steps - 1:
|
||||
outputs.append(self.decode_first_stage(latents, **kwargs))
|
||||
i += 1
|
||||
|
||||
return outputs
|
|
@ -0,0 +1,80 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from typing import Tuple, List, Union, Optional
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
|
||||
|
||||
__all__ = ["ddim_sample"]
|
||||
|
||||
|
||||
def ddim_sample(ddim_scheduler: DDIMScheduler,
|
||||
diffusion_model: torch.nn.Module,
|
||||
shape: Union[List[int], Tuple[int]],
|
||||
cond: torch.FloatTensor,
|
||||
steps: int,
|
||||
eta: float = 0.0,
|
||||
guidance_scale: float = 3.0,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
device: torch.device = "cuda:0",
|
||||
disable_prog: bool = True):
|
||||
|
||||
assert steps > 0, f"{steps} must > 0."
|
||||
|
||||
# init latents
|
||||
bsz = cond.shape[0]
|
||||
if do_classifier_free_guidance:
|
||||
bsz = bsz // 2
|
||||
|
||||
latents = torch.randn(
|
||||
(bsz, *shape),
|
||||
generator=generator,
|
||||
device=cond.device,
|
||||
dtype=cond.dtype,
|
||||
)
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * ddim_scheduler.init_noise_sigma
|
||||
# set timesteps
|
||||
ddim_scheduler.set_timesteps(steps)
|
||||
timesteps = ddim_scheduler.timesteps.to(device)
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
||||
extra_step_kwargs = {
|
||||
"eta": eta,
|
||||
"generator": generator
|
||||
}
|
||||
|
||||
# reverse
|
||||
for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = (
|
||||
torch.cat([latents] * 2)
|
||||
if do_classifier_free_guidance
|
||||
else latents
|
||||
)
|
||||
# latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
||||
# predict the noise residual
|
||||
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
|
||||
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
||||
noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
# text_embeddings_for_guidance = encoder_hidden_states.chunk(
|
||||
# 2)[1] if do_classifier_free_guidance else encoder_hidden_states
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = ddim_scheduler.step(
|
||||
noise_pred, t, latents, **extra_step_kwargs
|
||||
).prev_sample
|
||||
|
||||
yield latents, t
|
||||
|
||||
|
||||
def karra_sample():
|
||||
pass
|
|
@ -0,0 +1,3 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .clip import CLIPEncoder
|
|
@ -0,0 +1,89 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from dataclasses import dataclass
|
||||
from torchvision.transforms import Normalize
|
||||
from transformers import CLIPModel, CLIPTokenizer
|
||||
from transformers.utils import ModelOutput
|
||||
from typing import Iterable, Optional, Union, List
|
||||
|
||||
|
||||
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPEmbedOutput(ModelOutput):
|
||||
last_hidden_state: torch.FloatTensor = None
|
||||
pooler_output: torch.FloatTensor = None
|
||||
embeds: torch.FloatTensor = None
|
||||
|
||||
|
||||
class CLIPEncoder(torch.nn.Module):
|
||||
|
||||
def __init__(self, model_path="openai/clip-vit-base-patch32"):
|
||||
|
||||
super().__init__()
|
||||
|
||||
# Load the CLIP model and processor
|
||||
self.model: CLIPModel = CLIPModel.from_pretrained(model_path)
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(model_path)
|
||||
self.image_preprocess = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
|
||||
self.model.training = False
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_image(self, images: Iterable[Optional[ImageType]]):
|
||||
pixel_values = self.image_preprocess(images)
|
||||
|
||||
vision_outputs = self.model.vision_model(pixel_values=pixel_values)
|
||||
|
||||
pooler_output = vision_outputs[1] # pooled_output
|
||||
image_features = self.model.visual_projection(pooler_output)
|
||||
|
||||
visual_embeds = CLIPEmbedOutput(
|
||||
last_hidden_state=vision_outputs.last_hidden_state,
|
||||
pooler_output=pooler_output,
|
||||
embeds=image_features
|
||||
)
|
||||
|
||||
return visual_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_text(self, texts: List[str]):
|
||||
text_inputs = self.tokenizer(texts, padding=True, return_tensors="pt")
|
||||
|
||||
text_outputs = self.model.text_model(input_ids=text_inputs)
|
||||
|
||||
pooler_output = text_outputs[1] # pooled_output
|
||||
text_features = self.model.text_projection(pooler_output)
|
||||
|
||||
text_embeds = CLIPEmbedOutput(
|
||||
last_hidden_state=text_outputs.last_hidden_state,
|
||||
pooler_output=pooler_output,
|
||||
embeds=text_features
|
||||
)
|
||||
|
||||
return text_embeds
|
||||
|
||||
def forward(self,
|
||||
images: Iterable[Optional[ImageType]],
|
||||
texts: List[str]):
|
||||
|
||||
visual_embeds = self.encode_image(images)
|
||||
text_embeds = self.encode_text(texts)
|
||||
|
||||
return visual_embeds, text_embeds
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,562 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import transforms
|
||||
from transformers import CLIPModel, CLIPTokenizer
|
||||
from collections import OrderedDict
|
||||
|
||||
from MeshAnything.miche.michelangelo.data.transforms import RandomResize
|
||||
|
||||
|
||||
class AbstractEncoder(nn.Module):
|
||||
embedding_dim: int
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ClassEmbedder(nn.Module):
|
||||
def __init__(self, embed_dim, n_classes=1000, key="class"):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||
|
||||
def forward(self, batch, key=None):
|
||||
if key is None:
|
||||
key = self.key
|
||||
# this is for use in crossattn
|
||||
c = batch[key][:, None]
|
||||
c = self.embedding(c)
|
||||
return c
|
||||
|
||||
|
||||
class FrozenCLIPTextEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version="openai/clip-vit-large-patch14",
|
||||
tokenizer_version=None,
|
||||
device="cuda",
|
||||
max_length=77,
|
||||
zero_embedding_radio: float = 0.1,
|
||||
):
|
||||
super().__init__()
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.zero_embedding_radio = zero_embedding_radio
|
||||
|
||||
self.clip_dict = OrderedDict()
|
||||
self.clip_name = os.path.split(version)[-1]
|
||||
|
||||
transformer = CLIPModel.from_pretrained(version).text_model
|
||||
|
||||
for param in transformer.parameters():
|
||||
param.requires_grad = False
|
||||
self.clip_dict[self.clip_name] = transformer
|
||||
|
||||
self._move_flag = False
|
||||
|
||||
@property
|
||||
def clip(self):
|
||||
return self.clip_dict[self.clip_name]
|
||||
|
||||
def move(self):
|
||||
if self._move_flag:
|
||||
return
|
||||
|
||||
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
||||
self._move_flag = True
|
||||
|
||||
def unconditional_embedding(self, batch_size):
|
||||
empty_text = [""] * batch_size
|
||||
empty_z = self.forward(empty_text)
|
||||
return empty_z
|
||||
|
||||
def forward(self, text):
|
||||
self.move()
|
||||
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.clip(input_ids=tokens)
|
||||
|
||||
z = outputs.last_hidden_state
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
batch_size = len(text)
|
||||
batch_mask = torch.rand((batch_size,))
|
||||
for i in range(batch_size):
|
||||
if batch_mask[i] < self.zero_embedding_radio:
|
||||
text[i] = ""
|
||||
|
||||
return self(text)
|
||||
|
||||
class FrozenAlignedCLIPTextEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version="openai/clip-vit-large-patch14",
|
||||
tokenizer_version=None,
|
||||
device="cuda",
|
||||
max_length=77,
|
||||
zero_embedding_radio: float = 0.1,
|
||||
):
|
||||
super().__init__()
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.zero_embedding_radio = zero_embedding_radio
|
||||
|
||||
self.clip_dict = OrderedDict()
|
||||
self.clip_name = os.path.split(version)[-1]
|
||||
|
||||
transformer = CLIPModel.from_pretrained(version).text_model
|
||||
|
||||
for param in transformer.parameters():
|
||||
param.requires_grad = False
|
||||
self.clip_dict[self.clip_name] = transformer
|
||||
|
||||
self._move_flag = False
|
||||
|
||||
@property
|
||||
def clip(self):
|
||||
return self.clip_dict[self.clip_name]
|
||||
|
||||
def move(self):
|
||||
if self._move_flag:
|
||||
return
|
||||
|
||||
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
||||
self._move_flag = True
|
||||
|
||||
def unconditional_embedding(self, batch_size):
|
||||
empty_text = [""] * batch_size
|
||||
empty_z = self.forward(empty_text)
|
||||
return empty_z
|
||||
|
||||
def forward(self, text):
|
||||
self.move()
|
||||
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.clip(input_ids=tokens)
|
||||
|
||||
z = outputs.last_hidden_state
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
batch_size = len(text)
|
||||
batch_mask = torch.rand((batch_size,))
|
||||
for i in range(batch_size):
|
||||
if batch_mask[i] < self.zero_embedding_radio:
|
||||
text[i] = ""
|
||||
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version="openai/clip-vit-large-patch14",
|
||||
device="cuda",
|
||||
zero_embedding_radio=0.1,
|
||||
normalize_embedding=True,
|
||||
num_projection_vector=0,
|
||||
linear_mapping_bias=True,
|
||||
reverse_visual_projection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.device = device
|
||||
|
||||
self.clip_dict = OrderedDict()
|
||||
self.clip_name = os.path.split(version)[-1]
|
||||
|
||||
clip_model = CLIPModel.from_pretrained(version)
|
||||
clip_model.text_model = None
|
||||
clip_model.text_projection = None
|
||||
clip_model = clip_model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
self.clip_dict[self.clip_name] = clip_model
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
||||
transforms.CenterCrop(224), # crop a (224, 224) square
|
||||
transforms.Normalize(
|
||||
mean=[0.48145466, 0.4578275, 0.40821073],
|
||||
std=[0.26862954, 0.26130258, 0.27577711],
|
||||
),
|
||||
]
|
||||
)
|
||||
self.zero_embedding_radio = zero_embedding_radio
|
||||
|
||||
self.num_projection_vector = num_projection_vector
|
||||
self.reverse_visual_projection = reverse_visual_projection
|
||||
self.normalize_embedding = normalize_embedding
|
||||
|
||||
embedding_dim = (
|
||||
clip_model.visual_projection.in_features
|
||||
if reverse_visual_projection
|
||||
else clip_model.visual_projection.out_features
|
||||
)
|
||||
self.embedding_dim = embedding_dim
|
||||
if self.num_projection_vector > 0:
|
||||
self.projection = nn.Linear(
|
||||
embedding_dim,
|
||||
clip_model.visual_projection.out_features * num_projection_vector,
|
||||
bias=linear_mapping_bias,
|
||||
)
|
||||
nn.init.normal_(self.projection.weight, std=embedding_dim ** -0.5)
|
||||
|
||||
self._move_flag = False
|
||||
|
||||
@property
|
||||
def clip(self):
|
||||
return self.clip_dict[self.clip_name]
|
||||
|
||||
def unconditional_embedding(self, batch_size):
|
||||
zero = torch.zeros(
|
||||
batch_size,
|
||||
1,
|
||||
self.embedding_dim,
|
||||
device=self.device,
|
||||
dtype=self.clip.visual_projection.weight.dtype,
|
||||
)
|
||||
if self.num_projection_vector > 0:
|
||||
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
||||
return zero
|
||||
|
||||
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
||||
if value_range is not None:
|
||||
low, high = value_range
|
||||
image = (image - low) / (high - low)
|
||||
|
||||
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
||||
|
||||
if self.reverse_visual_projection:
|
||||
z = self.clip.vision_model(self.transform(image))[1]
|
||||
else:
|
||||
z = self.clip.get_image_features(self.transform(image))
|
||||
|
||||
if self.normalize_embedding:
|
||||
z = z / z.norm(dim=-1, keepdim=True)
|
||||
if z.ndim == 2:
|
||||
z = z.unsqueeze(dim=-2)
|
||||
|
||||
if zero_embedding_radio > 0:
|
||||
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) < zero_embedding_radio
|
||||
z = z * mask.to(z)
|
||||
|
||||
if self.num_projection_vector > 0:
|
||||
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
||||
|
||||
return z
|
||||
|
||||
def move(self):
|
||||
if self._move_flag:
|
||||
return
|
||||
|
||||
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
||||
self._move_flag = True
|
||||
|
||||
def encode(self, image):
|
||||
self.move()
|
||||
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
||||
|
||||
|
||||
class FrozenCLIPImageGridEmbedder(AbstractEncoder):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version="openai/clip-vit-large-patch14",
|
||||
device="cuda",
|
||||
zero_embedding_radio=0.1,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.device = device
|
||||
|
||||
self.clip_dict = OrderedDict()
|
||||
self.clip_name = os.path.split(version)[-1]
|
||||
|
||||
clip_model: CLIPModel = CLIPModel.from_pretrained(version)
|
||||
clip_model.text_model = None
|
||||
clip_model.text_projection = None
|
||||
clip_model = clip_model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
self.clip_dict[self.clip_name] = clip_model
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(224, transforms.InterpolationMode.BILINEAR, antialias=True),
|
||||
transforms.CenterCrop(224), # crop a (224, 224) square
|
||||
transforms.Normalize(
|
||||
mean=[0.48145466, 0.4578275, 0.40821073],
|
||||
std=[0.26862954, 0.26130258, 0.27577711],
|
||||
),
|
||||
]
|
||||
)
|
||||
self.zero_embedding_radio = zero_embedding_radio
|
||||
self.embedding_dim = clip_model.vision_embed_dim
|
||||
|
||||
self._move_flag = False
|
||||
|
||||
@property
|
||||
def clip(self):
|
||||
return self.clip_dict[self.clip_name]
|
||||
|
||||
def move(self):
|
||||
if self._move_flag:
|
||||
return
|
||||
|
||||
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
||||
self._move_flag = True
|
||||
|
||||
def unconditional_embedding(self, batch_size):
|
||||
zero = torch.zeros(
|
||||
batch_size,
|
||||
self.clip.vision_model.embeddings.num_positions,
|
||||
self.embedding_dim,
|
||||
device=self.device,
|
||||
dtype=self.clip.visual_projection.weight.dtype,
|
||||
)
|
||||
return zero
|
||||
|
||||
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
||||
self.move()
|
||||
|
||||
if value_range is not None:
|
||||
low, high = value_range
|
||||
image = (image - low) / (high - low)
|
||||
|
||||
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
||||
|
||||
z = self.clip.vision_model(self.transform(image)).last_hidden_state
|
||||
|
||||
if zero_embedding_radio > 0:
|
||||
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
||||
z = z * mask.to(z)
|
||||
|
||||
return z
|
||||
|
||||
def encode(self, image):
|
||||
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
||||
|
||||
|
||||
class MoECLIPImageEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
versions,
|
||||
hidden_state_dim,
|
||||
num_projection_vector=8,
|
||||
zero_embedding_radio=0.1,
|
||||
device="cuda",
|
||||
precision="fp16",
|
||||
normalize=False,
|
||||
clip_max=0,
|
||||
transform_type="base",
|
||||
argument_p=0.2,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.device = torch.device(device)
|
||||
self.hidden_state_dim = hidden_state_dim
|
||||
self.zero_embedding_radio = zero_embedding_radio
|
||||
self.num_projection_vector = num_projection_vector
|
||||
self.dtype = dict(fp16=torch.float16, fp32=torch.float32, bf16=torch.bfloat16)[precision]
|
||||
self.normalize = normalize
|
||||
self.clip_max = clip_max
|
||||
|
||||
if transform_type == "base":
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
||||
transforms.CenterCrop(224), # crop a (224, 224) square
|
||||
transforms.Normalize(
|
||||
mean=[0.48145466, 0.4578275, 0.40821073],
|
||||
std=[0.26862954, 0.26130258, 0.27577711],
|
||||
),
|
||||
]
|
||||
)
|
||||
elif transform_type == "crop_blur_resize":
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
||||
transforms.CenterCrop(224), # crop a (224, 224) square
|
||||
transforms.RandomApply(
|
||||
transforms=[
|
||||
transforms.RandomResizedCrop(
|
||||
size=224,
|
||||
scale=(0.8, 1.0),
|
||||
ratio=(0.99, 1.01),
|
||||
interpolation=transforms.InterpolationMode.BICUBIC,
|
||||
),
|
||||
],
|
||||
p=argument_p,
|
||||
),
|
||||
transforms.RandomApply(
|
||||
transforms=[
|
||||
transforms.GaussianBlur(kernel_size=9, sigma=(0.1, 5)),
|
||||
],
|
||||
p=argument_p,
|
||||
),
|
||||
transforms.RandomApply(
|
||||
transforms=[
|
||||
RandomResize(size=224, resize_radio=(0.2, 1)),
|
||||
],
|
||||
p=argument_p,
|
||||
),
|
||||
transforms.Normalize(
|
||||
mean=[0.48145466, 0.4578275, 0.40821073],
|
||||
std=[0.26862954, 0.26130258, 0.27577711],
|
||||
),
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"invalid {transform_type=}")
|
||||
|
||||
if isinstance(versions, str):
|
||||
versions = (versions,)
|
||||
|
||||
# 如果直接把clips定位为当前类的子module,1. 会在保存ckp时存无用的多个权重。 2. pl会调用to,导致layer_norm的权重也被转换成fp16
|
||||
clips = OrderedDict()
|
||||
|
||||
for v in versions:
|
||||
# 因为clips不是子module,直接指定device="cuda"会错误地导致clip模型权重都被放到cuda:0上。
|
||||
clips[v], _ = clip.load(name=v, device="cpu", jit=False, download_root=None)
|
||||
delattr(clips[v], "transformer")
|
||||
clips[v].eval()
|
||||
clips[v].requires_grad_(False)
|
||||
|
||||
self.clips_hidden_dim = sum(clips[v].ln_final.weight.size(0) for v in clips)
|
||||
|
||||
if self.num_projection_vector == 0:
|
||||
self.projection = nn.Identity()
|
||||
else:
|
||||
self.projection = nn.Linear(self.clips_hidden_dim, hidden_state_dim * self.num_projection_vector, bias=True)
|
||||
self.projection.to(dtype=self.dtype)
|
||||
nn.init.normal_(self.projection.weight, std=self.clips_hidden_dim ** -0.5)
|
||||
|
||||
self.clips = clips
|
||||
|
||||
self._move_flag = False
|
||||
|
||||
def move(self):
|
||||
if self._move_flag:
|
||||
return
|
||||
|
||||
def convert_weights(model: nn.Module):
|
||||
"""Convert applicable model parameters to fp16"""
|
||||
|
||||
def _convert_weights_to_fp16(l):
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
||||
l.weight.data = l.weight.data.type(self.dtype)
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.type(self.dtype)
|
||||
|
||||
if isinstance(l, nn.MultiheadAttention):
|
||||
for attr in [
|
||||
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
||||
"in_proj_bias",
|
||||
"bias_k",
|
||||
"bias_v",
|
||||
]:
|
||||
tensor = getattr(l, attr)
|
||||
if tensor is not None:
|
||||
tensor.data = tensor.data.type(self.dtype)
|
||||
|
||||
for name in ["text_projection", "proj"]:
|
||||
if hasattr(l, name):
|
||||
attr = getattr(l, name)
|
||||
if attr is not None:
|
||||
attr.data = attr.data.type(self.dtype)
|
||||
|
||||
model.apply(_convert_weights_to_fp16)
|
||||
|
||||
for k in self.clips:
|
||||
self.clips[k].to(self.device)
|
||||
convert_weights(self.clips[k]) # fp32 -> self.dtype
|
||||
self._move_flag = True
|
||||
|
||||
def unconditional_embedding(self, batch_size=None):
|
||||
zero = torch.zeros(
|
||||
batch_size,
|
||||
self.clips_hidden_dim,
|
||||
device=self.device,
|
||||
dtype=self.dtype,
|
||||
)
|
||||
if self.num_projection_vector > 0:
|
||||
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
||||
return zero
|
||||
|
||||
def convert_embedding(self, z):
|
||||
if self.num_projection_vector > 0:
|
||||
z = self.projection(z.type(self.projection.weight.dtype)).view(len(z), self.num_projection_vector, -1)
|
||||
return z
|
||||
|
||||
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
||||
if value_range is not None:
|
||||
low, high = value_range
|
||||
image = (image - low) / (high - low)
|
||||
|
||||
image = self.transform(image)
|
||||
|
||||
with torch.no_grad():
|
||||
embs = []
|
||||
for v in self.clips:
|
||||
x = self.clips[v].encode_image(image)
|
||||
if self.normalize:
|
||||
x = x / x.norm(p=2, dim=-1, keepdim=True) * (x.size(-1) ** 0.5)
|
||||
# clip_max only works with normalization
|
||||
if self.clip_max > 0:
|
||||
x = x.clamp(-self.clip_max, self.clip_max)
|
||||
embs.append(x)
|
||||
|
||||
z = torch.cat(embs, dim=-1)
|
||||
if self.normalize:
|
||||
z /= z.size(-1) ** 0.5
|
||||
|
||||
if zero_embedding_radio > 0:
|
||||
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
||||
z = z + mask.to(z)
|
||||
|
||||
if self.num_projection_vector > 0:
|
||||
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
||||
return z
|
||||
|
||||
def encode(self, image):
|
||||
self.move()
|
||||
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
|
@ -0,0 +1,3 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .checkpoint import checkpoint
|
|
@ -0,0 +1,69 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Adapted from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/nn.py#L124
|
||||
"""
|
||||
|
||||
import torch
|
||||
from typing import Callable, Iterable, Sequence, Union
|
||||
|
||||
|
||||
def checkpoint(
|
||||
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
|
||||
inputs: Sequence[torch.Tensor],
|
||||
params: Iterable[torch.Tensor],
|
||||
flag: bool,
|
||||
use_deepspeed: bool = False
|
||||
):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
:param use_deepspeed: if True, use deepspeed
|
||||
"""
|
||||
if flag:
|
||||
if use_deepspeed:
|
||||
import deepspeed
|
||||
return deepspeed.checkpointing.checkpoint(func, *inputs)
|
||||
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@torch.cuda.amp.custom_fwd
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
@torch.cuda.amp.custom_bwd
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad():
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
|
@ -0,0 +1,218 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
||||
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import (
|
||||
init_linear,
|
||||
MLP,
|
||||
MultiheadCrossAttention,
|
||||
MultiheadAttention,
|
||||
ResidualAttentionBlock
|
||||
)
|
||||
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
width: int):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU(inplace=True)
|
||||
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype)
|
||||
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, timestep):
|
||||
emb = self.linear(timestep)
|
||||
scale, shift = torch.chunk(emb, 2, dim=2)
|
||||
x = self.layernorm(x) * (1 + scale) + shift
|
||||
return x
|
||||
|
||||
|
||||
class DitBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
context_dim: int,
|
||||
qkv_bias: bool = False,
|
||||
init_scale: float = 1.0,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
self.attn = MultiheadAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias
|
||||
)
|
||||
self.ln_1 = AdaLayerNorm(device, dtype, width)
|
||||
|
||||
if context_dim is not None:
|
||||
self.ln_2 = AdaLayerNorm(device, dtype, width)
|
||||
self.cross_attn = MultiheadCrossAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
width=width,
|
||||
heads=heads,
|
||||
data_width=context_dim,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias
|
||||
)
|
||||
|
||||
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
||||
self.ln_3 = AdaLayerNorm(device, dtype, width)
|
||||
|
||||
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
||||
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint)
|
||||
|
||||
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
||||
x = x + self.attn(self.ln_1(x, t))
|
||||
if context is not None:
|
||||
x = x + self.cross_attn(self.ln_2(x, t), context)
|
||||
x = x + self.mlp(self.ln_3(x, t))
|
||||
return x
|
||||
|
||||
|
||||
class DiT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
context_dim: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = False,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
|
||||
self.resblocks = nn.ModuleList(
|
||||
[
|
||||
DitBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
context_dim=context_dim,
|
||||
qkv_bias=qkv_bias,
|
||||
init_scale=init_scale,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
for _ in range(layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
||||
for block in self.resblocks:
|
||||
x = block(x, t, context)
|
||||
return x
|
||||
|
||||
|
||||
class UNetDiffusionTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = False,
|
||||
skip_ln: bool = False,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
for _ in range(layers):
|
||||
resblock = ResidualAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
self.encoder.append(resblock)
|
||||
|
||||
self.middle_block = ResidualAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
||||
self.decoder = nn.ModuleList()
|
||||
for _ in range(layers):
|
||||
resblock = ResidualAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
linear = nn.Linear(width * 2, width, device=device, dtype=dtype)
|
||||
init_linear(linear, init_scale)
|
||||
|
||||
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None
|
||||
|
||||
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm]))
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
|
||||
enc_outputs = []
|
||||
for block in self.encoder:
|
||||
x = block(x)
|
||||
enc_outputs.append(x)
|
||||
|
||||
x = self.middle_block(x)
|
||||
|
||||
for i, (resblock, linear, layer_norm) in enumerate(self.decoder):
|
||||
x = torch.cat([enc_outputs.pop(), x], dim=-1)
|
||||
x = linear(x)
|
||||
|
||||
if layer_norm is not None:
|
||||
x = layer_norm(x)
|
||||
|
||||
x = resblock(x)
|
||||
|
||||
return x
|
|
@ -0,0 +1,100 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from typing import Union, List
|
||||
|
||||
|
||||
class AbstractDistribution(object):
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
|
||||
self.feat_dim = feat_dim
|
||||
self.parameters = parameters
|
||||
|
||||
if isinstance(parameters, list):
|
||||
self.mean = parameters[0]
|
||||
self.logvar = parameters[1]
|
||||
else:
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
|
||||
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn_like(self.mean)
|
||||
return x
|
||||
|
||||
def kl(self, other=None, dims=(1, 2, 3)):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.mean(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=dims)
|
||||
else:
|
||||
return 0.5 * torch.mean(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=dims)
|
||||
|
||||
def nll(self, sample, dims=(1, 2, 3)):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
|
@ -0,0 +1,213 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
|
||||
|
||||
|
||||
class FourierEmbedder(nn.Module):
|
||||
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
||||
each feature dimension of `x[..., i]` into:
|
||||
[
|
||||
sin(x[..., i]),
|
||||
sin(f_1*x[..., i]),
|
||||
sin(f_2*x[..., i]),
|
||||
...
