OpenSearch/docs/reference/aggregations/bucket/geohashgrid-aggregation.asc...

247 lines
8.3 KiB
Plaintext
Raw Normal View History

[[search-aggregations-bucket-geohashgrid-aggregation]]
=== GeoHash grid Aggregation
A multi-bucket aggregation that works on `geo_point` fields and groups points into buckets that represent cells in a grid.
The resulting grid can be sparse and only contains cells that have matching data. Each cell is labeled using a http://en.wikipedia.org/wiki/Geohash[geohash] which is of user-definable precision.
* High precision geohashes have a long string length and represent cells that cover only a small area.
* Low precision geohashes have a short string length and represent cells that each cover a large area.
Geohashes used in this aggregation can have a choice of precision between 1 and 12.
WARNING: The highest-precision geohash of length 12 produces cells that cover less than a square metre of land and so high-precision requests can be very costly in terms of RAM and result sizes.
Please see the example below on how to first filter the aggregation to a smaller geographic area before requesting high-levels of detail.
The specified field must be of type `geo_point` (which can only be set explicitly in the mappings) and it can also hold an array of `geo_point` fields, in which case all points will be taken into account during aggregation.
==== Simple low-precision request
[source,js]
--------------------------------------------------
Update the default for include_type_name to false. (#37285) * Default include_type_name to false for get and put mappings. * Default include_type_name to false for get field mappings. * Add a constant for the default include_type_name value. * Default include_type_name to false for get and put index templates. * Default include_type_name to false for create index. * Update create index calls in REST documentation to use include_type_name=true. * Some minor clean-ups around the get index API. * In REST tests, use include_type_name=true by default for index creation. * Make sure to use 'expression == false'. * Clarify the different IndexTemplateMetaData toXContent methods. * Fix FullClusterRestartIT#testSnapshotRestore. * Fix the ml_anomalies_default_mappings test. * Fix GetFieldMappingsResponseTests and GetIndexTemplateResponseTests. We make sure to specify include_type_name=true during xContent parsing, so we continue to test the legacy typed responses. XContent generation for the typeless responses is currently only covered by REST tests, but we will be adding unit test coverage for these as we implement each typeless API in the Java HLRC. This commit also refactors GetMappingsResponse to follow the same appraoch as the other mappings-related responses, where we read include_type_name out of the xContent params, instead of creating a second toXContent method. This gives better consistency in the response parsing code. * Fix more REST tests. * Improve some wording in the create index documentation. * Add a note about types removal in the create index docs. * Fix SmokeTestMonitoringWithSecurityIT#testHTTPExporterWithSSL. * Make sure to mention include_type_name in the REST docs for affected APIs. * Make sure to use 'expression == false' in FullClusterRestartIT. * Mention include_type_name in the REST templates docs.
2019-01-14 16:08:01 -05:00
PUT /museums?include_type_name=true
{
"mappings": {
"_doc": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
}
POST /museums/_doc/_bulk?refresh
{"index":{"_id":1}}
{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
{"index":{"_id":2}}
{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
{"index":{"_id":3}}
{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":4}}
{"location": "51.222900,4.405200", "name": "Letterenhuis"}
{"index":{"_id":5}}
{"location": "48.861111,2.336389", "name": "Musée du Louvre"}
{"index":{"_id":6}}
{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}
POST /museums/_search?size=0
{
"aggregations" : {
"large-grid" : {
"geohash_grid" : {
"field" : "location",
"precision" : 3
}
}
}
}
--------------------------------------------------
// CONSOLE
Response:
[source,js]
--------------------------------------------------
{
...
"aggregations": {
"large-grid": {
"buckets": [
{
"key": "u17",
"doc_count": 3
},
{
"key": "u09",
"doc_count": 2
},
{
"key": "u15",
"doc_count": 1
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
==== High-precision requests
When requesting detailed buckets (typically for displaying a "zoomed in" map) a filter like <<query-dsl-geo-bounding-box-query,geo_bounding_box>> should be applied to narrow the subject area otherwise potentially millions of buckets will be created and returned.
