2018-09-05 18:19:49 -04:00
|
|
|
[role="xpack"]
|
|
|
|
[testenv="basic"]
|
|
|
|
[[sql-functions-aggs]]
|
|
|
|
=== Aggregate Functions
|
|
|
|
|
|
|
|
Functions for computing a _single_ result from a set of input values.
|
|
|
|
{es-sql} supports aggregate functions only alongside <<sql-syntax-group-by,grouping>> (implicit or explicit).
|
|
|
|
|
2019-03-27 11:18:14 -04:00
|
|
|
[[sql-functions-aggs-general]]
|
|
|
|
[float]
|
|
|
|
=== General Purpose
|
2018-09-05 18:19:49 -04:00
|
|
|
|
|
|
|
[[sql-functions-aggs-avg]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `AVG`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
AVG(numeric_field) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Input*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
<1> numeric field
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: `double` numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the https://en.wikipedia.org/wiki/Arithmetic_mean[Average] (arithmetic mean) of input values.
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggAvg]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggAvgScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-count]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `COUNT`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
COUNT(expression) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a field name, wildcard (`*`) or any numeric value
|
|
|
|
|
|
|
|
*Output*: numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the total number (count) of input values.
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2019-01-10 02:51:51 -05:00
|
|
|
In case of `COUNT(*)` or `COUNT(<literal>)`, _all_ values are considered (including `null` or missing ones).
|
|
|
|
|
|
|
|
In case of `COUNT(<field_name>)` `null` values are not considered.
|
|
|
|
|
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountStar]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2019-01-10 02:51:51 -05:00
|
|
|
|
|
|
|
[[sql-functions-aggs-count-all]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `COUNT(ALL)`
|
2019-01-10 02:51:51 -05:00
|
|
|
|
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
COUNT(ALL field_name) <1>
|
2019-01-10 02:51:51 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a field name
|
|
|
|
|
|
|
|
*Output*: numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the total number (count) of all _non-null_ input values. `COUNT(<field_name>)` and `COUNT(ALL <field_name>)` are equivalent.
|
2019-01-10 02:51:51 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountAll]
|
2019-01-10 02:51:51 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountAllScalars]
|
|
|
|
--------------------------------------------------
|
2019-01-10 02:51:51 -05:00
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-count-distinct]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `COUNT(DISTINCT)`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
COUNT(DISTINCT field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Input*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
<1> a field name
|
|
|
|
|
|
|
|
*Output*: numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the total number of _distinct non-null_ values in input values.
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountDistinct]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountDistinctScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2019-01-31 09:33:05 -05:00
|
|
|
[[sql-functions-aggs-first]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `FIRST/FIRST_VALUE`
|
2019-01-31 09:33:05 -05:00
|
|
|
|
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
----------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
FIRST(
|
|
|
|
field_name <1>
|
|
|
|
[, ordering_field_name]) <2>
|
2019-01-31 09:33:05 -05:00
|
|
|
----------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> target field for the aggregation
|
|
|
|
<2> optional field used for ordering
|
|
|
|
|
|
|
|
*Output*: same type as the input
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the first **non-NULL** value (if such exists) of the `field_name` input column sorted by
|
2019-01-31 09:33:05 -05:00
|
|
|
the `ordering_field_name` column. If `ordering_field_name` is not provided, only the `field_name`
|
|
|
|
column is used for the sorting. E.g.:
|
|
|
|
|
|
|
|
[cols="<,<"]
|
|
|
|
|===
|
|
|
|
s| a | b
|
|
|
|
|
|
|
|
| 100 | 1
|
|
|
|
| 200 | 1
|
|
|
|
| 1 | 2
|
|
|
|
| 2 | 2
|
|
|
|
| 10 | null
|
|
|
|
| 20 | null
|
|
|
|
| null | null
|
|
|
|
|===
|
|
|
|
|
|
|
|
[source, sql]
|
|
|
|
----------------------
|
|
|
|
SELECT FIRST(a) FROM t
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
will result in:
|
|
|
|
[cols="<"]
|
|
|
|
|===
|
|
|
|
s| FIRST(a)
|
|
|
|
| 1
|
|
|
|
|===
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
[source, sql]
|
|
|
|
-------------------------
|
|
|
|
SELECT FIRST(a, b) FROM t
|
|
|
|
-------------------------
|
|
|
|
|
|
|
|
will result in:
|
|
|
|
[cols="<"]
|
|
|
|
|===
|
|
|
|
s| FIRST(a, b)
|
|
|
|
| 100
|
|
|
|
|===
|
|
|
|
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-----------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithOneArg]
|
2019-01-31 09:33:05 -05:00
|
|
|
-----------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithOneArgAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
--------------------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-----------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithTwoArgs]
|
2019-01-31 09:33:05 -05:00
|
|
|
-----------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
---------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithTwoArgsAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
---------------------------------------------------------------------
|
|
|
|
|
|
|
|
`FIRST_VALUE` is a name alias and can be used instead of `FIRST`, e.g.:
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstValueWithTwoArgsAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
--------------------------------------------------------------------------
|
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[firstValueWithTwoArgsAndGroupByScalars]
|
|
|
|
--------------------------------------------------------------------------
|
|
|
|
|
2019-01-31 09:33:05 -05:00
|
|
|
[NOTE]
|
|
|
|
`FIRST` cannot be used in a HAVING clause.