|
||||
sin(f_N * x[..., i]),
|
||||
cos(x[..., i]),
|
||||
cos(f_1*x[..., i]),
|
||||
cos(f_2*x[..., i]),
|
||||
...
|
||||
cos(f_N * x[..., i]),
|
||||
x[..., i] # only present if include_input is True.
|
||||
], here f_i is the frequency.
|
||||
|
||||
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
|
||||
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
|
||||
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
|
||||
|
||||
Args:
|
||||
num_freqs (int): the number of frequencies, default is 6;
|
||||
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
|
||||
input_dim (int): the input dimension, default is 3;
|
||||
include_input (bool): include the input tensor or not, default is True.
|
||||
|
||||
Attributes:
|
||||
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
|
||||
|
||||
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
|
||||
otherwise, it is input_dim * num_freqs * 2.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_freqs: int = 6,
|
||||
logspace: bool = True,
|
||||
input_dim: int = 3,
|
||||
include_input: bool = True,
|
||||
include_pi: bool = True) -> None:
|
||||
|
||||
"""The initialization"""
|
||||
|
||||
super().__init__()
|
||||
|
||||
if logspace:
|
||||
frequencies = 2.0 ** torch.arange(
|
||||
num_freqs,
|
||||
dtype=torch.float32
|
||||
)
|
||||
else:
|
||||
frequencies = torch.linspace(
|
||||
1.0,
|
||||
2.0 ** (num_freqs - 1),
|
||||
num_freqs,
|
||||
dtype=torch.float32
|
||||
)
|
||||
|
||||
if include_pi:
|
||||
frequencies *= torch.pi
|
||||
|
||||
self.register_buffer("frequencies", frequencies, persistent=False)
|
||||
self.include_input = include_input
|
||||
self.num_freqs = num_freqs
|
||||
|
||||
self.out_dim = self.get_dims(input_dim)
|
||||
|
||||
def get_dims(self, input_dim):
|
||||
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
||||
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
||||
|
||||
return out_dim
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
""" Forward process.
|
||||
|
||||
Args:
|
||||
x: tensor of shape [..., dim]
|
||||
|
||||
Returns:
|
||||
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
|
||||
where temp is 1 if include_input is True and 0 otherwise.
|
||||
"""
|
||||
|
||||
if self.num_freqs > 0:
|
||||
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
|
||||
if self.include_input:
|
||||
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
||||
else:
|
||||
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class LearnedFourierEmbedder(nn.Module):
|
||||
""" following @crowsonkb "s lead with learned sinusoidal pos emb """
|
||||
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
||||
|
||||
def __init__(self, in_channels, dim):
|
||||
super().__init__()
|
||||
assert (dim % 2) == 0
|
||||
half_dim = dim // 2
|
||||
per_channel_dim = half_dim // in_channels
|
||||
self.weights = nn.Parameter(torch.randn(per_channel_dim))
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (torch.FloatTensor): [..., c]
|
||||
|
||||
Returns:
|
||||
x (torch.FloatTensor): [..., d]
|
||||
"""
|
||||
|
||||
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
|
||||
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
|
||||
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
|
||||
return fouriered
|
||||
|
||||
|
||||
class TriplaneLearnedFourierEmbedder(nn.Module):
|
||||
def __init__(self, in_channels, dim):
|
||||
super().__init__()
|
||||
|
||||
self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||
self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||
self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||
|
||||
self.out_dim = in_channels + dim
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
yz_embed = self.yz_plane_embedder(x)
|
||||
xz_embed = self.xz_plane_embedder(x)
|
||||
xy_embed = self.xy_plane_embedder(x)
|
||||
|
||||
embed = yz_embed + xz_embed + xy_embed
|
||||
|
||||
return embed
|
||||
|
||||
|
||||
def sequential_pos_embed(num_len, embed_dim):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
pos = torch.arange(num_len, dtype=torch.float32)
|
||||
omega = torch.arange(embed_dim // 2, dtype=torch.float32)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000 ** omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = torch.sin(out) # (M, D/2)
|
||||
emb_cos = torch.cos(out) # (M, D/2)
|
||||
|
||||
embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
return embedding
|
||||
|
||||
|
||||
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
|
||||
num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
|
||||
log2_hashmap_size=19, desired_resolution=None):
|
||||
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
|
||||
return nn.Identity(), input_dim
|
||||
|
||||
elif embed_type == "fourier":
|
||||
embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
|
||||
logspace=True, include_input=True)
|
||||
return embedder_obj, embedder_obj.out_dim
|
||||
|
||||
elif embed_type == "hashgrid":
|
||||
raise NotImplementedError
|
||||
|
||||
elif embed_type == "sphere_harmonic":
|
||||
raise NotImplementedError
|
||||
|
||||
else:
|
||||
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
|
|
@ -0,0 +1,286 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
||||
|
||||
|
||||
def init_linear(l, stddev):
|
||||
nn.init.normal_(l.weight, std=stddev)
|
||||
if l.bias is not None:
|
||||
nn.init.constant_(l.bias, 0.0)
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
init_scale: float,
|
||||
qkv_bias: bool,
|
||||
flash: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
|
||||
init_linear(self.c_qkv, init_scale)
|
||||
init_linear(self.c_proj, init_scale)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.c_qkv(x)
|
||||
x = checkpoint(self.attention, (x,), (), True)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class QKVMultiheadAttention(nn.Module):
|
||||
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.heads = heads
|
||||
self.n_ctx = n_ctx
|
||||
self.flash = flash
|
||||
|
||||
def forward(self, qkv):
|
||||
bs, n_ctx, width = qkv.shape
|
||||
attn_ch = width // self.heads // 3
|
||||
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
||||
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
||||
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
||||
|
||||
if self.flash:
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
else:
|
||||
weight = torch.einsum(
|
||||
"bthc,bshc->bhts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
wdtype = weight.dtype
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
init_scale: float = 1.0,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
self.attn = MultiheadAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash
|
||||
)
|
||||
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
||||
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
|
||||
def _forward(self, x: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
||||
|
||||
|
||||
class MultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
width: int,
|
||||
heads: int,
|
||||
init_scale: float,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
n_data: Optional[int] = None,
|
||||
data_width: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_data = n_data
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.data_width = width if data_width is None else data_width
|
||||
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||
self.attention = QKVMultiheadCrossAttention(
|
||||
device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
|
||||
)
|
||||
init_linear(self.c_q, init_scale)
|
||||
init_linear(self.c_kv, init_scale)
|
||||
init_linear(self.c_proj, init_scale)
|
||||
|
||||
def forward(self, x, data):
|
||||
x = self.c_q(x)
|
||||
data = self.c_kv(data)
|
||||
x = checkpoint(self.attention, (x, data), (), True)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class QKVMultiheadCrossAttention(nn.Module):
|
||||
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
|
||||
flash: bool = False, n_data: Optional[int] = None):
|
||||
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.heads = heads
|
||||
self.n_data = n_data
|
||||
self.flash = flash
|
||||
|
||||
def forward(self, q, kv):
|
||||
_, n_ctx, _ = q.shape
|
||||
bs, n_data, width = kv.shape
|
||||
attn_ch = width // self.heads // 2
|
||||
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
||||
q = q.view(bs, n_ctx, self.heads, -1)
|
||||
kv = kv.view(bs, n_data, self.heads, -1)
|
||||
k, v = torch.split(kv, attn_ch, dim=-1)
|
||||
|
||||
if self.flash:
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
else:
|
||||
weight = torch.einsum(
|
||||
"bthc,bshc->bhts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
wdtype = weight.dtype
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResidualCrossAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_data: Optional[int] = None,
|
||||
width: int,
|
||||
heads: int,
|
||||
data_width: Optional[int] = None,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if data_width is None:
|
||||
data_width = width
|
||||
|
||||
self.attn = MultiheadCrossAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_data=n_data,
|
||||
width=width,
|
||||
heads=heads,
|
||||
data_width=data_width,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
)
|
||||
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
||||
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
||||
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
||||
x = x + self.mlp(self.ln_3(x))
|
||||
return x
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
width: int,
|
||||
init_scale: float):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
||||
self.gelu = nn.GELU()
|
||||
init_linear(self.c_fc, init_scale)
|
||||
init_linear(self.c_proj, init_scale)
|
||||
|
||||
def forward(self, x):
|
||||
return self.c_proj(self.gelu(self.c_fc(x)))
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.resblocks = nn.ModuleList(
|
||||
[
|
||||
ResidualAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
for _ in range(layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
for block in self.resblocks:
|
||||
x = block(x)
|
||||
return x
|
|
@ -0,0 +1,308 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
import warnings
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
||||
|
||||
|
||||
def _trunc_normal_(tensor, mean, std, a, b):
|
||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||||
def norm_cdf(x):
|
||||
# Computes standard normal cumulative distribution function
|
||||
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||||
|
||||
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||||
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
||||
"The distribution of values may be incorrect.",
|
||||
stacklevel=2)
|
||||
|
||||
# Values are generated by using a truncated uniform distribution and
|
||||
# then using the inverse CDF for the normal distribution.
|
||||
# Get upper and lower cdf values
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
# Uniformly fill tensor with values from [l, u], then translate to
|
||||
# [2l-1, 2u-1].
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
|
||||
# Use inverse cdf transform for normal distribution to get truncated
|
||||
# standard normal
|
||||
tensor.erfinv_()
|
||||
|
||||
# Transform to proper mean, std
|
||||
tensor.mul_(std * math.sqrt(2.))
|
||||
tensor.add_(mean)
|
||||
|
||||
# Clamp to ensure it's in the proper range
|
||||
tensor.clamp_(min=a, max=b)
|
||||
return tensor
|
||||
|
||||
|
||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||
# type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
|
||||
r"""Fills the input Tensor with values drawn from a truncated
|
||||
normal distribution. The values are effectively drawn from the
|
||||
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
||||
with values outside :math:`[a, b]` redrawn until they are within
|
||||
the bounds. The method used for generating the random values works
|
||||
best when :math:`a \leq \text{mean} \leq b`.
|
||||
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
||||
applied while sampling the normal with mean/std applied, therefore a, b args
|
||||
should be adjusted to match the range of mean, std args.
