2019-07-17 08:49:22 -04:00
[[request-body-search-sort]]
2019-07-19 14:35:36 -04:00
==== Sort
2013-08-28 19:24:34 -04:00
2018-09-18 10:46:22 -04:00
Allows you to add one or more sorts on specific fields. Each sort can be
2013-08-28 19:24:34 -04:00
reversed as well. The sort is defined on a per field level, with special
2015-08-24 09:37:30 -04:00
field name for `_score` to sort by score, and `_doc` to sort by index order.
2013-08-28 19:24:34 -04:00
2016-05-17 09:14:37 -04:00
Assuming the following index mapping:
2019-09-09 12:35:50 -04:00
[source,console]
2016-05-17 09:14:37 -04:00
--------------------------------------------------
2019-01-22 09:13:52 -05:00
PUT /my_index
2016-05-17 09:14:37 -04:00
{
2020-07-21 15:49:58 -04:00
"mappings": {
"properties": {
"post_date": { "type": "date" },
"user": {
"type": "keyword"
},
"name": {
"type": "keyword"
},
"age": { "type": "integer" }
2016-05-17 09:14:37 -04:00
}
2020-07-21 15:49:58 -04:00
}
2016-05-17 09:14:37 -04:00
}
--------------------------------------------------
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET /my_index/_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort" : [
{ "post_date" : {"order" : "asc"}},
"user",
{ "name" : "desc" },
{ "age" : "desc" },
"_score"
],
"query" : {
"term" : { "user" : "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2016-05-17 09:14:37 -04:00
// TEST[continued]
2013-08-28 19:24:34 -04:00
2015-08-24 09:37:30 -04:00
NOTE: `_doc` has no real use-case besides being the most efficient sort order.
So if you don't care about the order in which documents are returned, then you
2019-07-19 09:16:35 -04:00
should sort by `_doc`. This especially helps when <<request-body-search-scroll,scrolling>>.
2015-08-24 09:37:30 -04:00
2019-07-19 14:35:36 -04:00
===== Sort Values
2013-08-28 19:24:34 -04:00
The sort values for each document returned are also returned as part of
the response.
2019-07-19 14:35:36 -04:00
===== Sort Order
2015-02-19 12:04:14 -05:00
The `order` option can have the following values:
[horizontal]
`asc`:: Sort in ascending order
`desc`:: Sort in descending order
The order defaults to `desc` when sorting on the `_score`, and defaults
to `asc` when sorting on anything else.
2019-07-19 14:35:36 -04:00
===== Sort mode option
2013-08-28 19:24:34 -04:00
2013-09-03 15:27:49 -04:00
Elasticsearch supports sorting by array or multi-valued fields. The `mode` option
2013-08-28 19:24:34 -04:00
controls what array value is picked for sorting the document it belongs
2013-09-04 16:06:38 -04:00
to. The `mode` option can have the following values:
2013-08-28 19:24:34 -04:00
[horizontal]
2013-09-04 16:06:38 -04:00
`min`:: Pick the lowest value.
2013-08-28 19:24:34 -04:00
`max`:: Pick the highest value.
`sum`:: Use the sum of all values as sort value. Only applicable for
2013-09-04 16:06:38 -04:00
number based array fields.
2013-08-28 19:24:34 -04:00
`avg`:: Use the average of all values as sort value. Only applicable
for number based array fields.
2015-05-11 12:32:16 -04:00
`median`:: Use the median of all values as sort value. Only applicable
for number based array fields.
2013-08-28 19:24:34 -04:00
2019-03-30 10:56:23 -04:00
The default sort mode in the ascending sort order is `min` -- the lowest value
is picked. The default sort mode in the descending order is `max` --
the highest value is picked.
2019-07-19 14:35:36 -04:00
====== Sort mode example usage
2013-08-28 19:24:34 -04:00
In the example below the field price has multiple prices per document.
2016-05-17 09:14:37 -04:00
In this case the result hits will be sorted by price ascending based on
2013-08-28 19:24:34 -04:00
the average price per document.