[source,js]
--------------------------------------------------
POST /museums/_search?size=0
{
"aggregations" : {
"zoomed-in" : {
"filter" : {
"geo_bounding_box" : {
"location" : {
"top_left" : "52.4, 4.9",
"bottom_right" : "52.3, 5.0"
}
}
},
"aggregations":{
"zoom1":{
"geohash_grid" : {
"field": "location",
"precision": 8
}
}
}
}
}
}
--------------------------------------------------
// CONSOLE
// TEST[continued]
The geohashes returned by the `geohash_grid` aggregation can be also used for zooming in. To zoom into the
first geohash `u17` returned in the previous example, it should be specified as both `top_left` and `bottom_right` corner:
[source,js]
--------------------------------------------------
POST /museums/_search?size=0
{
"aggregations" : {
"zoomed-in" : {
"filter" : {
"geo_bounding_box" : {
"location" : {
"top_left" : "u17",
"bottom_right" : "u17"
}
}
},
"aggregations":{
"zoom1":{
"geohash_grid" : {
"field": "location",
"precision": 8
}
}
}
}
}
}
--------------------------------------------------
// CONSOLE
// TEST[continued]
[source,js]
--------------------------------------------------
{
...
"aggregations" : {
"zoomed-in" : {
"doc_count" : 3,
"zoom1" : {
"buckets" : [
{
"key" : "u173zy3j",
"doc_count" : 1
},
{
"key" : "u173zvfz",
"doc_count" : 1
},
{
"key" : "u173zt90",
"doc_count" : 1
}
]
}
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
For "zooming in" on the system that don't support geohashes, the bucket keys should be translated into bounding boxes using
one of available geohash libraries. For example, for javascript the https://github.com/sunng87/node-geohash[node-geohash] library
can be used:
[source,js]
--------------------------------------------------
var geohash = require('ngeohash');
// bbox will contain [ 52.03125, 4.21875, 53.4375, 5.625 ]
// [ minlat, minlon, maxlat, maxlon]
var bbox = geohash.decode_bbox('u17');
--------------------------------------------------
// NOTCONSOLE
==== Cell dimensions at the equator
The table below shows the metric dimensions for cells covered by various string lengths of geohash.
Cell dimensions vary with latitude and so the table is for the worst-case scenario at the equator.
[horizontal]
*GeoHash length*:: *Area width x height*
1:: 5,009.4km x 4,992.6km
2:: 1,252.3km x 624.1km
3:: 156.5km x 156km
4:: 39.1km x 19.5km
5:: 4.9km x 4.9km
6:: 1.2km x 609.4m
7:: 152.9m x 152.4m
8:: 38.2m x 19m
9:: 4.8m x 4.8m
10:: 1.2m x 59.5cm
11:: 14.9cm x 14.9cm
12:: 3.7cm x 1.9cm
==== Options
[horizontal]
field:: Mandatory. The name of the field indexed with GeoPoints.
precision:: Optional. The string length of the geohashes used to define
cells/buckets in the results. Defaults to 5.
The precision can either be defined in terms of the integer
precision levels mentioned above. Values outside of [1,12] will
be rejected.
Alternatively, the precision level can be approximated from a
distance measure like "1km", "10m". The precision level is
calculate such that cells will not exceed the specified
size (diagonal) of the required precision. When this would lead
to precision levels higher than the supported 12 levels,
(e.g. for distances <5.6cm) the value is rejected.
size:: Optional. The maximum number of geohash buckets to return
(defaults to 10,000). When results are trimmed, buckets are
prioritised based on the volumes of documents they contain.
shard_size:: Optional. To allow for more accurate counting of the top cells
returned in the final result the aggregation defaults to
returning `max(10,(size x number-of-shards))` buckets from each
shard. If this heuristic is undesirable, the number considered
from each shard can be over-ridden using this parameter.