|
||||
Args:
|
||||
tensor: an n-dimensional `torch.Tensor`
|
||||
mean: the mean of the normal distribution
|
||||
std: the standard deviation of the normal distribution
|
||||
a: the minimum cutoff value
|
||||
b: the maximum cutoff value
|
||||
Examples:
|
||||
>>> w = torch.empty(3, 5)
|
||||
>>> nn.init.trunc_normal_(w)
|
||||
"""
|
||||
with torch.no_grad():
|
||||
return _trunc_normal_(tensor, mean, std, a, b)
|
||||
|
||||
|
||||
def init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool
|
||||
):
|
||||
super().__init__()
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.c_qkv(x)
|
||||
x = checkpoint(self.attention, (x,), (), True)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class QKVMultiheadAttention(nn.Module):
|
||||
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.heads = heads
|
||||
self.n_ctx = n_ctx
|
||||
|
||||
def forward(self, qkv):
|
||||
bs, n_ctx, width = qkv.shape
|
||||
attn_ch = width // self.heads // 3
|
||||
scale = 1 / math.sqrt(attn_ch)
|
||||
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
||||
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
||||
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
||||
wdtype = weight.dtype
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
self.attn = MultiheadAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias
|
||||
)
|
||||
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
||||
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
|
||||
def _forward(self, x: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
||||
|
||||
|
||||
class MultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
n_data: Optional[int] = None,
|
||||
data_width: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_data = n_data
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.data_width = width if data_width is None else data_width
|
||||
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||
self.attention = QKVMultiheadCrossAttention(
|
||||
device=device, dtype=dtype, heads=heads, n_data=n_data
|
||||
)
|
||||
|
||||
def forward(self, x, data):
|
||||
x = self.c_q(x)
|
||||
data = self.c_kv(data)
|
||||
x = checkpoint(self.attention, (x, data), (), True)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class QKVMultiheadCrossAttention(nn.Module):
|
||||
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.heads = heads
|
||||
self.n_data = n_data
|
||||
|
||||
def forward(self, q, kv):
|
||||
_, n_ctx, _ = q.shape
|
||||
bs, n_data, width = kv.shape
|
||||
attn_ch = width // self.heads // 2
|
||||
scale = 1 / math.sqrt(attn_ch)
|
||||
q = q.view(bs, n_ctx, self.heads, -1)
|
||||
kv = kv.view(bs, n_data, self.heads, -1)
|
||||
k, v = torch.split(kv, attn_ch, dim=-1)
|
||||
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
||||
wdtype = weight.dtype
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||
|
||||
|
||||
class ResidualCrossAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_data: Optional[int] = None,
|
||||
width: int,
|
||||
heads: int,
|
||||
data_width: Optional[int] = None,
|
||||
qkv_bias: bool = True
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if data_width is None:
|
||||
data_width = width
|
||||
|
||||
self.attn = MultiheadCrossAttention(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_data=n_data,
|
||||
width=width,
|
||||
heads=heads,
|
||||
data_width=data_width,
|
||||
qkv_bias=qkv_bias
|
||||
)
|
||||
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
||||
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
||||
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
||||
x = x + self.mlp(self.ln_3(x))
|
||||
return x
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
width: int):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
||||
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
||||
self.gelu = nn.GELU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.c_proj(self.gelu(self.c_fc(x)))
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
n_ctx: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
use_checkpoint: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
self.n_ctx = n_ctx
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.resblocks = nn.ModuleList(
|
||||
[
|
||||
ResidualAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=n_ctx,
|
||||
width=width,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
for _ in range(layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.apply(init_weights)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
for block in self.resblocks:
|
||||
x = block(x)
|
||||
return x
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1,395 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import List, Tuple, Dict, Optional
|
||||
from omegaconf import DictConfig
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from torch.optim import lr_scheduler
|
||||
from typing import Union
|
||||
from functools import partial
|
||||
|
||||
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
||||
|
||||
from .tsal_base import (
|
||||
AlignedShapeAsLatentModule,
|
||||
ShapeAsLatentModule,
|
||||
Latent2MeshOutput,
|
||||
AlignedMeshOutput
|
||||
)
|
||||
from MeshAnything.miche.michelangelo.models.tsal.inference_utils import extract_geometry
|
||||
import trimesh
|
||||
|
||||
class AlignedShapeAsLatentPLModule(nn.Module):
|
||||
def __init__(self, *,
|
||||
shape_module_cfg,
|
||||
aligned_module_cfg,
|
||||
loss_cfg,
|
||||
optimizer_cfg: Optional[DictConfig] = None,
|
||||
ckpt_path: Optional[str] = None,
|
||||
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
||||
|
||||
super().__init__()
|
||||
|
||||
shape_model: ShapeAsLatentModule = instantiate_from_config(
|
||||
shape_module_cfg, device=None, dtype=None
|
||||
)
|
||||
self.model: AlignedShapeAsLatentModule = instantiate_from_config(
|
||||
aligned_module_cfg, shape_model=shape_model
|
||||
)
|
||||
|
||||
self.loss = instantiate_from_config(loss_cfg)
|
||||
|
||||
self.optimizer_cfg = optimizer_cfg
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def set_shape_model_only(self):
|
||||
self.model.set_shape_model_only()
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def latent_shape(self):
|
||||
return self.model.shape_model.latent_shape
|
||||
|
||||
@property
|
||||
def zero_rank(self):
|
||||
if self._trainer:
|
||||
zero_rank = self.trainer.local_rank == 0
|
||||
else:
|
||||
zero_rank = True
|
||||
|
||||
return zero_rank
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=()):
|
||||
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del state_dict[k]
|
||||
|
||||
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
def configure_optimizers(self) -> Tuple[List, List]:
|
||||
lr = self.learning_rate
|
||||
|
||||
trainable_parameters = list(self.model.parameters())
|
||||
|
||||
if self.optimizer_cfg is None:
|
||||
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||
schedulers = []
|
||||
else:
|
||||
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
||||
scheduler_func = instantiate_from_config(
|
||||
self.optimizer_cfg.scheduler,
|
||||
max_decay_steps=self.trainer.max_steps,
|
||||
lr_max=lr
|
||||
)
|
||||
scheduler = {
|
||||
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1
|
||||
}
|
||||
optimizers = [optimizer]
|
||||
schedulers = [scheduler]
|
||||
|
||||
return optimizers, schedulers
|
||||
|
||||
def forward(self,
|
||||
surface: torch.FloatTensor,
|
||||
image: torch.FloatTensor,
|
||||
text: torch.FloatTensor,
|
||||
volume_queries: torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
surface (torch.FloatTensor):
|
||||
image (torch.FloatTensor):
|
||||
text (torch.FloatTensor):
|
||||
volume_queries (torch.FloatTensor):
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
embed_outputs, shape_z = self.model(surface, image, text)
|
||||
|
||||
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
||||
latents = self.model.shape_model.decode(shape_zq)
|
||||
logits = self.model.shape_model.query_geometry(volume_queries, latents)
|
||||
|
||||
return embed_outputs, logits, posterior
|
||||
|
||||
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
|
||||
|
||||
pc = surface[..., 0:3]
|
||||
feats = surface[..., 3:6]
|
||||
|
||||
shape_embed, shape_zq, posterior = self.model.shape_model.encode(
|
||||
pc=pc, feats=feats, sample_posterior=sample_posterior
|
||||
)
|
||||
|
||||
return shape_zq
|
||||
|
||||
def encode_latents(self, surface: torch.FloatTensor):
|
||||
|
||||
pc = surface[..., 0:3]
|
||||
feats = surface[..., 3:6]
|
||||
|
||||
shape_embed, shape_latents = self.model.shape_model.encode_latents(
|
||||
pc=pc, feats=feats
|
||||
)
|
||||
shape_embed = shape_embed.unsqueeze(1)
|
||||
assert shape_embed.shape[1] == 1 and shape_latents.shape[1] == 256
|
||||
cat_latents = torch.cat([shape_embed, shape_latents], dim=1)
|
||||
|
||||
return cat_latents
|
||||
|
||||
def recon(self, surface):
|
||||
cat_latents = self.encode_latents(surface)
|
||||
shape_latents = cat_latents[:, 1:]
|
||||
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_latents)
|
||||
|
||||
# decoding
|
||||
latents = self.model.shape_model.decode(shape_zq)
|
||||
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||
|
||||
# reconstruction
|
||||
mesh_v_f, has_surface = extract_geometry(
|
||||
geometric_func=geometric_func,
|
||||
device=surface.device,
|
||||
batch_size=surface.shape[0],
|
||||
bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||
octree_depth=7,
|
||||
num_chunks=10000,
|
||||
)
|
||||
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
|
||||
|
||||
return recon_mesh
|
||||
|
||||
|
||||
def to_shape_latents(self, latents):
|
||||
|
||||
shape_zq, posterior = self.model.shape_model.encode_kl_embed(latents, sample_posterior = False)
|
||||
return self.model.shape_model.decode(shape_zq)
|
||||
|
||||
def decode(self,
|
||||
z_q,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||
|
||||
latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
|
||||
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
|
||||
|
||||
return outputs
|
||||
|
||||
def training_step(self, batch: Dict[str, torch.FloatTensor],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
|
||||
- image (torch.FloatTensor): [bs, 3, 224, 224]
|
||||
- text (torch.FloatTensor): [bs, num_templates, 77]
|
||||
- geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
surface = batch["surface"]
|
||||
image = batch["image"]
|
||||
text = batch["text"]
|
||||
|
||||
volume_queries = batch["geo_points"][..., 0:3]
|
||||
shape_labels = batch["geo_points"][..., -1]
|
||||
|
||||
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
||||
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
**embed_outputs,
|
||||
posteriors=posteriors,
|
||||
shape_logits=shape_logits,
|
||||
shape_labels=shape_labels,
|
||||
split="train"
|
||||
)
|
||||
|
||||
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
||||
sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return aeloss
|
||||
|
||||
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
|
||||
|
||||
surface = batch["surface"]
|
||||
image = batch["image"]
|
||||
text = batch["text"]
|
||||
|
||||
volume_queries = batch["geo_points"][..., 0:3]
|
||||
shape_labels = batch["geo_points"][..., -1]
|
||||
|
||||
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
||||
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
**embed_outputs,
|
||||
posteriors=posteriors,
|
||||
shape_logits=shape_logits,
|
||||
shape_labels=shape_labels,
|
||||
split="val"
|
||||
)
|
||||
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
||||
sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return aeloss
|
||||
|
||||
def visual_alignment(self,
|
||||
surface: torch.FloatTensor,
|
||||
image: torch.FloatTensor,
|
||||
text: torch.FloatTensor,
|
||||
description: Optional[List[str]] = None,
|
||||
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[AlignedMeshOutput]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
surface:
|
||||
image:
|
||||
text:
|
||||
description:
|
||||
bounds:
|
||||
octree_depth:
|
||||
num_chunks:
|
||||
|
||||
Returns:
|
||||
mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
|
||||
|
||||
"""
|
||||
|
||||
outputs = []
|
||||
|
||||
device = surface.device
|
||||
bs = surface.shape[0]
|
||||
|
||||
embed_outputs, shape_z = self.model(surface, image, text)
|
||||
|
||||
# calculate the similarity
|
||||
image_embed = embed_outputs["image_embed"]
|
||||
text_embed = embed_outputs["text_embed"]
|
||||
shape_embed = embed_outputs["shape_embed"]
|
||||
|
||||
# normalized features
|
||||
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
||||
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
||||
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
||||
|
||||
# B x B
|
||||
shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
|
||||
|
||||
# B x B
|
||||
shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
|
||||
|
||||
# shape reconstruction
|
||||
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
||||
latents = self.model.shape_model.decode(shape_zq)
|
||||
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||
|
||||
# 2. decode geometry
|
||||
mesh_v_f, has_surface = extract_geometry(
|
||||
geometric_func=geometric_func,
|
||||
device=device,
|
||||
batch_size=bs,
|
||||
bounds=bounds,
|
||||
octree_depth=octree_depth,
|
||||
num_chunks=num_chunks,
|
||||
disable=not self.zero_rank
|
||||
)
|
||||
|
||||
# 3. decode texture
|
||||
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||
if not is_surface:
|
||||
outputs.append(None)
|
||||
continue
|
||||
|
||||
out = AlignedMeshOutput()
|
||||
out.mesh_v = mesh_v
|
||||
out.mesh_f = mesh_f
|
||||
out.surface = surface[i].cpu().numpy()
|
||||
out.image = image[i].cpu().numpy()
|
||||
if description is not None:
|
||||
out.text = description[i]
|
||||
out.shape_text_similarity = shape_text_similarity[i, i]
|
||||
out.shape_image_similarity = shape_image_similarity[i, i]
|
||||
|
||||
outputs.append(out)
|
||||
|
||||
return outputs
|
||||
|
||||
def latent2mesh(self,
|
||||
latents: torch.FloatTensor,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
latents: [bs, num_latents, dim]
|
||||
bounds:
|
||||
octree_depth:
|
||||
num_chunks:
|
||||
|
||||
Returns:
|
||||
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
||||
|
||||
"""
|
||||
|
||||
outputs = []
|
||||
|
||||
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||
|
||||
# 2. decode geometry
|
||||
device = latents.device
|
||||
mesh_v_f, has_surface = extract_geometry(
|
||||
geometric_func=geometric_func,
|
||||
device=device,
|
||||
batch_size=len(latents),
|
||||
bounds=bounds,
|
||||
octree_depth=octree_depth,
|
||||
num_chunks=num_chunks,
|
||||
disable=not self.zero_rank
|
||||
)
|
||||
|
||||
# 3. decode texture
|
||||
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||
if not is_surface:
|
||||
outputs.append(None)
|
||||
continue
|
||||
|
||||
out = Latent2MeshOutput()
|
||||
out.mesh_v = mesh_v
|
||||
out.mesh_f = mesh_f
|
||||
|
||||
outputs.append(out)
|
||||
|
||||
return outputs
|
||||
|
|
@ -0,0 +1,118 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from einops import rearrange
|
||||
from transformers import CLIPModel
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentModule
|
||||
|
||||
|
||||
class CLIPAlignedShapeAsLatentModule(AlignedShapeAsLatentModule):
|
||||
|
||||
def __init__(self, *,
|
||||
shape_model,
|
||||
clip_model_version: str = "openai/clip-vit-large-patch14"):
|
||||
|
||||
super().__init__()
|
||||
|
||||
# self.clip_model: CLIPModel = CLIPModel.from_pretrained(clip_model_version)
|
||||
# for params in self.clip_model.parameters():
|
||||
# params.requires_grad = False
|
||||
self.clip_model = None
|
||||
self.shape_model = shape_model
|
||||
self.shape_projection = nn.Parameter(torch.empty(self.shape_model.width, self.shape_model.width))
|
||||
# nn.init.normal_(self.shape_projection, std=self.shape_model.width ** -0.5)
|
||||
|
||||
def set_shape_model_only(self):
|
||||
self.clip_model = None
|
||||
|
||||
def encode_shape_embed(self, surface, return_latents: bool = False):
|
||||
"""
|
||||
|
||||
Args:
|
||||
surface (torch.FloatTensor): [bs, n, 3 + c]
|
||||
return_latents (bool):
|
||||
|
||||
Returns:
|
||||
x (torch.FloatTensor): [bs, projection_dim]
|
||||
shape_latents (torch.FloatTensor): [bs, m, d]
|
||||
"""
|
||||
|
||||
pc = surface[..., 0:3]
|
||||
feats = surface[..., 3:]
|
||||
|
||||
shape_embed, shape_latents = self.shape_model.encode_latents(pc, feats)
|
||||
x = shape_embed @ self.shape_projection
|
||||
|
||||
if return_latents:
|
||||
return x, shape_latents
|
||||
else:
|
||||
return x
|
||||
|
||||
def encode_image_embed(self, image):
|
||||
"""
|
||||
|
||||
Args:
|
||||
image (torch.FloatTensor): [bs, 3, h, w]
|
||||
|
||||
Returns:
|
||||
x (torch.FloatTensor): [bs, projection_dim]
|
||||
"""
|
||||
|
||||
x = self.clip_model.get_image_features(image)
|
||||
|
||||
return x
|
||||
|
||||
def encode_text_embed(self, text):
|
||||
x = self.clip_model.get_text_features(text)
|
||||
return x
|
||||
|
||||
def forward(self, surface, image, text):
|
||||
"""
|
||||
|
||||
Args:
|
||||
surface (torch.FloatTensor):
|
||||
image (torch.FloatTensor): [bs, 3, 224, 224]
|
||||
text (torch.LongTensor): [bs, num_templates, 77]
|
||||
|
||||
Returns:
|
||||
embed_outputs (dict): the embedding outputs, and it contains:
|
||||
- image_embed (torch.FloatTensor):
|
||||
- text_embed (torch.FloatTensor):
|
||||
- shape_embed (torch.FloatTensor):
|
||||
- logit_scale (float):
|
||||
"""
|
||||
|
||||
# # text embedding
|
||||
# text_embed_all = []
|
||||
# for i in range(text.shape[0]):
|
||||
# text_for_one_sample = text[i]
|
||||
# text_embed = self.encode_text_embed(text_for_one_sample)
|
||||
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||
# text_embed = text_embed.mean(dim=0)
|
||||
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||
# text_embed_all.append(text_embed)
|
||||
# text_embed_all = torch.stack(text_embed_all)
|
||||
|
||||
b = text.shape[0]
|
||||
text_tokens = rearrange(text, "b t l -> (b t) l")
|
||||
text_embed = self.encode_text_embed(text_tokens)
|
||||
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
||||
text_embed = text_embed.mean(dim=1)
|
||||
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||
|
||||
# image embedding
|
||||
image_embed = self.encode_image_embed(image)
|
||||
|
||||
# shape embedding
|
||||
shape_embed, shape_latents = self.encode_shape_embed(surface, return_latents=True)
|
||||
|
||||
embed_outputs = {
|
||||
"image_embed": image_embed,
|
||||
"text_embed": text_embed,
|
||||
"shape_embed": shape_embed,
|
||||
# "logit_scale": self.clip_model.logit_scale.exp()
|
||||
}
|
||||
|
||||
return embed_outputs, shape_latents
|
|
@ -0,0 +1,80 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from einops import repeat
|
||||
import numpy as np
|
||||
from typing import Callable, Tuple, List, Union, Optional
|
||||
from skimage import measure
|
||||
|
||||
from MeshAnything.miche.michelangelo.graphics.primitives import generate_dense_grid_points
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def extract_geometry(geometric_func: Callable,
|
||||
device: torch.device,
|
||||
batch_size: int = 1,
|
||||
bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000,
|
||||
disable: bool = True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
geometric_func:
|
||||
device:
|
||||
bounds:
|
||||
octree_depth:
|
||||
batch_size:
|
||||
num_chunks:
|
||||
disable:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
if isinstance(bounds, float):
|
||||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||||
|
||||
bbox_min = np.array(bounds[0:3])
|
||||
bbox_max = np.array(bounds[3:6])
|
||||
bbox_size = bbox_max - bbox_min
|
||||
|
||||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||||
bbox_min=bbox_min,
|
||||
bbox_max=bbox_max,
|
||||
octree_depth=octree_depth,
|
||||
indexing="ij"
|
||||
)
|
||||
xyz_samples = torch.FloatTensor(xyz_samples)
|
||||
|
||||
batch_logits = []
|
||||
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
|
||||
desc="Implicit Function:", disable=disable, leave=False):
|
||||
queries = xyz_samples[start: start + num_chunks, :].to(device)
|
||||
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
||||
|
||||
logits = geometric_func(batch_queries)
|
||||
batch_logits.append(logits.cpu())
|
||||
|
||||
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).numpy()
|
||||
|
||||
mesh_v_f = []
|
||||
has_surface = np.zeros((batch_size,), dtype=np.bool_)
|
||||
for i in range(batch_size):
|
||||
try:
|
||||
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
|
||||
vertices = vertices / grid_size * bbox_size + bbox_min
|
||||
# vertices[:, [0, 1]] = vertices[:, [1, 0]]
|
||||
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
|
||||
has_surface[i] = True
|
||||
|
||||
except ValueError:
|
||||
mesh_v_f.append((None, None))
|
||||
has_surface[i] = False
|
||||
|
||||
except RuntimeError:
|
||||
mesh_v_f.append((None, None))
|
||||
has_surface[i] = False
|
||||
|
||||
return mesh_v_f, has_surface
|
|
@ -0,0 +1,303 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from typing import Optional, Tuple, Dict
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
||||
from MeshAnything.miche.michelangelo.utils.eval import compute_psnr
|
||||
from MeshAnything.miche.michelangelo.utils import misc
|
||||
|
||||
|
||||
class KLNearFar(nn.Module):
|
||||
def __init__(self,
|
||||
near_weight: float = 0.1,
|
||||
kl_weight: float = 1.0,
|
||||
num_near_samples: Optional[int] = None):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.near_weight = near_weight
|
||||
self.kl_weight = kl_weight
|
||||
self.num_near_samples = num_near_samples
|
||||
self.geo_criterion = nn.BCEWithLogitsLoss()
|
||||
|
||||
def forward(self,
|
||||
posteriors: Optional[DiagonalGaussianDistribution],
|
||||
logits: torch.FloatTensor,
|
||||
labels: torch.FloatTensor,
|
||||
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
|
||||
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
|
||||
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
|
||||
split (str):
|
||||
**kwargs:
|
||||
|
||||
Returns:
|
||||
loss (torch.Tensor): (,)
|
||||
log (dict):
|
||||
|
||||
"""
|
||||
|
||||
if self.num_near_samples is None:
|
||||
num_vol = logits.shape[1] // 2
|
||||
else:
|
||||
num_vol = logits.shape[1] - self.num_near_samples
|
||||
|
||||
vol_logits = logits[:, 0:num_vol]
|
||||
vol_labels = labels[:, 0:num_vol]
|
||||
|
||||
near_logits = logits[:, num_vol:]
|
||||
near_labels = labels[:, num_vol:]
|
||||
|
||||
# occupancy loss
|
||||
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
|
||||
# near_bce = self.geo_criterion(near_logits, near_labels)
|
||||
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
||||
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
||||
|
||||
if posteriors is None:
|
||||
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
|
||||
else:
|
||||
kl_loss = posteriors.kl(dims=(1, 2))
|
||||
kl_loss = torch.mean(kl_loss)
|
||||
|
||||
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight
|
||||
|
||||
with torch.no_grad():
|
||||
preds = logits >= 0
|
||||
accuracy = (preds == labels).float()
|
||||
accuracy = accuracy.mean()
|
||||
pos_ratio = torch.mean(labels)
|
||||
|
||||
log = {
|
||||
"{}/total_loss".format(split): loss.clone().detach(),
|
||||
"{}/near".format(split): near_bce.detach(),
|
||||
"{}/far".format(split): vol_bce.detach(),
|
||||
"{}/kl".format(split): kl_loss.detach(),
|
||||
"{}/accuracy".format(split): accuracy,
|
||||
"{}/pos_ratio".format(split): pos_ratio
|
||||
}
|
||||
|
||||
if posteriors is not None:
|
||||
log[f"{split}/mean"] = posteriors.mean.mean().detach()
|
||||
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
|
||||
log[f"{split}/std_max"] = posteriors.std.max().detach()
|
||||
|
||||
return loss, log
|
||||
|
||||
|
||||
class KLNearFarColor(nn.Module):
|
||||
def __init__(self,
|
||||
near_weight: float = 0.1,
|
||||
kl_weight: float = 1.0,
|
||||
color_weight: float = 1.0,
|
||||
color_criterion: str = "mse",
|
||||
num_near_samples: Optional[int] = None):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.color_weight = color_weight
|
||||
self.near_weight = near_weight
|
||||
self.kl_weight = kl_weight
|
||||
self.num_near_samples = num_near_samples
|
||||
|
||||
if color_criterion == "mse":
|
||||
self.color_criterion = nn.MSELoss()
|
||||
|
||||
elif color_criterion == "l1":
|
||||
self.color_criterion = nn.L1Loss()
|
||||
|
||||
else:
|
||||
raise ValueError(f"{color_criterion} must be [`mse`, `l1`].")
