260 lines
8.4 KiB
Plaintext
260 lines
8.4 KiB
Plaintext
|
[[search-benchmark]]
|
||
|
== Benchmark
|
||
|
|
||
|
.Experimental!
|
||
|
[IMPORTANT]
|
||
|
=====
|
||
|
This feature is marked as experimental, and may be subject to change in the
|
||
|
future. If you use this feature, please let us know your experience with it!
|
||
|
=====
|
||
|
|
||
|
The benchmark API provides a standard mechanism for submitting queries and
|
||
|
measuring their performance relative to one another.
|
||
|
|
||
|
[IMPORTANT]
|
||
|
=====
|
||
|
To be eligible to run benchmarks nodes must be started with: *es.node.bench=true*. This is just a way to mark certain nodes as "executors". Searches will still be distributed out to the cluster in the normal manner. This is primarily a defensive measure to prevent production nodes from being flooded with potentially many requests. Typically one would start a single node with this setting and sumbmit benchmark requests to it.
|
||
|
=====
|
||
|
|
||
|
[source,bash]
|
||
|
--------------------------------------------------
|
||
|
$ ./bin/elasticsearch -Des.node.bench=true
|
||
|
--------------------------------------------------
|
||
|
|
||
|
Benchmarking a search request is as simple as executing the following command:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
$ curl -XPUT 'localhost:9200/_bench/?pretty=true' -d
|
||
|
'{
|
||
|
"name": "my_benchmark",
|
||
|
"competitors": [ {
|
||
|
"name": "my_competitor",
|
||
|
"requests": [ {
|
||
|
"query": {
|
||
|
"match": { "_all": "a*" }
|
||
|
}
|
||
|
} ]
|
||
|
} ]
|
||
|
}'
|
||
|
--------------------------------------------------
|
||
|
|
||
|
Response:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"status" : "complete",
|
||
|
"competitors" : {
|
||
|
"my_competitor" : {
|
||
|
"summary" : {
|
||
|
"nodes" : [ "localhost" ],
|
||
|
"total_iterations" : 5,
|
||
|
"completed_iterations" : 5,
|
||
|
"total_queries" : 1000,
|
||
|
"concurrency" : 5,
|
||
|
"multiplier" : 100,
|
||
|
"avg_warmup_time" : 43.0,
|
||
|
"statistics" : {
|
||
|
"min" : 1,
|
||
|
"max" : 10,
|
||
|
"mean" : 4.19,
|
||
|
"qps" : 238.663,
|
||
|
"std_dev" : 1.938,
|
||
|
"millis_per_hit" : 1.064,
|
||
|
"percentile_10" : 2,
|
||
|
"percentile_25" : 3,
|
||
|
"percentile_50" : 4,
|
||
|
"percentile_75" : 5,
|
||
|
"percentile_90" : 7,
|
||
|
"percentile_99" : 10
|
||
|
},
|
||
|
"slowest" : [ {
|
||
|
"node" : "localhost",
|
||
|
"max_time" : 15,
|
||
|
"avg_time" : 4,
|
||
|
"request":{"query":{"match":{"_all":"a*"}}}
|
||
|
} ]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|
||
|
A 'competitor' defines one or more search requests to execute along with parameters that describe how the search(es) should be run.
|
||
|
Multiple competitors may be submitted as a group in which case they will execute one after the other. This makes it easy to compare various
|
||
|
competing alternatives side-by-side.
|
||
|
|
||
|
There are several parameters which may be set at the competition level:
|
||
|
[horizontal]
|
||
|
`name`:: Unique name for the competition
|
||
|
`iterations`:: Number of times to run the competitors
|
||
|
`concurrency`:: Within each iteration use this level of parallelism
|
||
|
`multiplier`:: Within each iteration run the query this many times
|
||
|
`warmup`:: Perform warmup of query
|
||
|
`num_slowest`:: Record N slowest queries
|
||
|
`search_type`:: Type of search, e.g. "query_then_fetch", "dfs_query_then_fetch", "count"
|
||
|
`requests`:: Query DSL describing search requests
|
||
|
`clear_caches`:: Whether caches should be cleared on each iteration, and if so, how
|
||
|
`indices`:: Array of indices (and optional types) to search, e.g. ["my_index_1/my_type_1", "my_index_2", "my_index_3/my_type_3"]
|
||
|
|
||
|
Cache clearing parameters:
|
||
|
[horizontal]
|
||
|
`clear_caches`:: Set to 'false' to disable cache clearing completely
|
||
|
`clear_caches.filter`:: Whether to clear the filter cache
|
||
|
`clear_caches.field_data`:: Whether to clear the field data cache
|
||
|
`clear_caches.id`:: Whether to clear the id cache
|
||
|
`clear_caches.recycler`:: Whether to clear the recycler cache
|
||
|
`clear_caches.fields`:: Array of fields to clear
|
||
|
`clear_caches.filter_keys`:: Array of filter keys to clear
|
||
|
|
||
|
Global parameters:
|
||
|
[horizontal]
|
||
|
`name`:: Unique name for the benchmark
|
||
|
`num_executor_nodes`:: Number of cluster nodes from which to submit and time benchmarks. Allows user to run a benchmark simultaneously on one or more nodes and compare timings. Note that this does not control how many nodes a search request will actually execute on. Defaults to: 1.
|
||
|
`percentiles`:: Array of percentile values to report. Defaults to: [10, 25, 50, 75, 90, 99]
|
||
|
|
||
|
Additionally, the following competition-level parameters may be set globally: iteration, concurrency, multiplier, warmup, and clear_caches.
|
||
|
|
||
|
Using these parameters it is possible to describe precisely how to execute a benchmark under various conditions. In the following example we run a filtered query against two different indices using two different search types.
