OpenSearch/docs/plugins/analysis-nori.asciidoc

546 lines
13 KiB
Plaintext
Raw Normal View History

[[analysis-nori]]
=== Korean (nori) Analysis Plugin
The Korean (nori) Analysis plugin integrates Lucene nori analysis
module into elasticsearch. It uses the https://bitbucket.org/eunjeon/mecab-ko-dic[mecab-ko-dic dictionary]
to perform morphological analysis of Korean texts.
:plugin_name: analysis-nori
include::install_remove.asciidoc[]
[[analysis-nori-analyzer]]
==== `nori` analyzer
The `nori` analyzer consists of the following tokenizer and token filters:
* <<analysis-nori-tokenizer,`nori_tokenizer`>>
* <<analysis-nori-speech,`nori_part_of_speech`>> token filter
2018-05-04 16:07:12 -04:00
* <<analysis-nori-readingform,`nori_readingform`>> token filter
* {ref}/analysis-lowercase-tokenfilter.html[`lowercase`] token filter
It supports the `decompound_mode` and `user_dictionary` settings from
<<analysis-nori-tokenizer,`nori_tokenizer`>> and the `stoptags` setting from
<<analysis-nori-speech,`nori_part_of_speech`>>.
[[analysis-nori-tokenizer]]
==== `nori_tokenizer`
The `nori_tokenizer` accepts the following settings:
`decompound_mode`::
+
--
The decompound mode determines how the tokenizer handles compound tokens.
It can be set to:
`none`::
No decomposition for compounds. Example output:
가거도항
가곡역
`discard`::
Decomposes compounds and discards the original form (*default*). Example output:
가곡역 => 가곡, 역
`mixed`::
Decomposes compounds and keeps the original form. Example output:
가곡역 => 가곡역, 가곡, 역
--
`discard_punctuation`::
Whether punctuation should be discarded from the output. Defaults to `true`.
`user_dictionary`::
+
--
The Nori tokenizer uses the https://bitbucket.org/eunjeon/mecab-ko-dic[mecab-ko-dic dictionary] by default.
A `user_dictionary` with custom nouns (`NNG`) may be appended to the default dictionary.
The dictionary should have the following format:
[source,txt]
-----------------------
<token> [<token 1> ... <token n>]
-----------------------
The first token is mandatory and represents the custom noun that should be added in
the dictionary. For compound nouns the custom segmentation can be provided
after the first token (`[<token 1> ... <token n>]`). The segmentation of the
custom compound nouns is controlled by the `decompound_mode` setting.
As a demonstration of how the user dictionary can be used, save the following
dictionary to `$ES_HOME/config/userdict_ko.txt`:
[source,txt]
-----------------------
c++ <1>
C샤프
세종
세종시 세종 시 <2>
-----------------------
<1> A simple noun
<2> A compound noun (`세종시`) followed by its decomposition: `세종` and `시`.
Then create an analyzer as follows:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"nori_user_dict": {
"type": "nori_tokenizer",
"decompound_mode": "mixed",
"discard_punctuation": "false",
"user_dictionary": "userdict_ko.txt"
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "nori_user_dict"
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "세종시" <1>
}
--------------------------------------------------
<1> Sejong city
The above `analyze` request returns the following:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
"token" : "세종시",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0,
"positionLength" : 2 <1>
}, {
"token" : "세종",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
}, {
"token" : "시",
"start_offset" : 2,
"end_offset" : 3,
"type" : "word",
"position" : 1
}]
}
--------------------------------------------------
<1> This is a compound token that spans two positions (`mixed` mode).
--
`user_dictionary_rules`::
+
--
You can also inline the rules directly in the tokenizer definition using
the `user_dictionary_rules` option:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"nori_user_dict": {
"type": "nori_tokenizer",
"decompound_mode": "mixed",
"user_dictionary_rules": ["c++", "C샤프", "세종", "세종시 세종 시"]
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "nori_user_dict"
}
}
}
}
}
}
--------------------------------------------------
--
The `nori_tokenizer` sets a number of additional attributes per token that are used by token filters
to modify the stream.