|
||||
|
||||
self.geo_criterion = nn.BCEWithLogitsLoss()
|
||||
|
||||
def forward(self,
|
||||
posteriors: Optional[DiagonalGaussianDistribution],
|
||||
logits: torch.FloatTensor,
|
||||
labels: torch.FloatTensor,
|
||||
pred_colors: torch.FloatTensor,
|
||||
gt_colors: torch.FloatTensor,
|
||||
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
|
||||
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
|
||||
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
|
||||
pred_colors (torch.FloatTensor): [B, M, 3]
|
||||
gt_colors (torch.FloatTensor): [B, M, 3]
|
||||
split (str):
|
||||
**kwargs:
|
||||
|
||||
Returns:
|
||||
loss (torch.Tensor): (,)
|
||||
log (dict):
|
||||
|
||||
"""
|
||||
|
||||
if self.num_near_samples is None:
|
||||
num_vol = logits.shape[1] // 2
|
||||
else:
|
||||
num_vol = logits.shape[1] - self.num_near_samples
|
||||
|
||||
vol_logits = logits[:, 0:num_vol]
|
||||
vol_labels = labels[:, 0:num_vol]
|
||||
|
||||
near_logits = logits[:, num_vol:]
|
||||
near_labels = labels[:, num_vol:]
|
||||
|
||||
# occupancy loss
|
||||
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
|
||||
# near_bce = self.geo_criterion(near_logits, near_labels)
|
||||
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
||||
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
||||
|
||||
# surface color loss
|
||||
color = self.color_criterion(pred_colors, gt_colors)
|
||||
|
||||
if posteriors is None:
|
||||
kl_loss = torch.tensor(0.0, dtype=pred_colors.dtype, device=pred_colors.device)
|
||||
else:
|
||||
kl_loss = posteriors.kl(dims=(1, 2))
|
||||
kl_loss = torch.mean(kl_loss)
|
||||
|
||||
loss = vol_bce + near_bce * self.near_weight + color * self.color_weight + kl_loss * self.kl_weight
|
||||
|
||||
with torch.no_grad():
|
||||
preds = logits >= 0
|
||||
accuracy = (preds == labels).float()
|
||||
accuracy = accuracy.mean()
|
||||
psnr = compute_psnr(pred_colors, gt_colors)
|
||||
|
||||
log = {
|
||||
"{}/total_loss".format(split): loss.clone().detach(),
|
||||
"{}/near".format(split): near_bce.detach(),
|
||||
"{}/far".format(split): vol_bce.detach(),
|
||||
"{}/color".format(split): color.detach(),
|
||||
"{}/kl".format(split): kl_loss.detach(),
|
||||
"{}/psnr".format(split): psnr.detach(),
|
||||
"{}/accuracy".format(split): accuracy
|
||||
}
|
||||
|
||||
return loss, log
|
||||
|
||||
|
||||
class ContrastKLNearFar(nn.Module):
|
||||
def __init__(self,
|
||||
contrast_weight: float = 1.0,
|
||||
near_weight: float = 0.1,
|
||||
kl_weight: float = 1.0,
|
||||
num_near_samples: Optional[int] = None):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.labels = None
|
||||
self.last_local_batch_size = None
|
||||
|
||||
self.contrast_weight = contrast_weight
|
||||
self.near_weight = near_weight
|
||||
self.kl_weight = kl_weight
|
||||
self.num_near_samples = num_near_samples
|
||||
self.geo_criterion = nn.BCEWithLogitsLoss()
|
||||
|
||||
def forward(self,
|
||||
shape_embed: torch.FloatTensor,
|
||||
text_embed: torch.FloatTensor,
|
||||
image_embed: torch.FloatTensor,
|
||||
logit_scale: torch.FloatTensor,
|
||||
posteriors: Optional[DiagonalGaussianDistribution],
|
||||
shape_logits: torch.FloatTensor,
|
||||
shape_labels: torch.FloatTensor,
|
||||
split: Optional[str] = "train", **kwargs):
|
||||
|
||||
local_batch_size = shape_embed.size(0)
|
||||
|
||||
if local_batch_size != self.last_local_batch_size:
|
||||
self.labels = local_batch_size * misc.get_rank() + torch.arange(
|
||||
local_batch_size, device=shape_embed.device
|
||||
).long()
|
||||
self.last_local_batch_size = local_batch_size
|
||||
|
||||
# normalized features
|
||||
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
||||
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
||||
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
||||
|
||||
# gather features from all GPUs
|
||||
shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
|
||||
[shape_embed, text_embed, image_embed]
|
||||
)
|
||||
|
||||
# cosine similarity as logits
|
||||
logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
|
||||
logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
|
||||
logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
|
||||
logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
|
||||
contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
|
||||
F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
|
||||
(F.cross_entropy(logits_per_shape_image, self.labels) +
|
||||
F.cross_entropy(logits_per_image_shape, self.labels)) / 2
|
||||
|
||||
# shape reconstruction
|
||||
if self.num_near_samples is None:
|
||||
num_vol = shape_logits.shape[1] // 2
|
||||
else:
|
||||
num_vol = shape_logits.shape[1] - self.num_near_samples
|
||||
|
||||
vol_logits = shape_logits[:, 0:num_vol]
|
||||
vol_labels = shape_labels[:, 0:num_vol]
|
||||
|
||||
near_logits = shape_logits[:, num_vol:]
|
||||
near_labels = shape_labels[:, num_vol:]
|
||||
|
||||
# occupancy loss
|
||||
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
||||
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
||||
|
||||
if posteriors is None:
|
||||
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
|
||||
else:
|
||||
kl_loss = posteriors.kl(dims=(1, 2))
|
||||
kl_loss = torch.mean(kl_loss)
|
||||
|
||||
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
|
||||
|
||||
# compute accuracy
|
||||
with torch.no_grad():
|
||||
pred = torch.argmax(logits_per_shape_text, dim=-1)
|
||||
correct = pred.eq(self.labels).sum()
|
||||
shape_text_acc = 100 * correct / local_batch_size
|
||||
|
||||
pred = torch.argmax(logits_per_shape_image, dim=-1)
|
||||
correct = pred.eq(self.labels).sum()
|
||||
shape_image_acc = 100 * correct / local_batch_size
|
||||
|
||||
preds = shape_logits >= 0
|
||||
accuracy = (preds == shape_labels).float()
|
||||
accuracy = accuracy.mean()
|
||||
|
||||
log = {
|
||||
"{}/contrast".format(split): contrast_loss.clone().detach(),
|
||||
"{}/near".format(split): near_bce.detach(),
|
||||
"{}/far".format(split): vol_bce.detach(),
|
||||
"{}/kl".format(split): kl_loss.detach(),
|
||||
"{}/shape_text_acc".format(split): shape_text_acc,
|
||||
"{}/shape_image_acc".format(split): shape_image_acc,
|
||||
"{}/total_loss".format(split): loss.clone().detach(),
|
||||
"{}/accuracy".format(split): accuracy,
|
||||
}
|
||||
|
||||
if posteriors is not None:
|
||||
log[f"{split}/mean"] = posteriors.mean.mean().detach()
|
||||
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
|
||||
log[f"{split}/std_max"] = posteriors.std.max().detach()
|
||||
|
||||
return loss, log
|
|
@ -0,0 +1,423 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
from einops import repeat
|
||||
import math
|
||||
|
||||
from MeshAnything.miche.michelangelo.models.modules import checkpoint
|
||||
from MeshAnything.miche.michelangelo.models.modules.embedder import FourierEmbedder
|
||||
from MeshAnything.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
||||
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import (
|
||||
ResidualCrossAttentionBlock,
|
||||
Transformer
|
||||
)
|
||||
|
||||
from .tsal_base import ShapeAsLatentModule
|
||||
|
||||
|
||||
class CrossAttentionEncoder(nn.Module):
|
||||
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
num_latents: int,
|
||||
fourier_embedder: FourierEmbedder,
|
||||
point_feats: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
layers: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_ln_post: bool = False,
|
||||
use_checkpoint: bool = False):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.num_latents = num_latents
|
||||
|
||||
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
|
||||
|
||||
self.fourier_embedder = fourier_embedder
|
||||
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
|
||||
self.cross_attn = ResidualCrossAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
)
|
||||
|
||||
self.self_attn = Transformer(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=num_latents,
|
||||
width=width,
|
||||
layers=layers,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_checkpoint=False
|
||||
)
|
||||
|
||||
if use_ln_post:
|
||||
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
|
||||
else:
|
||||
self.ln_post = None
|
||||
|
||||
def _forward(self, pc, feats):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, C]
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
bs = pc.shape[0]
|
||||
|
||||
data = self.fourier_embedder(pc)
|
||||
if feats is not None:
|
||||
data = torch.cat([data, feats], dim=-1)
|
||||
data = self.input_proj(data)
|
||||
|
||||
query = repeat(self.query, "m c -> b m c", b=bs)
|
||||
latents = self.cross_attn(query, data)
|
||||
latents = self.self_attn(latents)
|
||||
|
||||
if self.ln_post is not None:
|
||||
latents = self.ln_post(latents)
|
||||
|
||||
return latents, pc
|
||||
|
||||
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, C]
|
||||
|
||||
Returns:
|
||||
dict
|
||||
"""
|
||||
|
||||
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
|
||||
|
||||
|
||||
class CrossAttentionDecoder(nn.Module):
|
||||
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
num_latents: int,
|
||||
out_channels: int,
|
||||
fourier_embedder: FourierEmbedder,
|
||||
width: int,
|
||||
heads: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_checkpoint: bool = False):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.fourier_embedder = fourier_embedder
|
||||
|
||||
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
|
||||
|
||||
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_data=num_latents,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash
|
||||
)
|
||||
|
||||
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
|
||||
|
||||
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||
queries = self.query_proj(self.fourier_embedder(queries))
|
||||
x = self.cross_attn_decoder(queries, latents)
|
||||
x = self.ln_post(x)
|
||||
x = self.output_proj(x)
|
||||
return x
|
||||
|
||||
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
|
||||
|
||||
|
||||
class ShapeAsLatentPerceiver(ShapeAsLatentModule):
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
num_latents: int,
|
||||
point_feats: int = 0,
|
||||
embed_dim: int = 0,
|
||||
num_freqs: int = 8,
|
||||
include_pi: bool = True,
|
||||
width: int,
|
||||
heads: int,
|
||||
num_encoder_layers: int,
|
||||
num_decoder_layers: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_ln_post: bool = False,
|
||||
use_checkpoint: bool = False):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
self.num_latents = num_latents
|
||||
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
||||
|
||||
init_scale = init_scale * math.sqrt(1.0 / width)
|
||||
self.encoder = CrossAttentionEncoder(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
fourier_embedder=self.fourier_embedder,
|
||||
num_latents=num_latents,
|
||||
point_feats=point_feats,
|
||||
width=width,
|
||||
heads=heads,
|
||||
layers=num_encoder_layers,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_ln_post=use_ln_post,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
||||
self.embed_dim = embed_dim
|
||||
if embed_dim > 0:
|
||||
# VAE embed
|
||||
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
|
||||
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
|
||||
self.latent_shape = (num_latents, embed_dim)
|
||||
else:
|
||||
self.latent_shape = (num_latents, width)
|
||||
|
||||
self.transformer = Transformer(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
n_ctx=num_latents,
|
||||
width=width,
|
||||
layers=num_decoder_layers,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
||||
# geometry decoder
|
||||
self.geo_decoder = CrossAttentionDecoder(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
fourier_embedder=self.fourier_embedder,
|
||||
out_channels=1,
|
||||
num_latents=num_latents,
|
||||
width=width,
|
||||
heads=heads,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
||||
def encode(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: Optional[torch.FloatTensor] = None,
|
||||
sample_posterior: bool = True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, C]
|
||||
sample_posterior (bool):
|
||||
|
||||
Returns:
|
||||
latents (torch.FloatTensor)
|
||||
center_pos (torch.FloatTensor or None):
|
||||
posterior (DiagonalGaussianDistribution or None):
|
||||
"""
|
||||
|
||||
latents, center_pos = self.encoder(pc, feats)
|
||||
|
||||
posterior = None
|
||||
if self.embed_dim > 0:
|
||||
moments = self.pre_kl(latents)
|
||||
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
||||
|
||||
if sample_posterior:
|
||||
latents = posterior.sample()
|
||||
else:
|
||||
latents = posterior.mode()
|
||||
|
||||
return latents, center_pos, posterior
|
||||
|
||||
def decode(self, latents: torch.FloatTensor):
|
||||
latents = self.post_kl(latents)
|
||||
return self.transformer(latents)
|
||||
|
||||
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||
logits = self.geo_decoder(queries, latents).squeeze(-1)
|
||||
return logits
|
||||
|
||||
def forward(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: torch.FloatTensor,
|
||||
volume_queries: torch.FloatTensor,
|
||||
sample_posterior: bool = True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, C]
|
||||
volume_queries (torch.FloatTensor): [B, P, 3]
|
||||
sample_posterior (bool):
|
||||
|
||||
Returns:
|
||||
logits (torch.FloatTensor): [B, P]
|
||||
center_pos (torch.FloatTensor): [B, M, 3]
|
||||
posterior (DiagonalGaussianDistribution or None).
|
||||
|
||||
"""
|
||||
|
||||
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
||||
|
||||
latents = self.decode(latents)
|
||||
logits = self.query_geometry(volume_queries, latents)
|
||||
|
||||
return logits, center_pos, posterior
|
||||
|
||||
|
||||
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
|
||||
|
||||
def __init__(self, *,
|
||||
device: Optional[torch.device],
|
||||
dtype: Optional[torch.dtype],
|
||||
num_latents: int,
|
||||
point_feats: int = 0,
|
||||
embed_dim: int = 0,
|
||||
num_freqs: int = 8,
|
||||
include_pi: bool = True,
|
||||
width: int,
|
||||
heads: int,
|
||||
num_encoder_layers: int,
|
||||
num_decoder_layers: int,
|
||||
init_scale: float = 0.25,
|
||||
qkv_bias: bool = True,
|
||||
flash: bool = False,
|
||||
use_ln_post: bool = False,
|
||||
use_checkpoint: bool = False):
|
||||
|
||||
super().__init__(
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
num_latents=1 + num_latents,
|
||||
point_feats=point_feats,
|
||||
embed_dim=embed_dim,
|
||||
num_freqs=num_freqs,
|
||||
include_pi=include_pi,
|
||||
width=width,
|
||||
heads=heads,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
num_decoder_layers=num_decoder_layers,
|
||||
init_scale=init_scale,
|
||||
qkv_bias=qkv_bias,
|
||||
flash=flash,
|
||||
use_ln_post=use_ln_post,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
||||
self.width = width
|
||||
|
||||
def encode(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: Optional[torch.FloatTensor] = None,
|
||||
sample_posterior: bool = True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, c]
|
||||
sample_posterior (bool):
|
||||
|
||||
Returns:
|
||||
shape_embed (torch.FloatTensor)
|
||||
kl_embed (torch.FloatTensor):
|
||||
posterior (DiagonalGaussianDistribution or None):
|
||||
"""
|
||||
|
||||
shape_embed, latents = self.encode_latents(pc, feats)
|
||||
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
|
||||
|
||||
return shape_embed, kl_embed, posterior
|
||||
|
||||
def encode_latents(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: Optional[torch.FloatTensor] = None):
|
||||
|
||||
x, _ = self.encoder(pc, feats)
|
||||
|
||||
shape_embed = x[:, 0]
|
||||
latents = x[:, 1:]
|
||||
|
||||
return shape_embed, latents
|
||||
|
||||
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
|
||||
posterior = None
|
||||
if self.embed_dim > 0:
|
||||
moments = self.pre_kl(latents)
|
||||
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
||||
|
||||
if sample_posterior:
|
||||
kl_embed = posterior.sample()
|
||||
else:
|
||||
kl_embed = posterior.mode()
|
||||
else:
|
||||
kl_embed = latents
|
||||
|
||||
return kl_embed, posterior
|
||||
|
||||
def forward(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: torch.FloatTensor,
|
||||
volume_queries: torch.FloatTensor,
|
||||
sample_posterior: bool = True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc (torch.FloatTensor): [B, N, 3]
|
||||
feats (torch.FloatTensor or None): [B, N, C]
|
||||
volume_queries (torch.FloatTensor): [B, P, 3]
|
||||
sample_posterior (bool):
|
||||
|
||||
Returns:
|
||||
shape_embed (torch.FloatTensor): [B, projection_dim]
|
||||
logits (torch.FloatTensor): [B, M]
|
||||
posterior (DiagonalGaussianDistribution or None).