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
$ curl -XPUT 'localhost:9200/_bench/?pretty=true' -d
|
||
|
{
|
||
|
"name": "my_benchmark",
|
||
|
"num_executor_nodes": 1,
|
||
|
"percentiles" : [ 25, 50, 75 ],
|
||
|
"iterations": 5,
|
||
|
"multiplier": 1000,
|
||
|
"concurrency": 5,
|
||
|
"num_slowest": 0,
|
||
|
"warmup": true,
|
||
|
"clear_caches": false,
|
||
|
|
||
|
"requests": [ {
|
||
|
"query" : {
|
||
|
"filtered" : {
|
||
|
"query" : { "match" : { "_all" : "*" } },
|
||
|
"filter" : {
|
||
|
"and" : [ { "term" : { "title" : "Spain" } },
|
||
|
{ "term" : { "title" : "rain" } },
|
||
|
{ "term" : { "title" : "plain" } } ]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} ],
|
||
|
|
||
|
"competitors": [ {
|
||
|
"name": "competitor_1",
|
||
|
"search_type": "query_then_fetch",
|
||
|
"indices": [ "my_index_1" ],
|
||
|
"clear_caches" : {
|
||
|
"filter" : true,
|
||
|
"field_data" : true,
|
||
|
"id" : true,
|
||
|
"recycler" : true,
|
||
|
"fields": ["title"]
|
||
|
}
|
||
|
}, {
|
||
|
"name": "competitor_2",
|
||
|
"search_type": "dfs_query_then_fetch",
|
||
|
"indices": [ "my_index_2" ],
|
||
|
"clear_caches" : {
|
||
|
"filter" : true,
|
||
|
"field_data" : true,
|
||
|
"id" : true,
|
||
|
"recycler" : true,
|
||
|
"fields": ["title"]
|
||
|
}
|
||
|
} ]
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|
||
|
Response:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"status" : "complete",
|
||
|
"competitors" : {
|
||
|
"competitor_1" : {
|
||
|
"summary" : {
|
||
|
"nodes" : [ "localhost" ],
|
||
|
"total_iterations" : 5,
|
||
|
"completed_iterations" : 5,
|
||
|
"total_queries" : 5000,
|
||
|
"concurrency" : 5,
|
||
|
"multiplier" : 1000,
|
||
|
"avg_warmup_time" : 54.0,
|
||
|
"statistics" : {
|
||
|
"min" : 0,
|
||
|
"max" : 3,
|
||
|
"mean" : 0.533,
|
||
|
"qps" : 1872.659,
|
||
|
"std_dev" : 0.528,
|
||
|
"millis_per_hit" : 0.0,
|
||
|
"percentile_25" : 0.0,
|
||
|
"percentile_50" : 1.0,
|
||
|
"percentile_75" : 1.0
|
||
|
},
|
||
|
"slowest" : [ ]
|
||
|
}
|
||
|
},
|
||
|
"competitor_2" : {
|
||
|
"summary" : {
|
||
|
"nodes" : [ "localhost" ],
|
||
|
"total_iterations" : 5,
|
||
|
"completed_iterations" : 5,
|
||
|
"total_queries" : 5000,
|
||
|
"concurrency" : 5,
|
||
|
"multiplier" : 1000,
|
||
|
"avg_warmup_time" : 4.0,
|
||
|
"statistics" : {
|
||
|
"min" : 0,
|
||
|
"max" : 4,
|
||
|
"mean" : 0.487,
|
||
|
"qps" : 2049.180,
|
||
|
"std_dev" : 0.545,
|
||
|
"millis_per_hit" : 0.0,
|
||
|
"percentile_25" : 0.0,
|
||
|
"percentile_50" : 0.0,
|
||
|
"percentile_75" : 1.0
|
||
|
},
|
||
|
"slowest" : [ ]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|
||
|
In some cases it may be desirable to view the progress of a long-running benchmark and optionally terminate it early. To view all active benchmarks use:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
$ curl -XGET 'localhost:9200/_bench?pretty'
|
||
|
--------------------------------------------------
|
||
|
|
||
|
This would display run-time statistics in the same format as the sample output above.
|
||
|
|
||
|
To abort a long-running benchmark use the 'abort' endpoint:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
$ curl -XPOST 'localhost:9200/_bench/abort/my_benchmark?pretty'
|
||
|
--------------------------------------------------
|
||
|
|
||
|
Response:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"aborted_benchmarks" : [
|
||
|
"node" "localhost",
|
||
|
"benchmark_name", "my_benchmark",
|
||
|
"aborted", true
|
||
|
]
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|