2018-06-19 16:57:10 -04:00
|
|
|
[role="xpack"]
|
2017-06-23 14:42:37 -04:00
|
|
|
[[ml-configuring-transform]]
|
2018-06-19 16:57:10 -04:00
|
|
|
=== Transforming data with script fields
|
2017-06-23 14:42:37 -04:00
|
|
|
|
|
|
|
If you use {dfeeds}, you can add scripts to transform your data before
|
|
|
|
it is analyzed. {dfeeds-cap} contain an optional `script_fields` property, where
|
|
|
|
you can specify scripts that evaluate custom expressions and return script
|
|
|
|
fields.
|
|
|
|
|
|
|
|
If your {dfeed} defines script fields, you can use those fields in your job.
|
|
|
|
For example, you can use the script fields in the analysis functions in one or
|
|
|
|
more detectors.
|
|
|
|
|
|
|
|
* <<ml-configuring-transform1>>
|
|
|
|
* <<ml-configuring-transform2>>
|
|
|
|
* <<ml-configuring-transform3>>
|
|
|
|
* <<ml-configuring-transform4>>
|
|
|
|
* <<ml-configuring-transform5>>
|
|
|
|
* <<ml-configuring-transform6>>
|
|
|
|
* <<ml-configuring-transform7>>
|
|
|
|
* <<ml-configuring-transform8>>
|
|
|
|
* <<ml-configuring-transform9>>
|
|
|
|
|
|
|
|
The following indices APIs create and add content to an index that is used in
|
|
|
|
subsequent examples:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT /my_index
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"mappings":{
|
2019-01-22 09:13:52 -05:00
|
|
|
"properties": {
|
|
|
|
"@timestamp": {
|
|
|
|
"type": "date"
|
|
|
|
},
|
|
|
|
"aborted_count": {
|
|
|
|
"type": "long"
|
|
|
|
},
|
|
|
|
"another_field": {
|
|
|
|
"type": "keyword" <1>
|
|
|
|
},
|
|
|
|
"clientip": {
|
|
|
|
"type": "keyword"
|
|
|
|
},
|
|
|
|
"coords": {
|
|
|
|
"properties": {
|
|
|
|
"lat": {
|
|
|
|
"type": "keyword"
|
|
|
|
},
|
|
|
|
"lon": {
|
|
|
|
"type": "keyword"
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
},
|
|
|
|
"error_count": {
|
|
|
|
"type": "long"
|
|
|
|
},
|
|
|
|
"query": {
|
|
|
|
"type": "keyword"
|
|
|
|
},
|
|
|
|
"some_field": {
|
|
|
|
"type": "keyword"
|
|
|
|
},
|
|
|
|
"tokenstring1":{
|
|
|
|
"type":"keyword"
|
|
|
|
},
|
|
|
|
"tokenstring2":{
|
|
|
|
"type":"keyword"
|
|
|
|
},
|
|
|
|
"tokenstring3":{
|
|
|
|
"type":"keyword"
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-22 14:54:04 -04:00
|
|
|
PUT /my_index/_doc/1
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"@timestamp":"2017-03-23T13:00:00",
|
|
|
|
"error_count":36320,
|
|
|
|
"aborted_count":4156,
|
|
|
|
"some_field":"JOE",
|
|
|
|
"another_field":"SMITH ",
|
|
|
|
"tokenstring1":"foo-bar-baz",
|
|
|
|
"tokenstring2":"foo bar baz",
|
|
|
|
"tokenstring3":"foo-bar-19",
|
|
|
|
"query":"www.ml.elastic.co",
|
|
|
|
"clientip":"123.456.78.900",
|
|
|
|
"coords": {
|
|
|
|
"lat" : 41.44,
|
|
|
|
"lon":90.5
|
|
|
|
}
|
|
|
|
}
|
|
|
|
----------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:SETUP]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> In this example, string fields are mapped as `keyword` fields to support
|
|
|
|
aggregation. If you want both a full text (`text`) and a keyword (`keyword`)
|
|
|
|
version of the same field, use multi-fields. For more information, see
|
|
|
|
{ref}/multi-fields.html[fields].