|
||||
|
||||
"""
|
||||
|
||||
shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
||||
|
||||
latents = self.decode(kl_embed)
|
||||
logits = self.query_geometry(volume_queries, latents)
|
||||
|
||||
return shape_embed, logits, posterior
|
|
@ -0,0 +1,290 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import List, Tuple, Dict, Optional
|
||||
from omegaconf import DictConfig
|
||||
|
||||
import torch
|
||||
from torch.optim import lr_scheduler
|
||||
import pytorch_lightning as pl
|
||||
from typing import Union
|
||||
from functools import partial
|
||||
|
||||
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
||||
|
||||
from .inference_utils import extract_geometry
|
||||
from .tsal_base import (
|
||||
ShapeAsLatentModule,
|
||||
Latent2MeshOutput,
|
||||
Point2MeshOutput
|
||||
)
|
||||
|
||||
|
||||
class ShapeAsLatentPLModule(pl.LightningModule):
|
||||
|
||||
def __init__(self, *,
|
||||
module_cfg,
|
||||
loss_cfg,
|
||||
optimizer_cfg: Optional[DictConfig] = None,
|
||||
ckpt_path: Optional[str] = None,
|
||||
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.sal: ShapeAsLatentModule = instantiate_from_config(module_cfg, device=None, dtype=None)
|
||||
|
||||
self.loss = instantiate_from_config(loss_cfg)
|
||||
|
||||
self.optimizer_cfg = optimizer_cfg
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
self.save_hyperparameters()
|
||||
|
||||
@property
|
||||
def latent_shape(self):
|
||||
return self.sal.latent_shape
|
||||
|
||||
@property
|
||||
def zero_rank(self):
|
||||
if self._trainer:
|
||||
zero_rank = self.trainer.local_rank == 0
|
||||
else:
|
||||
zero_rank = True
|
||||
|
||||
return zero_rank
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=()):
|
||||
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del state_dict[k]
|
||||
|
||||
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
def configure_optimizers(self) -> Tuple[List, List]:
|
||||
lr = self.learning_rate
|
||||
|
||||
# optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-4)]
|
||||
# optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||
|
||||
if self.optimizer_cfg is None:
|
||||
optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||
schedulers = []
|
||||
else:
|
||||
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=self.sal.parameters())
|
||||
scheduler_func = instantiate_from_config(
|
||||
self.optimizer_cfg.scheduler,
|
||||
max_decay_steps=self.trainer.max_steps,
|
||||
lr_max=lr
|
||||
)
|
||||
scheduler = {
|
||||
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1
|
||||
}
|
||||
optimizers = [optimizer]
|
||||
schedulers = [scheduler]
|
||||
|
||||
return optimizers, schedulers
|
||||
|
||||
def forward(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: torch.FloatTensor,
|
||||
volume_queries: torch.FloatTensor):
|
||||
|
||||
logits, center_pos, posterior = self.sal(pc, feats, volume_queries)
|
||||
|
||||
return posterior, logits
|
||||
|
||||
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
|
||||
|
||||
pc = surface[..., 0:3]
|
||||
feats = surface[..., 3:6]
|
||||
|
||||
latents, center_pos, posterior = self.sal.encode(
|
||||
pc=pc, feats=feats, sample_posterior=sample_posterior
|
||||
)
|
||||
|
||||
return latents
|
||||
|
||||
def decode(self,
|
||||
z_q,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||
|
||||
latents = self.sal.decode(z_q) # latents: [bs, num_latents, dim]
|
||||
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
|
||||
|
||||
return outputs
|
||||
|
||||
def training_step(self, batch: Dict[str, torch.FloatTensor],
|
||||
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
batch (dict): the batch sample, and it contains:
|
||||
- surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
|
||||
- geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
|
||||
|
||||
batch_idx (int):
|
||||
|
||||
optimizer_idx (int):
|
||||
|
||||
Returns:
|
||||
loss (torch.FloatTensor):
|
||||
|
||||
"""
|
||||
|
||||
pc = batch["surface"][..., 0:3]
|
||||
feats = batch["surface"][..., 3:]
|
||||
|
||||
volume_queries = batch["geo_points"][..., 0:3]
|
||||
volume_labels = batch["geo_points"][..., -1]
|
||||
|
||||
posterior, logits = self(
|
||||
pc=pc, feats=feats, volume_queries=volume_queries
|
||||
)
|
||||
aeloss, log_dict_ae = self.loss(posterior, logits, volume_labels, split="train")
|
||||
|
||||
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=logits.shape[0],
|
||||
sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return aeloss
|
||||
|
||||
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
|
||||
|
||||
pc = batch["surface"][..., 0:3]
|
||||
feats = batch["surface"][..., 3:]
|
||||
|
||||
volume_queries = batch["geo_points"][..., 0:3]
|
||||
volume_labels = batch["geo_points"][..., -1]
|
||||
|
||||
posterior, logits = self(
|
||||
pc=pc, feats=feats, volume_queries=volume_queries,
|
||||
)
|
||||
aeloss, log_dict_ae = self.loss(posterior, logits, volume_labels, split="val")
|
||||
|
||||
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=logits.shape[0],
|
||||
sync_dist=False, rank_zero_only=True)
|
||||
|
||||
return aeloss
|
||||
|
||||
def point2mesh(self,
|
||||
pc: torch.FloatTensor,
|
||||
feats: torch.FloatTensor,
|
||||
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[Point2MeshOutput]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
pc:
|
||||
feats:
|
||||
bounds:
|
||||
octree_depth:
|
||||
num_chunks:
|
||||
|
||||
Returns:
|
||||
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
||||
|
||||
"""
|
||||
|
||||
outputs = []
|
||||
|
||||
device = pc.device
|
||||
bs = pc.shape[0]
|
||||
|
||||
# 1. point encoder + latents transformer
|
||||
latents, center_pos, posterior = self.sal.encode(pc, feats)
|
||||
latents = self.sal.decode(latents) # latents: [bs, num_latents, dim]
|
||||
|
||||
geometric_func = partial(self.sal.query_geometry, latents=latents)
|
||||
|
||||
# 2. decode geometry
|
||||
mesh_v_f, has_surface = extract_geometry(
|
||||
geometric_func=geometric_func,
|
||||
device=device,
|
||||
batch_size=bs,
|
||||
bounds=bounds,
|
||||
octree_depth=octree_depth,
|
||||
num_chunks=num_chunks,
|
||||
disable=not self.zero_rank
|
||||
)
|
||||
|
||||
# 3. decode texture
|
||||
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||
if not is_surface:
|
||||
outputs.append(None)
|
||||
continue
|
||||
|
||||
out = Point2MeshOutput()
|
||||
out.mesh_v = mesh_v
|
||||
out.mesh_f = mesh_f
|
||||
out.pc = torch.cat([pc[i], feats[i]], dim=-1).cpu().numpy()
|
||||
|
||||
if center_pos is not None:
|
||||
out.center = center_pos[i].cpu().numpy()
|
||||
|
||||
outputs.append(out)
|
||||
|
||||
return outputs
|
||||
|
||||
def latent2mesh(self,
|
||||
latents: torch.FloatTensor,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||
octree_depth: int = 7,
|
||||
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||
|
||||
"""
|
||||
|
||||
Args:
|
||||
latents: [bs, num_latents, dim]
|
||||
bounds:
|
||||
octree_depth:
|
||||
num_chunks:
|
||||
|
||||
Returns:
|
||||
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
||||
|
||||
"""
|
||||
|
||||
outputs = []
|
||||
|
||||
geometric_func = partial(self.sal.query_geometry, latents=latents)
|
||||
|
||||
# 2. decode geometry
|
||||
device = latents.device
|
||||
mesh_v_f, has_surface = extract_geometry(
|
||||
geometric_func=geometric_func,
|
||||
device=device,
|
||||
batch_size=len(latents),
|
||||
bounds=bounds,
|
||||
octree_depth=octree_depth,
|
||||
num_chunks=num_chunks,
|
||||
disable=not self.zero_rank
|
||||
)
|
||||
|
||||
# 3. decode texture
|
||||
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||
if not is_surface:
|
||||
outputs.append(None)
|
||||
continue
|
||||
|
||||
out = Latent2MeshOutput()
|
||||
out.mesh_v = mesh_v
|
||||
out.mesh_f = mesh_f
|
||||
|
||||
outputs.append(out)
|
||||
|
||||
return outputs
|
|
@ -0,0 +1,120 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch.nn as nn
|
||||
from typing import Tuple, List, Optional
|
||||
|
||||
|
||||
class Point2MeshOutput(object):
|
||||
def __init__(self):
|
||||
self.mesh_v = None
|
||||
self.mesh_f = None
|
||||
self.center = None
|
||||
self.pc = None
|
||||
|
||||
|
||||
class Latent2MeshOutput(object):
|
||||
|
||||
def __init__(self):
|
||||
self.mesh_v = None
|
||||
self.mesh_f = None
|
||||
|
||||
|
||||
class AlignedMeshOutput(object):
|
||||
|
||||
def __init__(self):
|
||||
self.mesh_v = None
|
||||
self.mesh_f = None
|
||||
self.surface = None
|
||||
self.image = None
|
||||
self.text: Optional[str] = None
|
||||
self.shape_text_similarity: Optional[float] = None
|
||||
self.shape_image_similarity: Optional[float] = None
|
||||
|
||||
|
||||
class ShapeAsLatentPLModule(nn.Module):
|
||||
latent_shape: Tuple[int]
|
||||
|
||||
def encode(self, surface, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, z_q, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
||||
raise NotImplementedError
|
||||
|
||||
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ShapeAsLatentModule(nn.Module):
|
||||
latent_shape: Tuple[int, int]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def query_geometry(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class AlignedShapeAsLatentPLModule(nn.Module):
|
||||
latent_shape: Tuple[int]
|
||||
|
||||
def set_shape_model_only(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode(self, surface, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, z_q, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
||||
raise NotImplementedError
|
||||
|
||||
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class AlignedShapeAsLatentModule(nn.Module):
|
||||
shape_model: ShapeAsLatentModule
|
||||
latent_shape: Tuple[int, int]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
def set_shape_model_only(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_image_embed(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_text_embed(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_shape_embed(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TexturedShapeAsLatentModule(nn.Module):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def query_geometry(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def query_color(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
|
@ -0,0 +1,3 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .misc import instantiate_from_config
|
|
@ -0,0 +1,12 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def compute_psnr(x, y, data_range: float = 2, eps: float = 1e-7):
|
||||
|
||||
mse = torch.mean((x - y) ** 2)
|
||||
psnr = 10 * torch.log10(data_range / (mse + eps))
|
||||
|
||||
return psnr
|
||||
|
|
@ -0,0 +1,47 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import io
|
||||
import tarfile
|
||||
import json
|
||||
import numpy as np
|
||||
import numpy.lib.format
|
||||
|
||||
|
||||
def mkdir(path):
|
||||
os.makedirs(path, exist_ok=True)
|
||||
return path
|
||||
|
||||
|
||||
def npy_loads(data):
|
||||
stream = io.BytesIO(data)
|
||||
return np.lib.format.read_array(stream)
|
||||
|
||||
|
||||
def npz_loads(data):
|
||||
return np.load(io.BytesIO(data))
|
||||
|
||||
|
||||
def json_loads(data):
|
||||
return json.loads(data)
|
||||
|
||||
|
||||
def load_json(filepath):
|
||||
with open(filepath, "r") as f:
|
||||
data = json.load(f)
|
||||
return data
|
||||
|
||||
|
||||
def write_json(filepath, data):
|
||||
with open(filepath, "w") as f:
|
||||
json.dump(data, f, indent=2)
|
||||
|
||||
|
||||
def extract_tar(tar_path, tar_cache_folder):
|
||||
|
||||
with tarfile.open(tar_path, "r") as tar:
|
||||
tar.extractall(path=tar_cache_folder)
|
||||
|
||||
tar_uids = sorted(os.listdir(tar_cache_folder))
|
||||
print(f"extract tar: {tar_path} to {tar_cache_folder}")
|
||||
return tar_uids
|
|
@ -0,0 +1,83 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import importlib
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
return getattr(importlib.import_module(module, package=None), cls)
|
||||
|
||||
|
||||
def get_obj_from_config(config):
|
||||
if "target" not in config:
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
|
||||
return get_obj_from_str(config["target"])
|
||||
|
||||
|
||||
def instantiate_from_config(config, **kwargs):
|
||||
if "target" not in config:
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
|
||||
cls = get_obj_from_str(config["target"])
|
||||
|
||||
params = config.get("params", dict())
|
||||
# params.update(kwargs)
|
||||
# instance = cls(**params)
|
||||
kwargs.update(params)
|
||||
instance = cls(**kwargs)
|
||||
|
||||
return instance
|
||||
|
||||
|
||||
def is_dist_avail_and_initialized():
|
||||
if not dist.is_available():
|
||||
return False
|
||||
if not dist.is_initialized():
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_rank():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def all_gather_batch(tensors):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
"""
|
||||
# Queue the gathered tensors
|
||||
world_size = get_world_size()
|
||||
# There is no need for reduction in the single-proc case
|
||||
if world_size == 1:
|
||||
return tensors
|
||||
tensor_list = []
|
||||
output_tensor = []
|
||||
for tensor in tensors:
|
||||
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
|
||||
dist.all_gather(
|
||||
tensor_all,
|
||||
tensor,
|
||||
async_op=False # performance opt
|
||||
)
|
||||
|
||||
tensor_list.append(tensor_all)
|
||||
|
||||
for tensor_all in tensor_list:
|
||||
output_tensor.append(torch.cat(tensor_all, dim=0))
|
||||
return output_tensor
|
|
@ -0,0 +1 @@
|
|||
# -*- coding: utf-8 -*-
|
|
@ -0,0 +1,43 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Helper functions
|
||||
def get_colors(inp, colormap="viridis", normalize=True, vmin=None, vmax=None):
|
||||
colormap = plt.cm.get_cmap(colormap)
|
||||
if normalize:
|
||||
vmin = np.min(inp)
|
||||
vmax = np.max(inp)
|
||||
|
||||
norm = plt.Normalize(vmin, vmax)
|
||||
return colormap(norm(inp))[:, :3]
|
||||
|
||||
|
||||
def gen_checkers(n_checkers_x, n_checkers_y, width=256, height=256):
|
||||
# tex dims need to be power of two.
|
||||
array = np.ones((width, height, 3), dtype='float32')
|
||||
|
||||
# width in texels of each checker
|
||||
checker_w = width / n_checkers_x
|
||||
checker_h = height / n_checkers_y
|
||||
|
||||
for y in range(height):
|
||||
for x in range(width):
|
||||
color_key = int(x / checker_w) + int(y / checker_h)
|
||||
if color_key % 2 == 0:
|
||||
array[x, y, :] = [1., 0.874, 0.0]
|
||||
else:
|
||||
array[x, y, :] = [0., 0., 0.]
|
||||
return array
|
||||
|
||||
|
||||
def gen_circle(width=256, height=256):
|
||||
xx, yy = np.mgrid[:width, :height]
|
||||
circle = (xx - width / 2 + 0.5) ** 2 + (yy - height / 2 + 0.5) ** 2
|
||||
array = np.ones((width, height, 4), dtype='float32')
|
||||
array[:, :, 0] = (circle <= width)
|
||||
array[:, :, 1] = (circle <= width)
|
||||
array[:, :, 2] = (circle <= width)
|
||||
array[:, :, 3] = circle <= width
|
||||
return array
|
||||
|
|
@ -0,0 +1,49 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import io
|
||||
import base64
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def to_html_frame(content):
|
||||
|
||||
html_frame = f"""
|
||||
<html>
|
||||
<body>
|
||||
{content}
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
return html_frame
|
||||
|
||||
|
||||
def to_single_row_table(caption: str, content: str):
|
||||
|
||||
table_html = f"""
|
||||
<table border = "1">
|
||||
<caption>{caption}</caption>
|
||||
<tr>
|
||||
<td>{content}</td>
|
||||
</tr>
|
||||
</table>
|
||||
"""
|
||||
|
||||
return table_html
|
||||
|
||||
|
||||
def to_image_embed_tag(image: np.ndarray):
|
||||
|
||||
# Convert np.ndarray to bytes
|
||||
img = Image.fromarray(image)
|
||||
raw_bytes = io.BytesIO()
|
||||
img.save(raw_bytes, "PNG")
|
||||
|
||||
# Encode bytes to base64
|
||||
image_base64 = base64.b64encode(raw_bytes.getvalue()).decode("utf-8")
|
||||
|
||||
image_tag = f"""
|
||||
<img src="data:image/png;base64,{image_base64}" alt="Embedded Image">
|
||||
"""
|
||||
|
||||
return image_tag
|
|
@ -0,0 +1,534 @@
|
|||
import numpy as np
|
||||
from ipywidgets import embed
|
||||
import pythreejs as p3s
|
||||
import uuid
|
||||
|
||||
from .color_util import get_colors, gen_circle, gen_checkers
|
||||
|
||||
|
||||
EMBED_URL = "https://cdn.jsdelivr.net/npm/@jupyter-widgets/html-manager@1.0.1/dist/embed-amd.js"
|
||||
|
||||
|
||||
class PyThreeJSViewer(object):
|
||||
|
||||
def __init__(self, settings, render_mode="WEBSITE"):
|
||||
self.render_mode = render_mode
|
||||
self.__update_settings(settings)
|
||||
self._light = p3s.DirectionalLight(color='white', position=[0, 0, 1], intensity=0.6)
|
||||
self._light2 = p3s.AmbientLight(intensity=0.5)
|
||||
self._cam = p3s.PerspectiveCamera(position=[0, 0, 1], lookAt=[0, 0, 0], fov=self.__s["fov"],
|
||||
aspect=self.__s["width"] / self.__s["height"], children=[self._light])
|
||||
self._orbit = p3s.OrbitControls(controlling=self._cam)
|
||||
self._scene = p3s.Scene(children=[self._cam, self._light2], background=self.__s["background"]) # "#4c4c80"
|
||||
self._renderer = p3s.Renderer(camera=self._cam, scene=self._scene, controls=[self._orbit],
|
||||
width=self.__s["width"], height=self.__s["height"],
|
||||
antialias=self.__s["antialias"])
|
||||
|
||||
self.__objects = {}
|
||||
self.__cnt = 0
|
||||
|
||||
def jupyter_mode(self):
|
||||
self.render_mode = "JUPYTER"
|
||||
|
||||
def offline(self):
|
||||
self.render_mode = "OFFLINE"
|
||||
|
||||
def website(self):
|
||||
self.render_mode = "WEBSITE"
|
||||
|
||||
def __get_shading(self, shading):
|
||||
shad = {"flat": True, "wireframe": False, "wire_width": 0.03, "wire_color": "black",
|
||||
"side": 'DoubleSide', "colormap": "viridis", "normalize": [None, None],
|
||||
"bbox": False, "roughness": 0.5, "metalness": 0.25, "reflectivity": 1.0,
|
||||
"line_width": 1.0, "line_color": "black",
|
||||
"point_color": "red", "point_size": 0.01, "point_shape": "circle",
|
||||
"text_color": "red"
|
||||
}
|
||||
for k in shading:
|
||||
shad[k] = shading[k]
|
||||
return shad
|
||||
|
||||
def __update_settings(self, settings={}):
|
||||
sett = {"width": 600, "height": 600, "antialias": True, "scale": 1.5, "background": "#ffffff",
|
||||
"fov": 30}
|
||||
for k in settings:
|
||||
sett[k] = settings[k]
|
||||
self.__s = sett
|
||||
|
||||
def __add_object(self, obj, parent=None):
|
||||
if not parent: # Object is added to global scene and objects dict
|
||||
self.__objects[self.__cnt] = obj
|
||||
self.__cnt += 1
|
||||
self._scene.add(obj["mesh"])
|
||||
else: # Object is added to parent object and NOT to objects dict
|
||||
parent.add(obj["mesh"])
|
||||
|
||||
self.__update_view()
|
||||
|
||||
if self.render_mode == "JUPYTER":
|
||||
return self.__cnt - 1
|
||||
elif self.render_mode == "WEBSITE":
|
||||
return self
|
||||
|
||||
def __add_line_geometry(self, lines, shading, obj=None):
|
||||
lines = lines.astype("float32", copy=False)
|
||||
mi = np.min(lines, axis=0)
|
||||
ma = np.max(lines, axis=0)
|
||||
|
||||
geometry = p3s.LineSegmentsGeometry(positions=lines.reshape((-1, 2, 3)))
|
||||
material = p3s.LineMaterial(linewidth=shading["line_width"], color=shading["line_color"])
|
||||
# , vertexColors='VertexColors'),
|
||||
lines = p3s.LineSegments2(geometry=geometry, material=material) # type='LinePieces')
|
||||
line_obj = {"geometry": geometry, "mesh": lines, "material": material,
|
||||
"max": ma, "min": mi, "type": "Lines", "wireframe": None}
|
||||
|
||||
if obj:
|
||||
return self.__add_object(line_obj, obj), line_obj
|
||||
else:
|
||||
return self.__add_object(line_obj)
|
||||
|
||||
def __update_view(self):
|
||||
if len(self.__objects) == 0:
|
||||
return
|
||||
ma = np.zeros((len(self.__objects), 3))
|
||||
mi = np.zeros((len(self.__objects), 3))
|
||||
for r, obj in enumerate(self.__objects):
|
||||
ma[r] = self.__objects[obj]["max"]
|
||||
mi[r] = self.__objects[obj]["min"]
|
||||
ma = np.max(ma, axis=0)
|
||||
mi = np.min(mi, axis=0)
|
||||
diag = np.linalg.norm(ma - mi)
|
||||
mean = ((ma - mi) / 2 + mi).tolist()
|
||||
scale = self.__s["scale"] * (diag)
|
||||
self._orbit.target = mean
|
||||
self._cam.lookAt(mean)
|
||||
self._cam.position = [mean[0], mean[1], mean[2] + scale]
|
||||
self._light.position = [mean[0], mean[1], mean[2] + scale]
|
||||
|
||||
self._orbit.exec_three_obj_method('update')
|
||||
self._cam.exec_three_obj_method('updateProjectionMatrix')
|
||||
|
||||
def __get_bbox(self, v):
|
||||
m = np.min(v, axis=0)
|
||||
M = np.max(v, axis=0)
|
||||
|
||||
# Corners of the bounding box
|
||||
v_box = np.array([[m[0], m[1], m[2]], [M[0], m[1], m[2]], [M[0], M[1], m[2]], [m[0], M[1], m[2]],
|
||||
[m[0], m[1], M[2]], [M[0], m[1], M[2]], [M[0], M[1], M[2]], [m[0], M[1], M[2]]])
|
||||
|
||||
f_box = np.array([[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4],
|
||||
[0, 4], [1, 5], [2, 6], [7, 3]], dtype=np.uint32)
|
||||
return v_box, f_box
|
||||
|
||||
def __get_colors(self, v, f, c, sh):
|
||||
coloring = "VertexColors"