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2017-12-14 11:47:53 -05:00
PUT /my_index/_doc/1?refresh
2016-05-17 09:14:37 -04:00
{
"product": "chocolate",
2017-03-12 20:08:06 -04:00
"price": [20, 4]
2016-05-17 09:14:37 -04:00
}
2016-07-15 16:02:07 -04:00
POST /_search
2016-05-17 09:14:37 -04:00
{
2013-08-28 19:24:34 -04:00
"query" : {
2016-05-17 09:14:37 -04:00
"term" : { "product" : "chocolate" }
2013-08-28 19:24:34 -04:00
},
"sort" : [
{"price" : {"order" : "asc", "mode" : "avg"}}
]
2016-05-17 09:14:37 -04:00
}
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2019-07-19 14:35:36 -04:00
===== Sorting numeric fields
2019-03-18 04:32:45 -04:00
For numeric fields it is also possible to cast the values from one type
to another using the `numeric_type` option.
2019-03-20 11:50:28 -04:00
This option accepts the following values: [`"double", "long", "date", "date_nanos"`]
2020-06-18 08:59:00 -04:00
and can be useful for searches across multiple data streams or indices where the sort field is mapped differently.
2019-03-18 04:32:45 -04:00
Consider for instance these two indices:
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-18 04:32:45 -04:00
--------------------------------------------------
PUT /index_double
{
2020-07-21 15:49:58 -04:00
"mappings": {
"properties": {
"field": { "type": "double" }
2019-03-18 04:32:45 -04:00
}
2020-07-21 15:49:58 -04:00
}
2019-03-18 04:32:45 -04:00
}
--------------------------------------------------
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-18 04:32:45 -04:00
--------------------------------------------------
PUT /index_long
{
2020-07-21 15:49:58 -04:00
"mappings": {
"properties": {
"field": { "type": "long" }
2019-03-18 04:32:45 -04:00
}
2020-07-21 15:49:58 -04:00
}
2019-03-18 04:32:45 -04:00
}
--------------------------------------------------
// TEST[continued]
Since `field` is mapped as a `double` in the first index and as a `long`
in the second index, it is not possible to use this field to sort requests
that query both indices by default. However you can force the type to one
or the other with the `numeric_type` option in order to force a specific
type for all indices:
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-18 04:32:45 -04:00
--------------------------------------------------
POST /index_long,index_double/_search
{
"sort" : [
{
"field" : {
"numeric_type" : "double"
}
}
]
}
--------------------------------------------------
// TEST[continued]
In the example above, values for the `index_long` index are casted to
a double in order to be compatible with the values produced by the
`index_double` index.
It is also possible to transform a floating point field into a `long`
but note that in this case floating points are replaced by the largest
value that is less than or equal (greater than or equal if the value
is negative) to the argument and is equal to a mathematical integer.
2019-03-20 11:50:28 -04:00
This option can also be used to convert a `date` field that uses millisecond
resolution to a `date_nanos` field with nanosecond resolution.
Consider for instance these two indices:
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-20 11:50:28 -04:00
--------------------------------------------------
PUT /index_double
{
2020-07-21 15:49:58 -04:00
"mappings": {
"properties": {
"field": { "type": "date" }
2019-03-20 11:50:28 -04:00
}
2020-07-21 15:49:58 -04:00
}
2019-03-20 11:50:28 -04:00
}
--------------------------------------------------
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-20 11:50:28 -04:00
--------------------------------------------------
PUT /index_long
{
2020-07-21 15:49:58 -04:00
"mappings": {
"properties": {
"field": { "type": "date_nanos" }
2019-03-20 11:50:28 -04:00
}
2020-07-21 15:49:58 -04:00
}
2019-03-20 11:50:28 -04:00
}
--------------------------------------------------
// TEST[continued]
Values in these indices are stored with different resolutions so sorting on these
fields will always sort the `date` before the `date_nanos` (ascending order).