|
|
|
|
|
|
|
|
[[ml-configuring-transform1]]
|
|
|
|
.Example 1: Adding two numerical fields
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/anomaly_detectors/test1
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"analysis_config":{
|
|
|
|
"bucket_span": "10m",
|
|
|
|
"detectors":[
|
|
|
|
{
|
|
|
|
"function":"mean",
|
|
|
|
"field_name": "total_error_count", <1>
|
|
|
|
"detector_description": "Custom script field transformation"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"data_description": {
|
|
|
|
"time_field":"@timestamp",
|
|
|
|
"time_format":"epoch_ms"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/datafeeds/datafeed-test1
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"job_id": "test1",
|
|
|
|
"indices": ["my_index"],
|
|
|
|
"query": {
|
|
|
|
"match_all": {
|
|
|
|
"boost": 1
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"script_fields": {
|
|
|
|
"total_error_count": { <2>
|
|
|
|
"script": {
|
|
|
|
"lang": "expression",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['error_count'].value + doc['aborted_count'].value"
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
----------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:needs-licence]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> A script field named `total_error_count` is referenced in the detector
|
|
|
|
within the job.
|
|
|
|
<2> The script field is defined in the {dfeed}.
|
|
|
|
|
|
|
|
This `test1` job contains a detector that uses a script field in a mean analysis
|
|
|
|
function. The `datafeed-test1` {dfeed} defines the script field. It contains a
|
|
|
|
script that adds two fields in the document to produce a "total" error count.
|
|
|
|
|
|
|
|
The syntax for the `script_fields` property is identical to that used by {es}.
|
|
|
|
For more information, see {ref}/search-request-script-fields.html[Script Fields].
|
|
|
|
|
|
|
|
You can preview the contents of the {dfeed} by using the following API:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test1/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
----------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
|
|
|
|
In this example, the API returns the following results, which contain a sum of
|
|
|
|
the `error_count` and `aborted_count` values:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"total_error_count": 40476
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
NOTE: This example demonstrates how to use script fields, but it contains
|
2019-07-12 11:25:23 -04:00
|
|
|
insufficient data to generate meaningful results.
|
|
|
|
|
|
|
|
//For a full demonstration of
|
|
|
|
//how to create jobs with sample data, see <<ml-getting-started>>.
|
2017-06-23 14:42:37 -04:00
|
|
|
|
|
|
|
You can alternatively use {kib} to create an advanced job that uses script
|
|
|
|
fields. To add the `script_fields` property to your {dfeed}, you must use the
|
|
|
|
**Edit JSON** tab. For example:
|
|
|
|
|
|
|
|
[role="screenshot"]
|
|
|
|
image::images/ml-scriptfields.jpg[Adding script fields to a {dfeed} in {kib}]
|
|
|
|
|
|
|
|
[[ml-configuring-transform-examples]]
|
|
|
|
==== Common Script Field Examples
|
|
|
|
|
|
|
|
While the possibilities are limitless, there are a number of common scenarios
|
|
|
|
where you might use script fields in your {dfeeds}.
|
|
|
|
|
|
|
|
[NOTE]
|
|
|
|
===============================
|
|
|
|
Some of these examples use regular expressions. By default, regular
|
|
|
|
expressions are disabled because they circumvent the protection that Painless
|
|
|
|
provides against long running and memory hungry scripts. For more information,
|
|
|
|
see {ref}/modules-scripting-painless.html[Painless Scripting Language].
|
|
|
|
|
|
|
|
Machine learning analysis is case sensitive. For example, "John" is considered
|
|
|
|
to be different than "john". This is one reason you might consider using scripts
|
|
|
|
that convert your strings to upper or lowercase letters.