|
||||
if type(c) == np.ndarray and c.size == 3: # Single color
|
||||
colors = np.ones_like(v)
|
||||
colors[:, 0] = c[0]
|
||||
colors[:, 1] = c[1]
|
||||
colors[:, 2] = c[2]
|
||||
# print("Single colors")
|
||||
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[1] == 3: # Color values for
|
||||
if c.shape[0] == f.shape[0]: # faces
|
||||
colors = np.hstack([c, c, c]).reshape((-1, 3))
|
||||
coloring = "FaceColors"
|
||||
# print("Face color values")
|
||||
elif c.shape[0] == v.shape[0]: # vertices
|
||||
colors = c
|
||||
# print("Vertex color values")
|
||||
else: # Wrong size, fallback
|
||||
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
||||
colors = np.ones_like(v)
|
||||
colors[:, 0] = 1.0
|
||||
colors[:, 1] = 0.874
|
||||
colors[:, 2] = 0.0
|
||||
elif type(c) == np.ndarray and c.size == f.shape[0]: # Function values for faces
|
||||
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
||||
cc = get_colors(c, sh["colormap"], normalize=normalize,
|
||||
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
||||
# print(cc.shape)
|
||||
colors = np.hstack([cc, cc, cc]).reshape((-1, 3))
|
||||
coloring = "FaceColors"
|
||||
# print("Face function values")
|
||||
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function values for vertices
|
||||
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
||||
colors = get_colors(c, sh["colormap"], normalize=normalize,
|
||||
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
||||
# print("Vertex function values")
|
||||
|
||||
else:
|
||||
colors = np.ones_like(v)
|
||||
colors[:, 0] = 1.0
|
||||
colors[:, 1] = 0.874
|
||||
colors[:, 2] = 0.0
|
||||
|
||||
# No color
|
||||
if c is not None:
|
||||
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
||||
|
||||
return colors, coloring
|
||||
|
||||
def __get_point_colors(self, v, c, sh):
|
||||
v_color = True
|
||||
if c is None: # No color given, use global color
|
||||
# conv = mpl.colors.ColorConverter()
|
||||
colors = sh["point_color"] # np.array(conv.to_rgb(sh["point_color"]))
|
||||
v_color = False
|
||||
elif isinstance(c, str): # No color given, use global color
|
||||
# conv = mpl.colors.ColorConverter()
|
||||
colors = c # np.array(conv.to_rgb(c))
|
||||
v_color = False
|
||||
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] == 3:
|
||||
# Point color
|
||||
colors = c.astype("float32", copy=False)
|
||||
|
||||
elif isinstance(c, np.ndarray) and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] != 3:
|
||||
# Function values for vertices, but the colors are features
|
||||
c_norm = np.linalg.norm(c, ord=2, axis=-1)
|
||||
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
||||
colors = get_colors(c_norm, sh["colormap"], normalize=normalize,
|
||||
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
||||
colors = colors.astype("float32", copy=False)
|
||||
|
||||
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function color
|
||||
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
||||
colors = get_colors(c, sh["colormap"], normalize=normalize,
|
||||
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
||||
colors = colors.astype("float32", copy=False)
|
||||
# print("Vertex function values")
|
||||
|
||||
else:
|
||||
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
||||
colors = sh["point_color"]
|
||||
v_color = False
|
||||
|
||||
return colors, v_color
|
||||
|
||||
def add_mesh(self, v, f, c=None, uv=None, n=None, shading={}, texture_data=None, **kwargs):
|
||||
shading.update(kwargs)
|
||||
sh = self.__get_shading(shading)
|
||||
mesh_obj = {}
|
||||
|
||||
# it is a tet
|
||||
if v.shape[1] == 3 and f.shape[1] == 4:
|
||||
f_tmp = np.ndarray([f.shape[0] * 4, 3], dtype=f.dtype)
|
||||
for i in range(f.shape[0]):
|
||||
f_tmp[i * 4 + 0] = np.array([f[i][1], f[i][0], f[i][2]])
|
||||
f_tmp[i * 4 + 1] = np.array([f[i][0], f[i][1], f[i][3]])
|
||||
f_tmp[i * 4 + 2] = np.array([f[i][1], f[i][2], f[i][3]])
|
||||
f_tmp[i * 4 + 3] = np.array([f[i][2], f[i][0], f[i][3]])
|
||||
f = f_tmp
|
||||
|
||||
if v.shape[1] == 2:
|
||||
v = np.append(v, np.zeros([v.shape[0], 1]), 1)
|
||||
|
||||
# Type adjustment vertices
|
||||
v = v.astype("float32", copy=False)
|
||||
|
||||
# Color setup
|
||||
colors, coloring = self.__get_colors(v, f, c, sh)
|
||||
|
||||
# Type adjustment faces and colors
|
||||
c = colors.astype("float32", copy=False)
|
||||
|
||||
# Material and geometry setup
|
||||
ba_dict = {"color": p3s.BufferAttribute(c)}
|
||||
if coloring == "FaceColors":
|
||||
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
|
||||
for ii in range(f.shape[0]):
|
||||
# print(ii*3, f[ii])
|
||||
verts[ii * 3] = v[f[ii, 0]]
|
||||
verts[ii * 3 + 1] = v[f[ii, 1]]
|
||||
verts[ii * 3 + 2] = v[f[ii, 2]]
|
||||
v = verts
|
||||
else:
|
||||
f = f.astype("uint32", copy=False).ravel()
|
||||
ba_dict["index"] = p3s.BufferAttribute(f, normalized=False)
|
||||
|
||||
ba_dict["position"] = p3s.BufferAttribute(v, normalized=False)
|
||||
|
||||
if uv is not None:
|
||||
uv = (uv - np.min(uv)) / (np.max(uv) - np.min(uv))
|
||||
if texture_data is None:
|
||||
texture_data = gen_checkers(20, 20)
|
||||
tex = p3s.DataTexture(data=texture_data, format="RGBFormat", type="FloatType")
|
||||
material = p3s.MeshStandardMaterial(map=tex, reflectivity=sh["reflectivity"], side=sh["side"],
|
||||
roughness=sh["roughness"], metalness=sh["metalness"],
|
||||
flatShading=sh["flat"],
|
||||
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
|
||||
ba_dict["uv"] = p3s.BufferAttribute(uv.astype("float32", copy=False))
|
||||
else:
|
||||
material = p3s.MeshStandardMaterial(vertexColors=coloring, reflectivity=sh["reflectivity"],
|
||||
side=sh["side"], roughness=sh["roughness"], metalness=sh["metalness"],
|
||||
flatShading=sh["flat"],
|
||||
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
|
||||
|
||||
if type(n) != type(None) and coloring == "VertexColors": # TODO: properly handle normals for FaceColors as well
|
||||
ba_dict["normal"] = p3s.BufferAttribute(n.astype("float32", copy=False), normalized=True)
|
||||
|
||||
geometry = p3s.BufferGeometry(attributes=ba_dict)
|
||||
|
||||
if coloring == "VertexColors" and type(n) == type(None):
|
||||
geometry.exec_three_obj_method('computeVertexNormals')
|
||||
elif coloring == "FaceColors" and type(n) == type(None):
|
||||
geometry.exec_three_obj_method('computeFaceNormals')
|
||||
|
||||
# Mesh setup
|
||||
mesh = p3s.Mesh(geometry=geometry, material=material)
|
||||
|
||||
# Wireframe setup
|
||||
mesh_obj["wireframe"] = None
|
||||
if sh["wireframe"]:
|
||||
wf_geometry = p3s.WireframeGeometry(mesh.geometry) # WireframeGeometry
|
||||
wf_material = p3s.LineBasicMaterial(color=sh["wire_color"], linewidth=sh["wire_width"])
|
||||
wireframe = p3s.LineSegments(wf_geometry, wf_material)
|
||||
mesh.add(wireframe)
|
||||
mesh_obj["wireframe"] = wireframe
|
||||
|
||||
# Bounding box setup
|
||||
if sh["bbox"]:
|
||||
v_box, f_box = self.__get_bbox(v)
|
||||
_, bbox = self.add_edges(v_box, f_box, sh, mesh)
|
||||
mesh_obj["bbox"] = [bbox, v_box, f_box]
|
||||
|
||||
# Object setup
|
||||
mesh_obj["max"] = np.max(v, axis=0)
|
||||
mesh_obj["min"] = np.min(v, axis=0)
|
||||
mesh_obj["geometry"] = geometry
|
||||
mesh_obj["mesh"] = mesh
|
||||
mesh_obj["material"] = material
|
||||
mesh_obj["type"] = "Mesh"
|
||||
mesh_obj["shading"] = sh
|
||||
mesh_obj["coloring"] = coloring
|
||||
mesh_obj["arrays"] = [v, f, c] # TODO replays with proper storage or remove if not needed
|
||||
|
||||
return self.__add_object(mesh_obj)
|
||||
|
||||
def add_lines(self, beginning, ending, shading={}, obj=None, **kwargs):
|
||||
shading.update(kwargs)
|
||||
if len(beginning.shape) == 1:
|
||||
if len(beginning) == 2:
|
||||
beginning = np.array([[beginning[0], beginning[1], 0]])
|
||||
else:
|
||||
if beginning.shape[1] == 2:
|
||||
beginning = np.append(
|
||||
beginning, np.zeros([beginning.shape[0], 1]), 1)
|
||||
if len(ending.shape) == 1:
|
||||
if len(ending) == 2:
|
||||
ending = np.array([[ending[0], ending[1], 0]])
|
||||
else:
|
||||
if ending.shape[1] == 2:
|
||||
ending = np.append(
|
||||
ending, np.zeros([ending.shape[0], 1]), 1)
|
||||
|
||||
sh = self.__get_shading(shading)
|
||||
lines = np.hstack([beginning, ending])
|
||||
lines = lines.reshape((-1, 3))
|
||||
return self.__add_line_geometry(lines, sh, obj)
|
||||
|
||||
def add_edges(self, vertices, edges, shading={}, obj=None, **kwargs):
|
||||
shading.update(kwargs)
|
||||
if vertices.shape[1] == 2:
|
||||
vertices = np.append(
|
||||
vertices, np.zeros([vertices.shape[0], 1]), 1)
|
||||
sh = self.__get_shading(shading)
|
||||
lines = np.zeros((edges.size, 3))
|
||||
cnt = 0
|
||||
for e in edges:
|
||||
lines[cnt, :] = vertices[e[0]]
|
||||
lines[cnt + 1, :] = vertices[e[1]]
|
||||
cnt += 2
|
||||
return self.__add_line_geometry(lines, sh, obj)
|
||||
|
||||
def add_points(self, points, c=None, shading={}, obj=None, **kwargs):
|
||||
shading.update(kwargs)
|
||||
if len(points.shape) == 1:
|
||||
if len(points) == 2:
|
||||
points = np.array([[points[0], points[1], 0]])
|
||||
else:
|
||||
if points.shape[1] == 2:
|
||||
points = np.append(
|
||||
points, np.zeros([points.shape[0], 1]), 1)
|
||||
sh = self.__get_shading(shading)
|
||||
points = points.astype("float32", copy=False)
|
||||
mi = np.min(points, axis=0)
|
||||
ma = np.max(points, axis=0)
|
||||
|
||||
g_attributes = {"position": p3s.BufferAttribute(points, normalized=False)}
|
||||
m_attributes = {"size": sh["point_size"]}
|
||||
|
||||
if sh["point_shape"] == "circle": # Plot circles
|
||||
tex = p3s.DataTexture(data=gen_circle(16, 16), format="RGBAFormat", type="FloatType")
|
||||
m_attributes["map"] = tex
|
||||
m_attributes["alphaTest"] = 0.5
|
||||
m_attributes["transparency"] = True
|
||||
else: # Plot squares
|
||||
pass
|
||||
|
||||
colors, v_colors = self.__get_point_colors(points, c, sh)
|
||||
if v_colors: # Colors per point
|
||||
m_attributes["vertexColors"] = 'VertexColors'
|
||||
g_attributes["color"] = p3s.BufferAttribute(colors, normalized=False)
|
||||
|
||||
else: # Colors for all points
|
||||
m_attributes["color"] = colors
|
||||
|
||||
material = p3s.PointsMaterial(**m_attributes)
|
||||
geometry = p3s.BufferGeometry(attributes=g_attributes)
|
||||
points = p3s.Points(geometry=geometry, material=material)
|
||||
point_obj = {"geometry": geometry, "mesh": points, "material": material,
|
||||
"max": ma, "min": mi, "type": "Points", "wireframe": None}
|
||||
|
||||
if obj:
|
||||
return self.__add_object(point_obj, obj), point_obj
|
||||
else:
|
||||
return self.__add_object(point_obj)
|
||||
|
||||
def remove_object(self, obj_id):
|
||||
if obj_id not in self.__objects:
|
||||
print("Invalid object id. Valid ids are: ", list(self.__objects.keys()))
|
||||
return
|
||||
self._scene.remove(self.__objects[obj_id]["mesh"])
|
||||
del self.__objects[obj_id]
|
||||
self.__update_view()
|
||||
|
||||
def reset(self):
|
||||
for obj_id in list(self.__objects.keys()).copy():
|
||||
self._scene.remove(self.__objects[obj_id]["mesh"])
|
||||
del self.__objects[obj_id]
|
||||
self.__update_view()
|
||||
|
||||
def update_object(self, oid=0, vertices=None, colors=None, faces=None):
|
||||
obj = self.__objects[oid]
|
||||
if type(vertices) != type(None):
|
||||
if obj["coloring"] == "FaceColors":
|
||||
f = obj["arrays"][1]
|
||||
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
|
||||
for ii in range(f.shape[0]):
|
||||
# print(ii*3, f[ii])
|
||||
verts[ii * 3] = vertices[f[ii, 0]]
|
||||
verts[ii * 3 + 1] = vertices[f[ii, 1]]
|
||||
verts[ii * 3 + 2] = vertices[f[ii, 2]]
|
||||
v = verts
|
||||
|
||||
else:
|
||||
v = vertices.astype("float32", copy=False)
|
||||
obj["geometry"].attributes["position"].array = v
|
||||
# self.wireframe.attributes["position"].array = v # Wireframe updates?
|
||||
obj["geometry"].attributes["position"].needsUpdate = True
|
||||
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
|
||||
if type(colors) != type(None):
|
||||
colors, coloring = self.__get_colors(obj["arrays"][0], obj["arrays"][1], colors, obj["shading"])
|
||||
colors = colors.astype("float32", copy=False)
|
||||
obj["geometry"].attributes["color"].array = colors
|
||||
obj["geometry"].attributes["color"].needsUpdate = True
|
||||
if type(faces) != type(None):
|
||||
if obj["coloring"] == "FaceColors":
|
||||
print("Face updates are currently only possible in vertex color mode.")
|
||||
return
|
||||
f = faces.astype("uint32", copy=False).ravel()
|
||||
print(obj["geometry"].attributes)
|
||||
obj["geometry"].attributes["index"].array = f
|
||||
# self.wireframe.attributes["position"].array = v # Wireframe updates?
|
||||
obj["geometry"].attributes["index"].needsUpdate = True
|
||||
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
|
||||
# self.mesh.geometry.verticesNeedUpdate = True
|
||||
# self.mesh.geometry.elementsNeedUpdate = True
|
||||
# self.update()
|
||||
if self.render_mode == "WEBSITE":
|
||||
return self
|
||||
|
||||
# def update(self):
|
||||
# self.mesh.exec_three_obj_method('update')
|
||||
# self.orbit.exec_three_obj_method('update')
|
||||
# self.cam.exec_three_obj_method('updateProjectionMatrix')
|
||||
# self.scene.exec_three_obj_method('update')
|
||||
|
||||
def add_text(self, text, shading={}, **kwargs):
|
||||
shading.update(kwargs)
|
||||
sh = self.__get_shading(shading)
|
||||
tt = p3s.TextTexture(string=text, color=sh["text_color"])
|
||||
sm = p3s.SpriteMaterial(map=tt)
|
||||
text = p3s.Sprite(material=sm, scaleToTexture=True)
|
||||
self._scene.add(text)
|
||||
|
||||
# def add_widget(self, widget, callback):
|
||||
# self.widgets.append(widget)
|
||||
# widget.observe(callback, names='value')
|
||||
|
||||
# def add_dropdown(self, options, default, desc, cb):
|
||||
# widget = widgets.Dropdown(options=options, value=default, description=desc)
|
||||
# self.__widgets.append(widget)
|
||||
# widget.observe(cb, names="value")
|
||||
# display(widget)
|
||||
|
||||
# def add_button(self, text, cb):
|
||||
# button = widgets.Button(description=text)
|
||||
# self.__widgets.append(button)
|
||||
# button.on_click(cb)
|
||||
# display(button)
|
||||
|
||||
def to_html(self, imports=True, html_frame=True):
|
||||
# Bake positions (fixes centering bug in offline rendering)
|
||||
if len(self.__objects) == 0:
|
||||
return
|
||||
ma = np.zeros((len(self.__objects), 3))
|
||||
mi = np.zeros((len(self.__objects), 3))
|
||||
for r, obj in enumerate(self.__objects):
|
||||
ma[r] = self.__objects[obj]["max"]
|
||||
mi[r] = self.__objects[obj]["min"]
|
||||
ma = np.max(ma, axis=0)
|
||||
mi = np.min(mi, axis=0)
|
||||
diag = np.linalg.norm(ma - mi)
|
||||
mean = (ma - mi) / 2 + mi
|
||||
for r, obj in enumerate(self.__objects):
|
||||
v = self.__objects[obj]["geometry"].attributes["position"].array
|
||||
v -= mean
|
||||
v += np.array([0.0, .9, 0.0]) #! to move the obj to the center of window
|
||||
|
||||
scale = self.__s["scale"] * (diag)
|
||||
self._orbit.target = [0.0, 0.0, 0.0]
|
||||
self._cam.lookAt([0.0, 0.0, 0.0])
|
||||
# self._cam.position = [0.0, 0.0, scale]
|
||||
self._cam.position = [0.0, 0.5, scale * 1.3] #! show four complete meshes in the window
|
||||
self._light.position = [0.0, 0.0, scale]
|
||||
|
||||
state = embed.dependency_state(self._renderer)
|
||||
|
||||
# Somehow these entries are missing when the state is exported in python.
|
||||
# Exporting from the GUI works, so we are inserting the missing entries.
|
||||
for k in state:
|
||||
if state[k]["model_name"] == "OrbitControlsModel":
|
||||
state[k]["state"]["maxAzimuthAngle"] = "inf"
|
||||
state[k]["state"]["maxDistance"] = "inf"
|
||||
state[k]["state"]["maxZoom"] = "inf"
|
||||
state[k]["state"]["minAzimuthAngle"] = "-inf"
|
||||
|
||||
tpl = embed.load_requirejs_template
|
||||
if not imports:
|
||||
embed.load_requirejs_template = ""
|
||||
|
||||
s = embed.embed_snippet(self._renderer, state=state, embed_url=EMBED_URL)
|
||||
# s = embed.embed_snippet(self.__w, state=state)
|
||||
embed.load_requirejs_template = tpl
|
||||
|
||||
if html_frame:
|
||||
s = "<html>\n<body>\n" + s + "\n</body>\n</html>"
|
||||
|
||||
# Revert changes
|
||||
for r, obj in enumerate(self.__objects):
|
||||
v = self.__objects[obj]["geometry"].attributes["position"].array
|
||||
v += mean
|
||||
self.__update_view()
|
||||
|
||||
return s
|
||||
|
||||
def save(self, filename=""):
|
||||
if filename == "":
|
||||
uid = str(uuid.uuid4()) + ".html"
|
||||
else:
|
||||
filename = filename.replace(".html", "")
|
||||
uid = filename + '.html'
|
||||
with open(uid, "w") as f:
|
||||
f.write(self.to_html())
|
||||
print("Plot saved to file %s." % uid)
|
|
@ -0,0 +1,46 @@
|
|||
model:
|
||||
target: MeshAnything.miche.michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
||||
params:
|
||||
shape_module_cfg:
|
||||
target: MeshAnything.miche.michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
||||
params:
|
||||
num_latents: 256
|
||||
embed_dim: 64
|
||||
point_feats: 3 # normal
|
||||
num_freqs: 8
|
||||
include_pi: false
|
||||
heads: 12
|
||||
width: 768
|
||||
num_encoder_layers: 8
|
||||
num_decoder_layers: 16
|
||||
use_ln_post: true
|
||||
init_scale: 0.25
|
||||
qkv_bias: false
|
||||
use_checkpoint: true
|
||||
aligned_module_cfg:
|
||||
target: MeshAnything.miche.michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
||||
params:
|
||||
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
||||
|
||||
loss_cfg:
|
||||
target: MeshAnything.miche.michelangelo.models.tsal.loss.ContrastKLNearFar
|
||||
params:
|
||||
contrast_weight: 0.1
|
||||
near_weight: 0.1
|
||||
kl_weight: 0.001
|
||||
|
||||
optimizer_cfg:
|
||||
optimizer:
|
||||
target: torch.optim.AdamW
|
||||
params:
|
||||
betas: [0.9, 0.99]
|
||||
eps: 1.e-6
|
||||
weight_decay: 1.e-2
|
||||
|
||||
scheduler:
|
||||
target: MeshAnything.miche.michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
||||
params:
|
||||
warm_up_steps: 5000
|
||||
f_start: 1.e-6
|
||||
f_min: 1.e-3
|
||||
f_max: 1.0
|
|
@ -0,0 +1,223 @@
|
|||
import torch
|
||||
from torch import nn, Tensor
|
||||
from transformers import AutoModelForCausalLM, AutoConfig, AutoModel
|
||||
from MeshAnything.miche.encode import load_model
|
||||
from MeshAnything.models.shape_opt import ShapeOPTConfig
|
||||
from einops.layers.torch import Rearrange
|
||||
from einops import rearrange, repeat, reduce, pack, unpack
|
||||
import torch.nn.functional as F
|
||||
|
||||
class NoiseResistantDecoder(nn.Module):
|
||||
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.pad_id = -1
|
||||
self.num_quantizers = 3
|
||||
|
||||
self.discrete_num = 128
|
||||
self.codebook_size = args.codebook_size
|
||||
self.codebook_dim = args.codebook_dim
|
||||
|
||||
config = AutoConfig.from_pretrained("bert-base-uncased")
|
||||
config.num_hidden_layers = 6
|
||||
self.decoder= AutoModel.from_config(config=config).to_bettertransformer().encoder
|
||||
self.n_embd = self.decoder.config.hidden_size
|
||||
|
||||
self.pos_embedding = nn.Embedding(18000, self.n_embd)
|
||||
self.layernorm = nn.LayerNorm(self.n_embd)
|
||||
self.point_layernorm = nn.LayerNorm(self.n_embd)
|
||||
|
||||
self.cond_length = 257
|
||||
self.cond_dim = 768
|
||||
self.point_pe = nn.Embedding(self.cond_length, self.n_embd)
|
||||
self.cond_proj = nn.Linear(self.cond_dim, self.n_embd)
|
||||
self.cond_head_proj = nn.Linear(self.cond_dim, self.n_embd)
|
||||
|
||||
self.project_down_codebook = nn.Linear(self.codebook_dim * 3, self.n_embd)
|
||||
self.to_coor_logits = nn.Sequential(
|
||||
nn.Linear(self.n_embd, self.discrete_num * 9),
|
||||
Rearrange('... (v c) -> ... v c', v = 9)
|
||||
)
|
||||
def process_point_feature(self, encode_feature):
|
||||
point_feature = torch.zeros(encode_feature.shape[0], self.cond_length, self.n_embd, device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
|
||||
point_feature[:, 0] = self.cond_head_proj(encode_feature[:, 0])
|
||||
point_feature[:, 1:] = self.cond_proj(encode_feature[:, 1:])
|
||||
|
||||
point_feature = self.point_layernorm(point_feature + self.point_pe.weight[None, :point_feature.shape[1]])
|
||||
return point_feature
|
||||
|
||||
def forward(self, input_ids, input_embeds, point_feature = None):
|
||||
input_ids = input_ids.reshape(input_ids.shape[0], -1)
|
||||
point_feature = self.process_point_feature(point_feature)
|
||||
|
||||
face_embeds = rearrange(input_embeds, 'b (nf nv) d -> b nf (nv d)', nv = 3)
|
||||
face_embeds = self.project_down_codebook(face_embeds)
|
||||
|
||||
face_mask = reduce(input_ids != self.pad_id, 'b (nf nv q) -> b nf', 'all', nv = 3, q = self.num_quantizers)
|
||||
face_embeds[~face_mask] = 0
|
||||
|
||||
face_embeds = self.layernorm(face_embeds + self.pos_embedding.weight[None, :face_embeds.shape[1]])
|
||||
|
||||
outputs = self.decoder(
|
||||
hidden_states=torch.concatenate([point_feature, face_embeds], dim=1),
|
||||
)
|
||||
decoded = outputs.last_hidden_state[:, self.cond_length:] # batch x nfaces x dim
|
||||
decoded = decoded.masked_fill(~face_mask.unsqueeze(-1), 0.)