With the `numeric_type` type option it is possible to set a single resolution for
the sort, setting to `date` will convert the `date_nanos` to the millisecond resolution
while `date_nanos` will convert the values in the `date` field to the nanoseconds resolution:
2019-09-09 12:35:50 -04:00
[source,console]
2019-03-20 11:50:28 -04:00
--------------------------------------------------
POST /index_long,index_double/_search
{
"sort" : [
{
"field" : {
"numeric_type" : "date_nanos"
}
}
]
}
--------------------------------------------------
// TEST[continued]
[WARNING]
To avoid overflow, the conversion to `date_nanos` cannot be applied on dates before
1970 and after 2262 as nanoseconds are represented as longs.
2015-08-06 11:24:29 -04:00
[[nested-sorting]]
2019-07-19 14:35:36 -04:00
===== Sorting within nested objects.
2013-08-28 19:24:34 -04:00
2013-09-03 15:27:49 -04:00
Elasticsearch also supports sorting by
2013-08-28 19:24:34 -04:00
fields that are inside one or more nested objects. The sorting by nested
2017-08-30 12:52:56 -04:00
field support has a `nested` sort option with the following properties:
2013-08-28 19:24:34 -04:00
2017-08-30 12:52:56 -04:00
`path`::
2015-11-19 12:20:48 -05:00
Defines on which nested object to sort. The actual
sort field must be a direct field inside this nested object.
When sorting by nested field, this field is mandatory.
2013-08-28 19:24:34 -04:00
2017-08-30 12:52:56 -04:00
`filter`::
2015-11-19 12:20:48 -05:00
A filter that the inner objects inside the nested path
2013-08-28 19:24:34 -04:00
should match with in order for its field values to be taken into account
by sorting. Common case is to repeat the query / filter inside the
nested filter or query. By default no `nested_filter` is active.
2018-10-05 06:02:47 -04:00
`max_children`::
The maximum number of children to consider per root document
when picking the sort value. Defaults to unlimited.
2017-08-30 12:52:56 -04:00
`nested`::
Same as top-level `nested` but applies to another nested path within the
current nested object.
2013-08-28 19:24:34 -04:00
2017-08-30 12:52:56 -04:00
[WARNING]
2017-12-05 14:46:40 -05:00
.Nested sort options before Elasticsearch 6.1
2017-08-30 12:52:56 -04:00
============================================
The `nested_path` and `nested_filter` options have been deprecated in
favor of the options documented above.
============================================
2019-07-19 14:35:36 -04:00
====== Nested sorting examples
2013-08-28 19:24:34 -04:00
2015-09-09 12:39:23 -04:00
In the below example `offer` is a field of type `nested`.
2017-11-29 03:44:25 -05:00
The nested `path` needs to be specified; otherwise, Elasticsearch doesn't know on what nested level sort values need to be captured.
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
POST /_search
{
2013-08-28 19:24:34 -04:00
"query" : {
2016-05-17 09:14:37 -04:00
"term" : { "product" : "chocolate" }
2013-08-28 19:24:34 -04:00
},
"sort" : [
{
"offer.price" : {
"mode" : "avg",
"order" : "asc",
2017-08-30 12:52:56 -04:00
"nested": {
"path": "offer",
"filter": {
"term" : { "offer.color" : "blue" }
}
2013-08-28 19:24:34 -04:00
}
}
}
]
2016-05-17 09:14:37 -04:00
}
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2017-08-30 12:52:56 -04:00
In the below example `parent` and `child` fields are of type `nested`.
2017-11-29 03:44:25 -05:00
The `nested_path` needs to be specified at each level; otherwise, Elasticsearch doesn't know on what nested level sort values need to be captured.
2017-08-30 12:52:56 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2017-08-30 12:52:56 -04:00
--------------------------------------------------
POST /_search
{
"query": {
"nested": {
"path": "parent",
"query": {
"bool": {
"must": {"range": {"parent.age": {"gte": 21}}},
"filter": {
"nested": {
"path": "parent.child",
"query": {"match": {"parent.child.name": "matt"}}
}
}
}
}
}
},
"sort" : [
{
"parent.child.age" : {
"mode" : "min",
"order" : "asc",
"nested": {
"path": "parent",
"filter": {
"range": {"parent.age": {"gte": 21}}
},
"nested": {
"path": "parent.child",
"filter": {
"match": {"parent.child.name": "matt"}
}
}
}
}
}
]
}
--------------------------------------------------
2013-08-28 19:24:34 -04:00
2013-09-03 15:27:49 -04:00
Nested sorting is also supported when sorting by
2013-08-28 19:24:34 -04:00
scripts and sorting by geo distance.