|
|
|
|
===============================
|
|
|
|
|
|
|
|
[[ml-configuring-transform2]]
|
|
|
|
.Example 2: Concatenating strings
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/anomaly_detectors/test2
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"analysis_config":{
|
|
|
|
"bucket_span": "10m",
|
|
|
|
"detectors":[
|
|
|
|
{
|
|
|
|
"function":"low_info_content",
|
|
|
|
"field_name":"my_script_field", <1>
|
|
|
|
"detector_description": "Custom script field transformation"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"data_description": {
|
|
|
|
"time_field":"@timestamp",
|
|
|
|
"time_format":"epoch_ms"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/datafeeds/datafeed-test2
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"job_id": "test2",
|
|
|
|
"indices": ["my_index"],
|
|
|
|
"query": {
|
|
|
|
"match_all": {
|
|
|
|
"boost": 1
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['some_field'].value + '_' + doc['another_field'].value" <2>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:needs-licence]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> The script field has a rather generic name in this case, since it will
|
|
|
|
be used for various tests in the subsequent examples.
|
|
|
|
<2> The script field uses the plus (+) operator to concatenate strings.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that "JOE"
|
|
|
|
and "SMITH " have been concatenated and an underscore was added:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "JOE_SMITH "
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform3]]
|
|
|
|
.Example 3: Trimming strings
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
POST _ml/datafeeds/datafeed-test2/_update
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['another_field'].value.trim()" <1>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> This script field uses the `trim()` function to trim extra white space from a
|
|
|
|
string.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that "SMITH "
|
|
|
|
has been trimmed to "SMITH":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "SMITH"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform4]]
|
|
|
|
.Example 4: Converting strings to lowercase
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
POST _ml/datafeeds/datafeed-test2/_update
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['some_field'].value.toLowerCase()" <1>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> This script field uses the `toLowerCase` function to convert a string to all
|
|
|
|
lowercase letters. Likewise, you can use the `toUpperCase{}` function to convert
|
|
|
|
a string to uppercase letters.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that "JOE"
|
|
|
|
has been converted to "joe":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "joe"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform5]]
|
|
|
|
.Example 5: Converting strings to mixed case formats
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
POST _ml/datafeeds/datafeed-test2/_update
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['some_field'].value.substring(0, 1).toUpperCase() + doc['some_field'].value.substring(1).toLowerCase()" <1>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> This script field is a more complicated example of case manipulation. It uses
|
|
|
|
the `subString()` function to capitalize the first letter of a string and
|
|
|
|
converts the remaining characters to lowercase.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that "JOE"
|
|
|
|
has been converted to "Joe":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "Joe"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform6]]
|
|
|
|
.Example 6: Replacing tokens
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
POST _ml/datafeeds/datafeed-test2/_update
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "/\\s/.matcher(doc['tokenstring2'].value).replaceAll('_')" <1>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> This script field uses regular expressions to replace white
|
|
|
|
space with underscores.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that
|
|
|
|
"foo bar baz" has been converted to "foo_bar_baz":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "foo_bar_baz"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform7]]
|
|
|
|
.Example 7: Regular expression matching and concatenation
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
POST _ml/datafeeds/datafeed-test2/_update
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"script_fields": {
|
|
|
|
"my_script_field": {
|
|
|
|
"script": {
|
|
|
|
"lang": "painless",
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "def m = /(.*)-bar-([0-9][0-9])/.matcher(doc['tokenstring3'].value); return m.find() ? m.group(1) + '_' + m.group(2) : '';" <1>
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test2/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:continued]