|
||||
|
||||
# batch x nfaces x 9 -> batch x nfaces x 3 x 3
|
||||
pred_face_logits = self.to_coor_logits(decoded) # batch x nfaces x 9 x ndiscrete
|
||||
pred_face_coords = rearrange(pred_face_logits.argmax(dim = -1), '... (v c) -> ... v c', v = 3)
|
||||
|
||||
continuous_coors = undiscretize(
|
||||
pred_face_coords,
|
||||
num_discrete = self.discrete_num,
|
||||
low = -0.5,
|
||||
high = 0.5
|
||||
)
|
||||
continuous_coors = continuous_coors.masked_fill(~rearrange(face_mask, 'b nf -> b nf 1 1'), float('nan'))
|
||||
|
||||
return continuous_coors
|
||||
|
||||
class MeshAnything(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.point_encoder = load_model(ckpt_path=None)
|
||||
self.tokenizer = NoiseResistantDecoder(args)
|
||||
|
||||
self.num_quantizers = 3
|
||||
self.face_per_token = self.num_quantizers * 3
|
||||
self.cond_length = 257
|
||||
self.cond_dim = 768
|
||||
self.max_length = args.n_max_triangles * self.face_per_token + 2 + self.cond_length
|
||||
|
||||
self.config = ShapeOPTConfig.from_pretrained(
|
||||
args.llm,
|
||||
n_positions=18259,
|
||||
max_position_embeddings=18259,
|
||||
vocab_size=self.tokenizer.codebook_size + 3,
|
||||
_attn_implementation="flash_attention_2"
|
||||
)
|
||||
self.bos_token_id = 0
|
||||
self.eos_token_id = 1
|
||||
self.pad_token_id = 2
|
||||
self.config.bos_token_id = self.bos_token_id
|
||||
self.config.eos_token_id = self.eos_token_id
|
||||
self.config.pad_token_id = self.pad_token_id
|
||||
self.config.quantize_codebook_dim = self.tokenizer.codebook_dim
|
||||
self.config.face_per_token = self.face_per_token
|
||||
self.config._attn_implementation="flash_attention_2"
|
||||
self.config.cond_length = self.cond_length
|
||||
if self.config.word_embed_proj_dim != self.config.hidden_size:
|
||||
self.config.word_embed_proj_dim = self.config.hidden_size
|
||||
self.transformer = AutoModelForCausalLM.from_config(
|
||||
config=self.config, use_flash_attention_2 = True
|
||||
)
|
||||
self.transformer.to_bettertransformer()
|
||||
self.transformer.model.decoder.quantize_codebooks = nn.Parameter(torch.zeros(1, self.tokenizer.codebook_size, self.tokenizer.codebook_dim))
|
||||
|
||||
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
|
||||
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
|
||||
|
||||
self.eval()
|
||||
|
||||
def process_point_feature(self, point_feature):
|
||||
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
|
||||
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
|
||||
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
|
||||
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
|
||||
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
|
||||
|
||||
return encode_feature
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, pc_normal, sampling=False) -> dict:
|
||||
batch_size = pc_normal.shape[0]
|
||||
point_feature = self.point_encoder.encode_latents(pc_normal)
|
||||
processed_point_feature = self.process_point_feature(point_feature)
|
||||
|
||||
generate_length = self.max_length - self.cond_length
|
||||
net_device = next(self.parameters()).device
|
||||
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
|
||||
if not sampling:
|
||||
results = self.transformer.generate(
|
||||
inputs_embeds=processed_point_feature,
|
||||
max_new_tokens=generate_length, # all faces plus two
|
||||
num_beams=1,
|
||||
bos_token_id=self.bos_token_id,
|
||||
eos_token_id=self.eos_token_id,
|
||||
pad_token_id=self.pad_token_id,
|
||||
)
|
||||
else:
|
||||
results = self.transformer.generate(
|
||||
inputs_embeds = processed_point_feature,
|
||||
max_new_tokens=generate_length, # all faces plus two
|
||||
do_sample=True,
|
||||
top_k=50,
|
||||
top_p=0.95,
|
||||
bos_token_id = self.bos_token_id,
|
||||
eos_token_id = self.eos_token_id,
|
||||
pad_token_id = self.pad_token_id,
|
||||
)
|
||||
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
|
||||
outputs[:, :results.shape[1]] = results
|
||||
# batch x ntokens ====> batch x ntokens x D
|
||||
outputs = outputs[:, 1: -1]
|
||||
|
||||
outputs[outputs == self.bos_token_id] = self.tokenizer.pad_id
|
||||
outputs[outputs == self.eos_token_id] = self.tokenizer.pad_id
|
||||
outputs[outputs == self.pad_token_id] = self.tokenizer.pad_id
|
||||
|
||||
outputs[outputs != self.tokenizer.pad_id] -= 3
|
||||
code_embed = self.get_codes(outputs)
|
||||
decoder_output = self.tokenizer(outputs, code_embed, point_feature=point_feature)
|
||||
|
||||
return decoder_output
|
||||
|
||||
def get_codes(self, indices):
|
||||
indices = indices.reshape(indices.shape[0], -1)
|
||||
|
||||
indices = rearrange(indices, 'b (n q) -> b n q', q=self.num_quantizers)
|
||||
|
||||
batch, quantize_dim = indices.shape[0], indices.shape[-1]
|
||||
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
|
||||
|
||||
indices, ps = pack([indices], 'b * q')
|
||||
|
||||
# because of quantize dropout, one can pass in indices that are coarse
|
||||
# and the network should be able to reconstruct
|
||||
|
||||
if quantize_dim < self.num_quantizers:
|
||||
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value = -1)
|
||||
|
||||
# take care of quantizer dropout
|
||||
|
||||
mask = indices == -1.
|
||||
indices = indices.masked_fill(mask, 0) # have it fetch a dummy code to be masked out later
|
||||
|
||||
# dummy implementation for shared codebook
|
||||
all_codes = self.transformer.model.decoder.quantize_codebooks[0][indices]
|
||||
all_codes = all_codes.permute(2, 0, 1, 3)
|
||||
|
||||
# mask out any codes that were dropout-ed
|
||||
|
||||
all_codes = all_codes.masked_fill(rearrange(mask, 'b n q -> q b n 1'), 0.)
|
||||
|
||||
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
|
||||
|
||||
codes, = unpack(all_codes, ps, 'q b * d')
|
||||
|
||||
codes_summed = reduce(codes, 'q ... -> ...', 'sum')
|
||||
return codes_summed
|
||||
|
||||
def undiscretize(
|
||||
t,
|
||||
low,
|
||||
high,
|
||||
num_discrete
|
||||
) -> Tensor:
|
||||
t = t.float()
|
||||
|
||||
t /= num_discrete
|
||||
return t * (high - low) + low
|
|
@ -0,0 +1,464 @@
|
|||
from transformers import AutoModelForCausalLM, AutoConfig, OPTConfig
|
||||
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTModel, OPTDecoder, OPTLearnedPositionalEmbedding, OPTDecoderLayer
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from einops import repeat
|
||||
from transformers.modeling_outputs import (
|
||||
CausalLMOutputWithPast,
|
||||
)
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers.utils import replace_return_docstrings, logging
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
# from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
||||
|
||||
class ShapeOPTConfig(OPTConfig):
|
||||
model_type = "shape_opt"
|
||||
|
||||
class ShapeOPT(OPTForCausalLM):
|
||||
config_class = ShapeOPTConfig
|
||||
def __init__(self, config: ShapeOPTConfig):
|
||||
super(OPTForCausalLM, self).__init__(config)
|
||||
self.model = ShapeOPTModel(config)
|
||||
|
||||
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def tie_weights(self):
|
||||
"""
|
||||
Tie the weights between the input embeddings and the output embeddings.
|
||||
|
||||
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
|
||||
weights instead.
|
||||
"""
|
||||
if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
|
||||
if hasattr(self, self.base_model_prefix):
|
||||
self = getattr(self, self.base_model_prefix)
|
||||
self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
|
||||
|
||||
for module in self.modules():
|
||||
if hasattr(module, "_tie_weights"):
|
||||
module._tie_weights()
|
||||
|
||||
|
||||
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
face_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
||||
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
||||
|
||||
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
|
||||
```"""
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model.decoder(
|
||||
input_ids=input_ids,
|
||||
face_ids = face_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
logits = self.lm_head(outputs[0]).contiguous()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
class ShapeOPTModel(OPTModel):
|
||||
config_class = ShapeOPTConfig
|
||||
def __init__(self, config: ShapeOPTConfig):
|
||||
super(OPTModel,self).__init__(config)
|
||||
self.decoder = ShapeOPTDecoder(config)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
class ShapeOPTDecoder(OPTDecoder):
|
||||
config_class = ShapeOPTConfig
|
||||
def __init__(self, config: ShapeOPTConfig):
|
||||
super(OPTDecoder,self).__init__(config)
|
||||
self.config = config
|
||||
self.dropout = config.dropout
|
||||
self.layerdrop = config.layerdrop
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.max_target_positions = config.max_position_embeddings
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) # not used
|
||||
self.hidden_size = config.hidden_size
|
||||
self.word_embed_proj_dim = config.word_embed_proj_dim
|
||||
self.extra_embeds = nn.Embedding(3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
|
||||
self.input_layer = nn.Linear(config.quantize_codebook_dim, config.word_embed_proj_dim)
|
||||
|
||||
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
||||
self.token_embed_positions = OPTFacePositionalEmbedding(config.face_per_token + 3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
|
||||
self.face_per_token = config.face_per_token
|
||||
self.cond_length = config.cond_length
|
||||
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
|
||||
|
||||
if config.word_embed_proj_dim != config.hidden_size:
|
||||
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
||||
else:
|
||||
self.project_out = None
|
||||
|
||||
if config.word_embed_proj_dim != config.hidden_size:
|
||||
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
||||
else:
|
||||
self.project_in = None
|
||||
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
||||
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
||||
# see https://github.com/facebookresearch/metaseq/pull/164
|
||||
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
||||
self.final_layer_norm = nn.LayerNorm(
|
||||
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
||||
)
|
||||
else:
|
||||
self.final_layer_norm = None
|
||||
|
||||
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def embed_with_vae(self, input_ids):
|
||||
inputs_embeds = repeat(torch.zeros(input_ids.shape, device=input_ids.device), 'b n -> b n d',
|
||||
d=self.word_embed_proj_dim).clone().detach()
|
||||
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
||||
inputs_embeds[idx_in_extra] += self.extra_embeds(input_ids[idx_in_extra])
|
||||
self.quantize_codebooks = self.quantize_codebooks.to(input_ids.device)
|
||||
inputs_embeds[~idx_in_extra] += self.input_layer(self.quantize_codebooks[0][input_ids[~idx_in_extra] - 3])
|
||||
|
||||
return inputs_embeds
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
face_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
# OPT Decoder
|
||||
# print("used my Trans")
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
# Transformer Decoder
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
inputs_embeds = self.embed_with_vae(input_ids) # nothing to do with position
|
||||
|
||||
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
|
||||
self.face_per_token)
|
||||
inputs_embeds += face_embeds
|
||||
cond_embed_query = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=inputs_embeds.device,
|
||||
dtype=inputs_embeds.dtype).long()
|
||||
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
|
||||
|
||||
elif inputs_embeds is not None:
|
||||
# assert self.cond and not self.training
|
||||
|
||||
total_length = inputs_embeds.shape[1] # B x length x embeding
|
||||
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
|
||||
dtype=inputs_embeds.dtype).long()
|
||||
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
batch_size, seq_length = inputs_embeds.shape[:2] # seq_length not used since mask_seq_length is not used
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values_length + seq_length # not used since attention mask is input
|
||||
|
||||
# embed positions
|
||||
if self._use_flash_attention_2:
|
||||
# 2d mask is passed through the layers
|
||||
assert attention_mask is not None
|
||||
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
||||
attention_mask = (
|
||||
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
||||
if attention_mask is None
|
||||
else attention_mask
|
||||
)
|
||||
else:
|
||||
raise ValueError("Only flash_attention_2 is supported in MeshAnything")
|
||||
|
||||
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
||||
|
||||
if self.project_in is not None:
|
||||
inputs_embeds = self.project_in(inputs_embeds)
|
||||
|
||||
hidden_states = inputs_embeds + pos_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size()[0] != (len(self.layers)):
|
||||
raise ValueError(
|
||||
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}."
|
||||
)
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.training:
|
||||
dropout_probability = torch.rand([])
|
||||
if dropout_probability < self.layerdrop:
|
||||
continue
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
causal_attention_mask,
|
||||
head_mask[idx] if head_mask is not None else None,
|
||||
None,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if self.final_layer_norm is not None:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
|
||||
if self.project_out is not None:
|
||||
hidden_states = self.project_out(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
class OPTFacePositionalEmbedding(nn.Embedding):
|
||||
"""
|
||||
This module learns positional embeddings up to a fixed maximum size.
|
||||
"""
|
||||
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int):
|
||||
super().__init__(num_embeddings, embedding_dim)
|
||||
|
||||
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
|
||||
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
||||
if face_ids is not None:
|
||||
return super().forward(face_ids)
|
||||
|
||||
assert input_ids.shape[1] == 1
|
||||
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
||||
cur_ids = input_ids.clone().detach()
|
||||
|
||||
cur_index = (attention_mask.sum(dim=1, keepdim=True) - 2) % face_per_token + 3
|
||||
cur_ids[~idx_in_extra]=cur_index[~idx_in_extra]
|
||||
|
||||
return super().forward(cur_ids)
|
||||
|
||||
|
||||
AutoConfig.register("shape_opt", ShapeOPTConfig)
|
||||
AutoModelForCausalLM.register(ShapeOPTConfig, ShapeOPT)
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
<p align="center">
|
||||
<h3 align="center"><strong>MeshAnything:<br> Artist-Created Mesh Generation<br> with Autoregressive Transformers</strong></h3>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://buaacyw.github.io/">Yiwen Chen</a><sup>1,2*</sup>,
|
||||
<a href="https://tonghe90.github.io/">Tong He</a><sup>2†</sup>,
|
||||
<a href="https://dihuang.me/">Di Huang</a><sup>2</sup>,
|
||||
<a href="https://ywcmaike.github.io/">Weicai Ye</a><sup>2</sup>,
|
||||
<a href="https://ch3cook-fdu.github.io/">Sijin Chen</a><sup>3</sup>,
|
||||
<a href="https://me.kiui.moe/">Jiaxiang Tang</a><sup>4</sup><br>
|
||||
<a href="https://chenxin.tech/">Xin Chen</a><sup>5</sup>,
|
||||
<a href="https://caizhongang.github.io/">Zhongang Cai</a><sup>6</sup>,
|
||||
<a href="https://scholar.google.com.hk/citations?user=jZH2IPYAAAAJ&hl=en">Lei Yang</a><sup>6</sup>,
|
||||
<a href="https://www.skicyyu.org/">Gang Yu</a><sup>7</sup>,
|
||||
<a href="https://guosheng.github.io/">Guosheng Lin</a><sup>1†</sup>,
|
||||
<a href="https://icoz69.github.io/">Chi Zhang</a><sup>8†</sup>
|
||||
<br>
|
||||
<sup>*</sup>Work done during a research internship at Shanghai AI Lab.
|
||||
<br>
|
||||
<sup>†</sup>Corresponding authors.
|
||||
<br>
|
||||
<sup>1</sup>S-Lab, Nanyang Technological University,
|
||||
<sup>2</sup>Shanghai AI Lab,
|
||||
<br>
|
||||
<sup>3</sup>Fudan University,
|
||||
<sup>4</sup>Peking University,
|
||||
<sup>5</sup>University of Chinese Academy of Sciences,
|
||||
<br>
|
||||
<sup>6</sup>SenseTime Research,
|
||||
<sup>7</sup>Stepfun,
|
||||
<sup>8</sup>Westlake University
|
||||
</p>
|
||||
|
||||
|
||||
<div align="center">
|
||||
|
||||
<a href='https://arxiv.org/abs/2311.14521'><img src='https://img.shields.io/badge/arXiv-2311.14521-b31b1b.svg'></a>
|
||||
<a href='https://buaacyw.github.io/mesh-anything/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
||||
<a href='https://github.com/buaacyw/MeshAnything/blob/master/LICENSE.txt'><img src='https://img.shields.io/badge/License-SLab-blue'></a>
|
||||
<a href="https://huggingface.co/spaces/Yiwen-ntu/MeshAnything"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-Huggingface-orange"></a>;
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<p align="center">
|
||||
<img src="demo/demo_video.gif" alt="Demo GIF" width="1000px" />
|
||||
</p>
|
||||
|
||||
|
||||
## Release
|
||||
- [6/17] 🔥🔥 We released the 350m version of **MeshAnything**.
|
||||
|
||||
## Contents
|
||||
- [Release](#release)
|
||||
- [Contents](#contents)
|
||||
- [Installation](#installation)
|
||||
- [Usage](#usage)
|
||||
- [Important Notes](#important-notes)
|
||||
- [TODO](#todo)
|
||||
|
||||
## Installation
|
||||
Our environment has been tested on Ubuntu 22, CUDA 11.8 with A100, A800 and A6000.
|
||||
1. Clone our repo and create conda environment
|
||||
```
|
||||
git clone https://github.com/buaacyw/MeshAnything.git && cd MeshAnything
|
||||
conda create -n MeshAnything python==3.10.13
|
||||
conda activate MeshAnything
|
||||
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
|
||||
pip install -r requirements.txt
|
||||
pip install flash-attn --no-build-isolation
|
||||
```
|
||||
|
||||
## Usage
|
||||
```
|
||||
# Gradio Demo
|
||||
python app.py
|
||||
|
||||
# Command line inference
|
||||
|
||||
# For mesh
|
||||
|
||||
# inference for folder
|
||||
python main.py --input_dir examples --out_dir mesh_output --input_type mesh
|
||||
|
||||
# inference for single file
|
||||
python main.py --input_dir examples/wand.ply --out_dir mesh_output --input_type mesh
|
||||
|
||||
# Preprocess with Marching Cubes first
|
||||
python main.py --input_dir examples --out_dir mesh_output --input_type mesh --mc
|
||||
|
||||
# For point cloud
|
||||
|
||||
# Note: if you want to use your own point cloud, please make sure the normal is included.
|
||||
# The file format should be a .npy file with shape (N, 6), where N is the number of points. The first 3 columns are the coordinates, and the last 3 columns are the normal.
|
||||
|
||||
# inference for folder
|
||||
python main.py --input_dir pc_examples --out_dir pc_output --input_type pc_normal
|
||||
|
||||
# inference for single file
|
||||
python main.py --input_dir pc_examples/mouse.npy --out_dir pc_output --input_type pc_normal
|
||||
|
||||
```
|
||||
|
||||
## Important Notes
|
||||
- The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results.
|
||||
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 800 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
|
||||
- It takes about 7GB and 30s to generate a mesh on an A6000 GPU.
|
||||
- Please refer to https://huggingface.co/spaces/Yiwen-ntu/MeshAnything/tree/main/examples for more examples.
|
||||
## TODO
|
||||
|
||||
The repo is still being under construction, thanks for your patience.
|
||||
- [ ] Release of training code.
|
||||
- [ ] Release of larger model.