|
|
|
|
[NOTE]
|
|
|
|
`FIRST` cannot be used with columns of type <<text, `text`>> unless
|
|
|
|
the field is also <<before-enabling-fielddata,saved as a keyword>>.
|
|
|
|
|
|
|
|
[[sql-functions-aggs-last]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `LAST/LAST_VALUE`
|
2019-01-31 09:33:05 -05:00
|
|
|
|
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
LAST(
|
|
|
|
field_name <1>
|
|
|
|
[, ordering_field_name]) <2>
|
2019-01-31 09:33:05 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> target field for the aggregation
|
|
|
|
<2> optional field used for ordering
|
|
|
|
|
|
|
|
*Output*: same type as the input
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: It's the inverse of <<sql-functions-aggs-first>>. Returns the last **non-NULL** value (if such exists) of the
|
|
|
|
`field_name` input column sorted descending by the `ordering_field_name` column. If `ordering_field_name` is not
|
2019-01-31 09:33:05 -05:00
|
|
|
provided, only the `field_name` column is used for the sorting. E.g.:
|
|
|
|
|
|
|
|
[cols="<,<"]
|
|
|
|
|===
|
|
|
|
s| a | b
|
|
|
|
|
|
|
|
| 10 | 1
|
|
|
|
| 20 | 1
|
|
|
|
| 1 | 2
|
|
|
|
| 2 | 2
|
|
|
|
| 100 | null
|
|
|
|
| 200 | null
|
|
|
|
| null | null
|
|
|
|
|===
|
|
|
|
|
|
|
|
[source, sql]
|
|
|
|
------------------------
|
|
|
|
SELECT LAST(a) FROM t
|
|
|
|
------------------------
|
|
|
|
|
|
|
|
will result in:
|
|
|
|
[cols="<"]
|
|
|
|
|===
|
|
|
|
s| LAST(a)
|
|
|
|
| 200
|
|
|
|
|===
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
[source, sql]
|
|
|
|
------------------------
|
|
|
|
SELECT LAST(a, b) FROM t
|
|
|
|
------------------------
|
|
|
|
|
|
|
|
will result in:
|
|
|
|
[cols="<"]
|
|
|
|
|===
|
|
|
|
s| LAST(a, b)
|
|
|
|
| 2
|
|
|
|
|===
|
|
|
|
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-----------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithOneArg]
|
2019-01-31 09:33:05 -05:00
|
|
|
-----------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithOneArgAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
-------------------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-----------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithTwoArgs]
|
2019-01-31 09:33:05 -05:00
|
|
|
-----------------------------------------------------------
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithTwoArgsAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
--------------------------------------------------------------------
|
|
|
|
|
|
|
|
`LAST_VALUE` is a name alias and can be used instead of `LAST`, e.g.:
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-------------------------------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastValueWithTwoArgsAndGroupBy]
|
2019-01-31 09:33:05 -05:00
|
|
|
-------------------------------------------------------------------------
|
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
-------------------------------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[lastValueWithTwoArgsAndGroupByScalars]
|
|
|
|
-------------------------------------------------------------------------
|
|
|
|
|
2019-01-31 09:33:05 -05:00
|
|
|
[NOTE]
|
|
|
|
`LAST` cannot be used in `HAVING` clause.
|
|
|
|
[NOTE]
|
|
|
|
`LAST` cannot be used with columns of type <<text, `text`>> unless
|
|
|
|
the field is also <<before-enabling-fielddata,`saved as a keyword`>>.
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-max]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `MAX`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
MAX(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: same type as the input
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the maximum value across input values in the field `field_name`.
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMax]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMaxScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2019-01-31 09:33:05 -05:00
|
|
|
[NOTE]
|
|
|
|
`MAX` on a field of type <<text, `text`>> or <<keyword, `keyword`>> is translated into
|
|
|
|
<<sql-functions-aggs-last>> and therefore, it cannot be used in `HAVING` clause.
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-min]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `MIN`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
MIN(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: same type as the input
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the minimum value across input values in the field `field_name`.
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMin]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2019-01-31 09:33:05 -05:00
|
|
|
[NOTE]
|
|
|
|
`MIN` on a field of type <<text, `text`>> or <<keyword, `keyword`>> is translated into
|
|
|
|
<<sql-functions-aggs-first>> and therefore, it cannot be used in `HAVING` clause.
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-sum]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `SUM`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
SUM(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
<1> a numeric field
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: `bigint` for integer input, `double` for floating points
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*: Returns the sum of input values in the field `field_name`.