|
2017-06-23 14:42:37 -04:00
|
|
|
<1> This script field looks for a specific regular expression pattern and emits the
|
|
|
|
matched groups as a concatenated string. If no match is found, it emits an empty
|
|
|
|
string.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that
|
|
|
|
"foo-bar-19" has been converted to "foo_19":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_script_field": "foo_19"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform8]]
|
|
|
|
.Example 8: Splitting strings by domain name
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/anomaly_detectors/test3
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"description":"DNS tunneling",
|
|
|
|
"analysis_config":{
|
|
|
|
"bucket_span": "30m",
|
|
|
|
"influencers": ["clientip","hrd"],
|
|
|
|
"detectors":[
|
|
|
|
{
|
|
|
|
"function":"high_info_content",
|
|
|
|
"field_name": "sub",
|
|
|
|
"over_field_name": "hrd",
|
|
|
|
"exclude_frequent":"all"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"data_description": {
|
|
|
|
"time_field":"@timestamp",
|
|
|
|
"time_format":"epoch_ms"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/datafeeds/datafeed-test3
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"job_id": "test3",
|
|
|
|
"indices": ["my_index"],
|
|
|
|
"query": {
|
|
|
|
"match_all": {
|
|
|
|
"boost": 1
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"script_fields":{
|
|
|
|
"sub":{
|
2018-10-17 18:54:21 -04:00
|
|
|
"script":"return domainSplit(doc['query'].value).get(0);"
|
2017-06-23 14:42:37 -04:00
|
|
|
},
|
|
|
|
"hrd":{
|
2018-10-17 18:54:21 -04:00
|
|
|
"script":"return domainSplit(doc['query'].value).get(1);"
|
2017-06-23 14:42:37 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test3/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:needs-licence]
|
2017-06-23 14:42:37 -04:00
|
|
|
|
|
|
|
If you have a single field that contains a well-formed DNS domain name, you can
|
|
|
|
use the `domainSplit()` function to split the string into its highest registered
|
|
|
|
domain and the sub-domain, which is everything to the left of the highest
|
|
|
|
registered domain. For example, the highest registered domain of
|
|
|
|
`www.ml.elastic.co` is `elastic.co` and the sub-domain is `www.ml`. The
|
|
|
|
`domainSplit()` function returns an array of two values: the first value is the
|
|
|
|
subdomain; the second value is the highest registered domain.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that
|
|
|
|
"www.ml.elastic.co" has been split into "elastic.co" and "www.ml":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"clientip.keyword": "123.456.78.900",
|
|
|
|
"hrd": "elastic.co",
|
|
|
|
"sub": "www.ml"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
[[ml-configuring-transform9]]
|
|
|
|
.Example 9: Transforming geo_point data
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/anomaly_detectors/test4
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"analysis_config":{
|
|
|
|
"bucket_span": "10m",
|
|
|
|
"detectors":[
|
|
|
|
{
|
|
|
|
"function":"lat_long",
|
|
|
|
"field_name": "my_coordinates"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"data_description": {
|
|
|
|
"time_field":"@timestamp",
|
|
|
|
"time_format":"epoch_ms"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
PUT _ml/datafeeds/datafeed-test4
|
2017-06-23 14:42:37 -04:00
|
|
|
{
|
|
|
|
"job_id": "test4",
|
|
|
|
"indices": ["my_index"],
|
|
|
|
"query": {
|
|
|
|
"match_all": {
|
|
|
|
"boost": 1
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"script_fields": {
|
|
|
|
"my_coordinates": {
|
|
|
|
"script": {
|
2019-03-29 12:40:25 -04:00
|
|
|
"source": "doc['coords.lat'].value + ',' + doc['coords.lon'].value",
|
2017-06-23 14:42:37 -04:00
|
|
|
"lang": "painless"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-07 15:34:11 -05:00
|
|
|
GET _ml/datafeeds/datafeed-test4/_preview
|
2017-06-23 14:42:37 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
// CONSOLE
|
2018-08-31 14:56:26 -04:00
|
|
|
// TEST[skip:needs-licence]
|
2017-06-23 14:42:37 -04:00
|
|
|
|
|
|
|
In {es}, location data can be stored in `geo_point` fields but this data type is
|
2019-01-07 17:32:36 -05:00
|
|
|
not supported natively in {ml} analytics. This example of a script field
|
2017-06-23 14:42:37 -04:00
|
|
|
transforms the data into an appropriate format. For more information,
|
|
|
|
see <<ml-geo-functions>>.
|
|
|
|
|
|
|
|
The preview {dfeed} API returns the following results, which show that
|
|
|
|
`41.44` and `90.5` have been combined into "41.44,90.5":
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
----------------------------------
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"@timestamp": 1490274000000,
|
|
|
|
"my_coordinates": "41.44,90.5"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
----------------------------------
|
2018-08-31 14:56:26 -04:00
|
|
|
|