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
Our code is based on these wonderful repos:
|
||||
|
||||
* [MeshGPT](https://nihalsid.github.io/mesh-gpt/)
|
||||
* [meshgpt-pytorch](https://github.com/lucidrains/meshgpt-pytorch)
|
||||
* [Michelangelo](https://github.com/NeuralCarver/Michelangelo)
|
||||
* [transformers](https://github.com/huggingface/transformers)
|
||||
* [vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch)
|
|
@ -0,0 +1,262 @@
|
|||
import os
|
||||
import torch
|
||||
import trimesh
|
||||
from accelerate.utils import set_seed
|
||||
from accelerate import Accelerator
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
from main import get_args, load_model
|
||||
from mesh_to_pc import process_mesh_to_pc
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
||||
from PIL import Image
|
||||
import io
|
||||
|
||||
args = get_args()
|
||||
model = load_model(args)
|
||||
|
||||
device = torch.device('cuda')
|
||||
accelerator = Accelerator(
|
||||
mixed_precision="fp16",
|
||||
)
|
||||
model = accelerator.prepare(model)
|
||||
model.eval()
|
||||
print("Model loaded to device")
|
||||
|
||||
def wireframe_render(mesh):
|
||||
views = [
|
||||
(90, 20), (270, 20)
|
||||
]
|
||||
mesh.vertices = mesh.vertices[:, [0, 2, 1]]
|
||||
|
||||
bounding_box = mesh.bounds
|
||||
center = mesh.centroid
|
||||
scale = np.ptp(bounding_box, axis=0).max()
|
||||
|
||||
fig = plt.figure(figsize=(10, 10))
|
||||
|
||||
# Function to render and return each view as an image
|
||||
def render_view(mesh, azimuth, elevation):
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
ax.set_axis_off()
|
||||
|
||||
# Extract vertices and faces for plotting
|
||||
vertices = mesh.vertices
|
||||
faces = mesh.faces
|
||||
|
||||
# Plot faces
|
||||
ax.add_collection3d(Poly3DCollection(
|
||||
vertices[faces],
|
||||
facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
|
||||
edgecolors='k',
|
||||
linewidths=0.5,
|
||||
))
|
||||
|
||||
# Set limits and center the view on the object
|
||||
ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
|
||||
ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
|
||||
ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
|
||||
|
||||
# Set view angle
|
||||
ax.view_init(elev=elevation, azim=azimuth)
|
||||
|
||||
# Save the figure to a buffer
|
||||
buf = io.BytesIO()
|
||||
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
|
||||
plt.clf()
|
||||
buf.seek(0)
|
||||
|
||||
return Image.open(buf)
|
||||
|
||||
# Render each view and store in a list
|
||||
images = [render_view(mesh, az, el) for az, el in views]
|
||||
|
||||
# Combine images horizontally
|
||||
widths, heights = zip(*(i.size for i in images))
|
||||
total_width = sum(widths)
|
||||
max_height = max(heights)
|
||||
|
||||
combined_image = Image.new('RGBA', (total_width, max_height))
|
||||
|
||||
x_offset = 0
|
||||
for img in images:
|
||||
combined_image.paste(img, (x_offset, 0))
|
||||
x_offset += img.width
|
||||
|
||||
# Save the combined image
|
||||
save_path = f"combined_mesh_view_{int(time.time())}.png"
|
||||
combined_image.save(save_path)
|
||||
|
||||
plt.close(fig)
|
||||
return save_path
|
||||
|
||||
@torch.no_grad()
|
||||
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
|
||||
set_seed(sample_seed)
|
||||
print("Seed value:", sample_seed)
|
||||
|
||||
input_mesh = trimesh.load(input_3d)
|
||||
pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
|
||||
mesh = mesh_list[0]
|
||||
mesh.merge_vertices()
|
||||
mesh.update_faces(mesh.unique_faces())
|
||||
mesh.fix_normals()
|
||||
if mesh.visual.vertex_colors is not None:
|
||||
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
||||
|
||||
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
|
||||
else:
|
||||
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
||||
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
|
||||
input_save_name = f"processed_input_{int(time.time())}.obj"
|
||||
mesh.export(input_save_name)
|
||||
input_render_res = wireframe_render(mesh)
|
||||
|
||||
pc_normal = pc_list[0] # 4096, 6
|
||||
pc_coor = pc_normal[:, :3]
|
||||
normals = pc_normal[:, 3:]
|
||||
|
||||
bounds = np.array([pc_coor.min(axis=0), pc_coor.max(axis=0)])
|
||||
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
|
||||
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995
|
||||
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
|
||||
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
|
||||
|
||||
input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
|
||||
print("Data loaded")
|
||||
|
||||
# with accelerator.autocast():
|
||||
with accelerator.autocast():
|
||||
outputs = model(input, do_sampling)
|
||||
print("Model inference done")
|
||||
recon_mesh = outputs[0]
|
||||
|
||||
recon_mesh = recon_mesh[~torch.isnan(recon_mesh[:, 0, 0])] # nvalid_face x 3 x 3
|
||||
vertices = recon_mesh.reshape(-1, 3).cpu()
|
||||
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
|
||||
triangles = vertices_index.reshape(-1, 3)
|
||||
|
||||
artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
|
||||
merge_primitives=True)
|
||||
artist_mesh.merge_vertices()
|
||||
artist_mesh.update_faces(artist_mesh.unique_faces())
|
||||
artist_mesh.fix_normals()
|
||||
|
||||
if artist_mesh.visual.vertex_colors is not None:
|
||||
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
||||
|
||||
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
|
||||
else:
|
||||
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
||||
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
|
||||
|
||||
num_faces = len(artist_mesh.faces)
|
||||
|
||||
brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
|
||||
face_colors = np.tile(brown_color, (num_faces, 1))
|
||||
|
||||
artist_mesh.visual.face_colors = face_colors
|
||||
# add time stamp to avoid cache
|
||||
save_name = f"output_{int(time.time())}.obj"
|
||||
artist_mesh.export(save_name)
|
||||
output_render = wireframe_render(artist_mesh)
|
||||
return input_save_name, input_render_res, save_name, output_render
|
||||
|
||||
|
||||
_HEADER_ = '''
|
||||
<h2><b>Official ? Gradio Demo</b></h2><h2><a href='https://github.com/buaacyw/MeshAnything' target='_blank'><b>MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers</b></a></h2>
|
||||
|
||||
**MeshAnything** converts any 3D representation into meshes created by human artists, i.e., Artist-Created Meshes (AMs).
|
||||
|
||||
Code: <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://buaacyw.github.io/mesh-anything/' target='_blank'>ArXiv</a>.
|
||||
|
||||
??????**Important Notes:**
|
||||
- Gradio doesn't support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
|
||||
- The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results. Click **Preprocess with Marching Cubes** if the input mesh is a manually created mesh.
|
||||
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 800 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
|
||||
- For point cloud input, please refer to our github repo <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>.
|
||||
'''
|
||||
|
||||
|
||||
_CITE_ = r"""
|
||||
If MeshAnything is helpful, please help to ? the <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>Github Repo</a>. Thanks!
|
||||
---
|
||||
? **License**
|
||||
|
||||
S-Lab-1.0 LICENSE. Please refer to the [LICENSE file](https://github.com/buaacyw/GaussianEditor/blob/master/LICENSE.txt) for details.
|
||||
|
||||
? **Contact**
|
||||
|
||||
If you have any questions, feel free to open a discussion or contact us at <b>yiwen002@e.ntu.edu.sg</b>.
|
||||
|
||||
"""
|
||||
output_model_obj = gr.Model3D(
|
||||
label="Processed Input Mesh (OBJ Format)",
|
||||
clear_color=[1, 1, 1, 1],
|
||||
)
|
||||
preprocess_model_obj = gr.Model3D(
|
||||
label="Generated Mesh (OBJ Format)",
|
||||
clear_color=[1, 1, 1, 1],
|
||||
)
|
||||
input_image_render = gr.Image(
|
||||
label="Wireframe Render of Processed Input Mesh",
|
||||
)
|
||||
output_image_render = gr.Image(
|
||||
label="Wireframe Render of Generated Mesh",
|
||||
)
|
||||
with (gr.Blocks() as demo):
|
||||
gr.Markdown(_HEADER_)
|
||||
with gr.Row(variant="panel"):
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
input_3d = gr.Model3D(
|
||||
label="Input Mesh",
|
||||
clear_color=[1,1,1,1],
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Group():
|
||||
do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
|
||||
do_sampling = gr.Checkbox(label="Random Sampling", value=False)
|
||||
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
|
||||
|
||||
with gr.Row():
|
||||
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
||||
|
||||
with gr.Row(variant="panel"):
|
||||
mesh_examples = gr.Examples(
|
||||
examples=[
|
||||
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
||||
],
|
||||
inputs=input_3d,
|
||||
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
|
||||
fn=do_inference,
|
||||
cache_examples = False,
|
||||
examples_per_page=10
|
||||
)
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
input_image_render.render()
|
||||
with gr.Row():
|
||||
with gr.Tab("OBJ"):
|
||||
preprocess_model_obj.render()
|
||||
with gr.Row():
|
||||
output_image_render.render()
|
||||
with gr.Row():
|
||||
with gr.Tab("OBJ"):
|
||||
output_model_obj.render()
|
||||
with gr.Row():
|
||||
gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
|
||||
|
||||
gr.Markdown(_CITE_)
|
||||
|
||||
mv_images = gr.State()
|
||||
|
||||
submit.click(
|
||||
fn=do_inference,
|
||||
inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
|
||||
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
|
||||
)
|
||||
|
||||
demo.launch(share=True)
|
Binary file not shown.
After Width: | Height: | Size: 74 MiB |
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,177 @@
|
|||
import os, argparse, importlib
|
||||
import torch
|
||||
import time
|
||||
import trimesh
|
||||
import numpy as np
|
||||
from MeshAnything.models.meshanything import MeshAnything
|
||||
import datetime
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import set_seed
|
||||
from accelerate.utils import DistributedDataParallelKwargs
|
||||
from safetensors import safe_open
|
||||
from mesh_to_pc import process_mesh_to_pc
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
class Dataset:
|
||||
def __init__(self, input_type, input_list, mc=False):
|
||||
super().__init__()
|
||||
self.data = []
|
||||
if input_type == 'pc_normal':
|
||||
for input_path in input_list:
|
||||
# load npy
|
||||
cur_data = np.load(input_path)
|
||||
# sample 4096
|
||||
assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
|
||||
idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
|
||||
cur_data = cur_data[idx]
|
||||
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
||||
|
||||
elif input_type == 'mesh':
|
||||
mesh_list = []
|
||||
for input_path in input_list:
|
||||
# load ply
|
||||
cur_data = trimesh.load(input_path)
|
||||
mesh_list.append(cur_data)
|
||||
if mc:
|
||||
print("First Marching Cubes and then sample point cloud, need several minutes...")
|
||||
pc_list, _ = process_mesh_to_pc(mesh_list, marching_cubes=mc)
|
||||
for input_path, cur_data in zip(input_list, pc_list):
|
||||
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
||||
print(f"dataset total data samples: {len(self.data)}")
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
data_dict = {}
|
||||
data_dict['pc_normal'] = self.data[idx]['pc_normal']
|
||||
# normalize pc coor
|
||||
pc_coor = data_dict['pc_normal'][:, :3]
|
||||
normals = data_dict['pc_normal'][:, 3:]
|
||||
bounds = np.array([pc_coor.min(axis=0), pc_coor.max(axis=0)])
|
||||
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
|
||||
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995
|
||||
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
|
||||
data_dict['pc_normal'] = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
|
||||
data_dict['uid'] = self.data[idx]['uid']
|
||||
|
||||
return data_dict
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser("MeshAnything", add_help=False)
|
||||
|
||||
parser.add_argument('--llm', default="facebook/opt-350m", type=str)
|
||||
parser.add_argument('--input_dir', default=None, type=str)
|
||||
parser.add_argument('--input_path', default=None, type=str)
|
||||
|
||||
parser.add_argument('--out_dir', default="inference_out", type=str)
|
||||
parser.add_argument('--pretrained_weights', default="MeshAnything_350m.pth", type=str)
|
||||
|
||||
parser.add_argument(
|
||||
'--input_type',
|
||||
choices=['mesh','pc_normal'],
|
||||
default='pc',
|
||||
help="Type of the asset to process (default: pc)"
|
||||
)
|
||||
|
||||
parser.add_argument("--codebook_size", default=8192, type=int)
|
||||
parser.add_argument("--codebook_dim", default=1024, type=int)
|
||||
|
||||
parser.add_argument("--n_max_triangles", default=800, type=int)
|
||||
|
||||
parser.add_argument("--batchsize_per_gpu", default=1, type=int)
|
||||
parser.add_argument("--seed", default=0, type=int)
|
||||
|
||||
parser.add_argument("--mc", default=False, action="store_true")
|
||||
parser.add_argument("--sampling", default=False, action="store_true")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def load_model(args):
|
||||
model = MeshAnything(args)
|
||||
print("load model over!!!")
|
||||
|
||||
ckpt_path = hf_hub_download(
|
||||
repo_id="Yiwen-ntu/MeshAnything",
|
||||
filename="MeshAnything_350m.pth",
|
||||
)
|
||||
tensors = {}
|
||||
with safe_open(ckpt_path, framework="pt", device=0) as f:
|
||||
for k in f.keys():
|
||||
tensors[k] = f.get_tensor(k)
|
||||
|
||||
model.load_state_dict(tensors, strict=True)
|
||||
print("load weights over!!!")
|
||||
return model
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
cur_time = datetime.datetime.now().strftime("%d_%H-%M-%S")
|
||||
checkpoint_dir = os.path.join(args.out_dir, cur_time)
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
accelerator = Accelerator(
|
||||
mixed_precision="fp16",
|
||||
project_dir=checkpoint_dir,
|
||||
kwargs_handlers=[kwargs]
|
||||
)
|
||||
|
||||
model = load_model(args)
|
||||
# create dataset
|
||||
if args.input_dir is not None:
|
||||
input_list = sorted(os.listdir(args.input_dir))
|
||||
# only ply, obj or npy
|
||||
if args.input_type == 'pc_normal':
|
||||
input_list = [os.path.join(args.input_dir, x) for x in input_list if x.endswith('.npy')]
|
||||
else:
|
||||
input_list = [os.path.join(args.input_dir, x) for x in input_list if x.endswith('.ply') or x.endswith('.obj') or x.endswith('.npy')]
|
||||
set_seed(args.seed)
|
||||
dataset = Dataset(args.input_type, input_list, args.mc)
|
||||
elif args.input_path is not None:
|
||||
set_seed(args.seed)
|
||||
dataset = Dataset(args.input_type, [args.input_path], args.mc)
|
||||
else:
|
||||
raise ValueError("input_dir or input_path must be provided.")
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batchsize_per_gpu,
|
||||
drop_last = False,
|
||||
shuffle = False,
|
||||
)
|
||||
|
||||
if accelerator.state.num_processes > 1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
||||
dataloader, model = accelerator.prepare(dataloader, model)
|
||||
begin_time = time.time()
|
||||
print("Generation Start!!!")
|
||||
with accelerator.autocast():
|
||||
for curr_iter, batch_data_label in enumerate(dataloader):
|
||||
curr_time = time.time()
|
||||
outputs = model(batch_data_label['pc_normal'], sampling=args.sampling)
|
||||
batch_size = outputs.shape[0]
|
||||
device = outputs.device
|
||||
|
||||
for batch_id in range(batch_size):
|
||||
recon_mesh = outputs[batch_id]
|
||||
recon_mesh = recon_mesh[~torch.isnan(recon_mesh[:, 0, 0])] # nvalid_face x 3 x 3
|
||||
vertices = recon_mesh.reshape(-1, 3).cpu()
|
||||
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
|
||||
triangles = vertices_index.reshape(-1, 3)
|
||||
|
||||
scene_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
|
||||
merge_primitives=True)
|
||||
scene_mesh.merge_vertices()
|
||||
scene_mesh.update_faces(scene_mesh.unique_faces())
|
||||
scene_mesh.fix_normals()
|
||||
save_path = os.path.join(checkpoint_dir, f'{batch_data_label["uid"][batch_id]}_gen.obj')
|
||||
num_faces = len(scene_mesh.faces)
|
||||
brown_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
||||
face_colors = np.tile(brown_color, (num_faces, 1))
|
||||
|
||||
scene_mesh.visual.face_colors = face_colors
|
||||
scene_mesh.export(save_path)
|
||||
print(f"{save_path} Over!!")
|
||||
end_time = time.time()
|
||||
print(f"Total time: {end_time - begin_time}")
|
|
@ -0,0 +1,58 @@
|
|||
import mesh2sdf.core
|
||||
import numpy as np
|
||||
import skimage.measure
|
||||
import trimesh
|
||||
|
||||
def normalize_vertices(vertices, scale=0.9):
|
||||
bbmin, bbmax = vertices.min(0), vertices.max(0)
|
||||
center = (bbmin + bbmax) * 0.5
|
||||
scale = 2.0 * scale / (bbmax - bbmin).max()
|
||||
vertices = (vertices - center) * scale
|
||||
return vertices, center, scale
|
||||
|
||||
def export_to_watertight(normalized_mesh, octree_depth: int = 7):
|
||||
"""
|
||||
Convert the non-watertight mesh to watertight.
|
||||
|
||||
Args:
|
||||
input_path (str): normalized path
|
||||
octree_depth (int):
|
||||
|
||||
Returns:
|
||||
mesh(trimesh.Trimesh): watertight mesh
|
||||
|
||||
"""
|
||||
size = 2 ** octree_depth
|
||||
level = 2 / size
|
||||
|
||||
scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices)
|
||||
|
||||
sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size)
|
||||
|
||||
vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level)
|
||||
|
||||
# watertight mesh
|
||||
vertices = vertices / size * 2 - 1 # -1 to 1
|
||||
vertices = vertices / to_orig_scale + to_orig_center
|
||||
# vertices = vertices / to_orig_scale + to_orig_center
|
||||
mesh = trimesh.Trimesh(vertices, faces, normals=normals)
|
||||
|
||||
return mesh
|
||||
|
||||
def process_mesh_to_pc(mesh_list, marching_cubes = False, sample_num = 4096):
|
||||
# mesh_list : list of trimesh
|
||||
pc_normal_list = []
|
||||
return_mesh_list = []
|
||||
for mesh in mesh_list:
|
||||
if marching_cubes:
|
||||
mesh = export_to_watertight(mesh)
|
||||
print("MC over!")
|
||||
return_mesh_list.append(mesh)
|
||||
points, face_idx = mesh.sample(sample_num, return_index=True)
|
||||
normals = mesh.face_normals[face_idx]
|
||||
|
||||
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16)
|
||||
pc_normal_list.append(pc_normal)
|
||||
print("process mesh success")
|
||||
return pc_normal_list, return_mesh_list
|
||||
|
Binary file not shown.
|
@ -0,0 +1,13 @@
|
|||
trimesh==4.2.3
|
||||
accelerate==0.28.0
|
||||
mesh2sdf==1.1.0
|
||||
einops==0.7.0
|
||||
einx==0.1.3
|
||||
optimum==1.18.0
|
||||
omegaconf==2.3.0
|
||||
opencv-python==4.9.0.80
|
||||
transformers==4.39.3
|
||||
huggingface_hub
|
||||
matplotlib
|
||||
gradio
|
||||
spaces
|
Loading…
Reference in New Issue