You can view all these additional attributes with the following request:
[source,console]
--------------------------------------------------
GET _analyze
{
"tokenizer": "nori_tokenizer",
"text": "뿌리가 깊은 나무는", <1>
"attributes" : ["posType", "leftPOS", "rightPOS", "morphemes", "reading"],
"explain": true
}
--------------------------------------------------
<1> A tree with deep roots
Which responds with:
[source,console-result]
--------------------------------------------------
{
"detail": {
"custom_analyzer": true,
"charfilters": [],
"tokenizer": {
"name": "nori_tokenizer",
"tokens": [
{
"token": "뿌리",
"start_offset": 0,
"end_offset": 2,
"type": "word",
"position": 0,
"leftPOS": "NNG(General Noun)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "NNG(General Noun)"
},
{
"token": "가",
"start_offset": 2,
"end_offset": 3,
"type": "word",
"position": 1,
"leftPOS": "J(Ending Particle)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "J(Ending Particle)"
},
{
"token": "깊",
"start_offset": 4,
"end_offset": 5,
"type": "word",
"position": 2,
"leftPOS": "VA(Adjective)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "VA(Adjective)"
},
{
"token": "은",
"start_offset": 5,
"end_offset": 6,
"type": "word",
"position": 3,
"leftPOS": "E(Verbal endings)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "E(Verbal endings)"
},
{
"token": "나무",
"start_offset": 7,
"end_offset": 9,
"type": "word",
"position": 4,
"leftPOS": "NNG(General Noun)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "NNG(General Noun)"
},
{
"token": "는",
"start_offset": 9,
"end_offset": 10,
"type": "word",
"position": 5,
"leftPOS": "J(Ending Particle)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "J(Ending Particle)"
}
]
},
"tokenfilters": []
}
}
--------------------------------------------------
[[analysis-nori-speech]]
==== `nori_part_of_speech` token filter
The `nori_part_of_speech` token filter removes tokens that match a set of
part-of-speech tags. The list of supported tags and their meanings can be found here:
{lucene-core-javadoc}/../analyzers-nori/org/apache/lucene/analysis/ko/POS.Tag.html[Part of speech tags]
It accepts the following setting:
`stoptags`::
An array of part-of-speech tags that should be removed.
and defaults to:
[source,js]
--------------------------------------------------
"stoptags": [
"E",
"IC",
"J",
"MAG", "MAJ", "MM",
"SP", "SSC", "SSO", "SC", "SE",
"XPN", "XSA", "XSN", "XSV",
"UNA", "NA", "VSV"
]
--------------------------------------------------
// NOTCONSOLE
For example:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "nori_tokenizer",
"filter": [
"my_posfilter"
]
}
},
"filter": {
"my_posfilter": {
"type": "nori_part_of_speech",
"stoptags": [
"NR" <1>
]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "여섯 용이" <2>
}
--------------------------------------------------
<1> Korean numerals should be removed (`NR`)
<2> Six dragons
Which responds with:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
"token" : "용",
"start_offset" : 3,
"end_offset" : 4,
"type" : "word",
"position" : 1
}, {
"token" : "이",
"start_offset" : 4,
"end_offset" : 5,
"type" : "word",
"position" : 2
} ]
}
--------------------------------------------------
[[analysis-nori-readingform]]
==== `nori_readingform` token filter
The `nori_readingform` token filter rewrites tokens written in Hanja to their Hangul form.
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "nori_tokenizer",
"filter": [ "nori_readingform" ]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
2018-05-04 16:07:12 -04:00
"text": "鄕歌" <1>
}
--------------------------------------------------
2018-05-04 16:07:12 -04:00
<1> A token written in Hanja: Hyangga
Which responds with:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
2018-05-04 16:07:12 -04:00
"token" : "향가", <1>
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
}]
}
--------------------------------------------------
2018-05-04 16:07:12 -04:00
<1> The Hanja form is replaced by the Hangul translation.
[[analysis-nori-number]]
==== `nori_number` token filter
The `nori_number` token filter normalizes Korean numbers
to regular Arabic decimal numbers in half-width characters.
Korean numbers are often written using a combination of Hangul and Arabic numbers with various kinds punctuation.
For example, 3.2천 means 3200.
This filter does this kind of normalization and allows a search for 3200 to match 3.2천 in text,
but can also be used to make range facets based on the normalized numbers and so on.
[NOTE]
====
Notice that this analyzer uses a token composition scheme and relies on punctuation tokens
being found in the token stream.
Please make sure your `nori_tokenizer` has `discard_punctuation` set to false.
In case punctuation characters, such as U+FF0E(), is removed from the token stream,
this filter would find input tokens and 2천 and give outputs 3 and 2000 instead of 3200,
which is likely not the intended result.
If you want to remove punctuation characters from your index that are not part of normalized numbers,
add a `stop` token filter with the punctuation you wish to remove after `nori_number` in your analyzer chain.
====
Below are some examples of normalizations this filter supports.
The input is untokenized text and the result is the single term attribute emitted for the input.
- 영영칠 -> 7
- 일영영영 -> 1000
- 삼천2백2십삼 -> 3223
- 조육백만오천일 -> 1000006005001
- .2천 -> 3200
- .2만345. -> 12345.67
- 4,647.100 -> 4647.1
- 15,7 -> 157 (be aware of this weakness)
For example:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "tokenizer_discard_puncuation_false",
"filter": [
"part_of_speech_stop_sp", "nori_number"
]
}
},
"tokenizer": {
"tokenizer_discard_puncuation_false": {
"type": "nori_tokenizer",
"discard_punctuation": "false"
}
},
"filter": {
"part_of_speech_stop_sp": {
"type": "nori_part_of_speech",
"stoptags": ["SP"]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "십만이천오백과 .2천"
}
--------------------------------------------------
Which results in:
[source,console-result]
--------------------------------------------------
{
"tokens" : [{
"token" : "102500",
"start_offset" : 0,
"end_offset" : 6,
"type" : "word",
"position" : 0
}, {
"token" : "과",
"start_offset" : 6,
"end_offset" : 7,
"type" : "word",
"position" : 1
}, {
"token" : "3200",
"start_offset" : 8,
"end_offset" : 12,
"type" : "word",
"position" : 2
}]
}
--------------------------------------------------