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSum]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2019-03-27 11:18:14 -04:00
|
|
|
[[sql-functions-aggs-statistics]]
|
|
|
|
[float]
|
|
|
|
=== Statistics
|
2018-09-05 18:19:49 -04:00
|
|
|
|
|
|
|
[[sql-functions-aggs-kurtosis]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `KURTOSIS`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
KURTOSIS(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
https://en.wikipedia.org/wiki/Kurtosis[Quantify] the shape of the distribution of input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggKurtosis]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
[NOTE]
|
|
|
|
====
|
|
|
|
`KURTOSIS` cannot be used on top of scalar functions or operators but only directly on a field. So, for example,
|
|
|
|
the following is not allowed and an error is returned:
|
|
|
|
[source, sql]
|
|
|
|
---------------------------------------
|
|
|
|
SELECT KURTOSIS(salary / 12.0), gender FROM emp GROUP BY gender
|
|
|
|
---------------------------------------
|
|
|
|
====
|
|
|
|
|
2019-03-15 05:45:10 -04:00
|
|
|
[[sql-functions-aggs-mad]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `MAD`
|
2019-03-15 05:45:10 -04:00
|
|
|
|
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
MAD(field_name) <1>
|
2019-03-15 05:45:10 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2019-03-15 05:45:10 -04:00
|
|
|
|
|
|
|
https://en.wikipedia.org/wiki/Median_absolute_deviation[Measure] the variability of the input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMad]
|
2019-03-15 05:45:10 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMadScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-percentile]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `PERCENTILE`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
PERCENTILE(
|
|
|
|
field_name, <1>
|
|
|
|
numeric_exp) <2>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
2019-01-03 06:55:09 -05:00
|
|
|
<2> a numeric expression (must be a constant and not based on a field)
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
Returns the nth https://en.wikipedia.org/wiki/Percentile[percentile] (represented by `numeric_exp` parameter)
|
|
|
|
of input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentile]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-percentile-rank]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `PERCENTILE_RANK`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
PERCENTILE_RANK(
|
|
|
|
field_name, <1>
|
|
|
|
numeric_exp) <2>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
2019-01-03 06:55:09 -05:00
|
|
|
<2> a numeric expression (must be a constant and not based on a field)
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: `double` numeric value
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
Returns the nth https://en.wikipedia.org/wiki/Percentile_rank[percentile rank] (represented by `numeric_exp` parameter)
|
|
|
|
of input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileRank]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileRankScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-skewness]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `SKEWNESS`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
SKEWNESS(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
https://en.wikipedia.org/wiki/Skewness[Quantify] the asymmetric distribution of input values in the field `field_name`.
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSkewness]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
[NOTE]
|
|
|
|
====
|
|
|
|
`SKEWNESS` cannot be used on top of scalar functions but only directly on a field. So, for example, the following is
|
|
|
|
not allowed and an error is returned:
|
|
|
|
[source, sql]
|
|
|
|
---------------------------------------
|
|
|
|
SELECT SKEWNESS(ROUND(salary / 12.0, 2), gender FROM emp GROUP BY gender
|
|
|
|
---------------------------------------
|
|
|
|
====
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-stddev-pop]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `STDDEV_POP`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
STDDEV_POP(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Input*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
<1> a numeric field
|
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
Returns the https://en.wikipedia.org/wiki/Standard_deviations[population standard deviation] of input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevPop]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevPopScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-sum-squares]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `SUM_OF_SQUARES`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
SUM_OF_SQUARES(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
*Output*: `double` numeric value
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-12-21 16:25:54 -05:00
|
|
|
|
|
|
|
Returns the https://en.wikipedia.org/wiki/Total_sum_of_squares[sum of squares] of input values in the field `field_name`.
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumOfSquares]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2020-04-17 06:41:22 -04:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumOfSquaresScalars]
|
|
|
|
--------------------------------------------------
|
|
|
|
|
2018-09-05 18:19:49 -04:00
|
|
|
[[sql-functions-aggs-var-pop]]
|
2019-03-27 11:18:14 -04:00
|
|
|
==== `VAR_POP`
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
.Synopsis:
|
|
|
|
[source, sql]
|
|
|
|
--------------------------------------------------
|
2019-04-22 09:33:55 -04:00
|
|
|
VAR_POP(field_name) <1>
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
|
|
|
|
|
|
|
*Input*:
|
|
|
|
|
|
|
|
<1> a numeric field
|
|
|
|
|
|
|
|
*Output*: `double` numeric value
|
|
|
|
|
2020-02-14 11:58:45 -05:00
|
|
|
*Description*:
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
Returns the https://en.wikipedia.org/wiki/Variance[population variance] of input values in the field `field_name`.
|
2018-09-05 18:19:49 -04:00
|
|
|
|
2018-12-21 16:25:54 -05:00
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
2019-03-25 09:22:59 -04:00
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarPop]
|
2018-12-21 16:25:54 -05:00
|
|
|
--------------------------------------------------
|
2020-04-17 06:41:22 -04:00
|
|
|
|
|
|
|
|
|
|
|
["source","sql",subs="attributes,macros"]
|
|
|
|
--------------------------------------------------
|
|
|
|
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarPopScalars]
|
|
|
|
--------------------------------------------------
|