2019-07-19 14:35:36 -04:00
===== Missing Values
2013-08-28 19:24:34 -04:00
2013-09-04 16:06:38 -04:00
The `missing` parameter specifies how docs which are missing
2018-09-18 10:46:22 -04:00
the sort field should be treated: The `missing` value can be
2013-09-04 16:06:38 -04:00
set to `_last`, `_first`, or a custom value (that
2016-06-27 12:05:03 -04:00
will be used for missing docs as the sort value).
The default is `_last`.
For example:
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort" : [
{ "price" : {"missing" : "_last"} }
],
"query" : {
"term" : { "product" : "chocolate" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2013-09-03 15:27:49 -04:00
NOTE: If a nested inner object doesn't match with
2013-08-28 19:24:34 -04:00
the `nested_filter` then a missing value is used.
2019-07-19 14:35:36 -04:00
===== Ignoring Unmapped Fields
2013-08-28 19:24:34 -04:00
By default, the search request will fail if there is no mapping
2018-09-18 10:46:22 -04:00
associated with a field. The `unmapped_type` option allows you to ignore
2014-07-25 10:57:53 -04:00
fields that have no mapping and not sort by them. The value of this
parameter is used to determine what sort values to emit. Here is an
example of how it can be used:
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort" : [
{ "price" : {"unmapped_type" : "long"} }
],
"query" : {
"term" : { "product" : "chocolate" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2014-07-25 10:57:53 -04:00
If any of the indices that are queried doesn't have a mapping for `price`
then Elasticsearch will handle it as if there was a mapping of type
`long`, with all documents in this index having no value for this field.
2015-08-06 11:24:29 -04:00
[[geo-sorting]]
2019-07-19 14:35:36 -04:00
===== Geo Distance Sorting
2013-08-28 19:24:34 -04:00
2016-11-24 10:05:41 -05:00
Allow to sort by `_geo_distance`. Here is an example, assuming `pin.location` is a field of type `geo_point`:
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort" : [
{
"_geo_distance" : {
"pin.location" : [-70, 40],
"order" : "asc",
"unit" : "km",
"mode" : "min",
"distance_type" : "arc",
"ignore_unmapped": true
}
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query" : {
"term" : { "user" : "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2014-08-14 08:54:34 -04:00
`distance_type`::
2016-08-05 19:29:01 -04:00
How to compute the distance. Can either be `arc` (default), or `plane` (faster, but inaccurate on long distances and close to the poles).
2014-08-14 08:54:34 -04:00
2016-11-24 10:05:41 -05:00
`mode`::
2016-10-07 09:26:34 -04:00
What to do in case a field has several geo points. By default, the shortest
distance is taken into account when sorting in ascending order and the
longest distance when sorting in descending order. Supported values are
`min`, `max`, `median` and `avg`.
`unit`::
The unit to use when computing sort values. The default is `m` (meters).
2018-06-07 11:11:13 -04:00
`ignore_unmapped`::
Indicates if the unmapped field should be treated as a missing value. Setting it to `true` is equivalent to specifying
2018-09-18 10:46:22 -04:00
an `unmapped_type` in the field sort. The default is `false` (unmapped field cause the search to fail).
2018-06-07 11:11:13 -04:00
2016-10-07 09:26:34 -04:00
NOTE: geo distance sorting does not support configurable missing values: the
distance will always be considered equal to +Infinity+ when a document does not
have values for the field that is used for distance computation.
2013-08-28 19:24:34 -04:00
The following formats are supported in providing the coordinates:
2019-07-19 14:35:36 -04:00
====== Lat Lon as Properties
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort" : [
{
"_geo_distance" : {
"pin.location" : {
"lat" : 40,
"lon" : -70
},
"order" : "asc",
"unit" : "km"
}
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query" : {
"term" : { "user" : "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2019-07-19 14:35:36 -04:00
====== Lat Lon as String
2013-08-28 19:24:34 -04:00
Format in `lat,lon`.
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort": [
{
"_geo_distance": {
"pin.location": "40,-70",
"order": "asc",
"unit": "km"
}
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query": {
"term": { "user": "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2019-07-19 14:35:36 -04:00
====== Geohash
2013-08-28 19:24:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort": [
{
"_geo_distance": {
"pin.location": "drm3btev3e86",
"order": "asc",
"unit": "km"
}
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query": {
"term": { "user": "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2019-07-19 14:35:36 -04:00
====== Lat Lon as Array
2013-08-28 19:24:34 -04:00
Format in `[lon, lat]`, note, the order of lon/lat here in order to
conform with http://geojson.org/[GeoJSON].
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"sort": [
{
"_geo_distance": {
"pin.location": [ -70, 40 ],
"order": "asc",
"unit": "km"
}
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query": {
"term": { "user": "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2014-07-30 12:48:36 -04:00
2019-07-19 14:35:36 -04:00
===== Multiple reference points
2014-07-30 12:48:36 -04:00
Multiple geo points can be passed as an array containing any `geo_point` format, for example
2019-09-09 12:35:50 -04:00
[source,console]
2014-08-08 05:25:14 -04:00
--------------------------------------------------
2016-09-15 11:57:05 -04:00
GET /_search
{
2020-07-21 15:49:58 -04:00
"sort": [
{
"_geo_distance": {
"pin.location": [ [ -70, 40 ], [ -71, 42 ] ],
"order": "asc",
"unit": "km"
}
2016-09-15 11:57:05 -04:00
}
2020-07-21 15:49:58 -04:00
],
"query": {
"term": { "user": "kimchy" }
}
2016-09-15 11:57:05 -04:00
}
2014-08-08 05:25:14 -04:00
--------------------------------------------------
2014-07-30 12:48:36 -04:00
and so forth.
2014-08-14 08:54:34 -04:00
The final distance for a document will then be `min`/`max`/`avg` (defined via `mode`) distance of all points contained in the document to all points given in the sort request.
2014-07-30 12:48:36 -04:00
2019-07-19 14:35:36 -04:00
===== Script Based Sorting
2013-08-28 19:24:34 -04:00
Allow to sort based on custom scripts, here is an example:
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"query": {
"term": { "user": "kimchy" }
},
"sort": {
"_script": {
"type": "number",
"script": {
"lang": "painless",
"source": "doc['field_name'].value * params.factor",
"params": {
"factor": 1.1
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
},
"order": "asc"
2013-08-28 19:24:34 -04:00
}
2020-07-21 15:49:58 -04:00
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2019-07-19 14:35:36 -04:00
===== Track Scores
2013-08-28 19:24:34 -04:00
When sorting on a field, scores are not computed. By setting
`track_scores` to true, scores will still be computed and tracked.
2019-09-09 12:35:50 -04:00
[source,console]
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-17 09:14:37 -04:00
GET /_search
2013-08-28 19:24:34 -04:00
{
2020-07-21 15:49:58 -04:00
"track_scores": true,
"sort" : [
{ "post_date" : {"order" : "desc"} },
{ "name" : "desc" },
{ "age" : "desc" }
],
"query" : {
"term" : { "user" : "kimchy" }
}
2013-08-28 19:24:34 -04:00
}
--------------------------------------------------
2019-07-19 14:35:36 -04:00
===== Memory Considerations
2013-08-28 19:24:34 -04:00
When sorting, the relevant sorted field values are loaded into memory.
This means that per shard, there should be enough memory to contain
them. For string based types, the field sorted on should not be analyzed
/ tokenized. For numeric types, if possible, it is recommended to
2015-06-08 12:07:52 -04:00
explicitly set the type to narrower types (like `short`, `integer` and
2013-08-28 19:24:34 -04:00
`float`).