2019-08-26 16:19:55 -04:00
|
|
|
[role="xpack"]
|
|
|
|
[testenv="basic"]
|
|
|
|
[[search-aggregations-pipeline-cumulative-cardinality-aggregation]]
|
|
|
|
=== Cumulative Cardinality Aggregation
|
|
|
|
|
|
|
|
A parent pipeline aggregation which calculates the Cumulative Cardinality in a parent histogram (or date_histogram)
|
|
|
|
aggregation. The specified metric must be a cardinality aggregation and the enclosing histogram
|
|
|
|
must have `min_doc_count` set to `0` (default for `histogram` aggregations).
|
|
|
|
|
|
|
|
The `cumulative_cardinality` agg is useful for finding "total new items", like the number of new visitors to your
|
|
|
|
website each day. A regular cardinality aggregation will tell you how many unique visitors came each day, but doesn't
|
|
|
|
differentiate between "new" or "repeat" visitors. The Cumulative Cardinality aggregation can be used to determine
|
|
|
|
how many of each day's unique visitors are "new".
|
|
|
|
|
|
|
|
==== Syntax
|
|
|
|
|
|
|
|
A `cumulative_cardinality` aggregation looks like this in isolation:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
|
|
|
{
|
|
|
|
"cumulative_cardinality": {
|
|
|
|
"buckets_path": "my_cardinality_agg"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// NOTCONSOLE
|
|
|
|
|
|
|
|
[[cumulative-cardinality-params]]
|
|
|
|
.`cumulative_cardinality` Parameters
|
|
|
|
[options="header"]
|
|
|
|
|===
|
|
|
|
|Parameter Name |Description |Required |Default Value
|
|
|
|
|`buckets_path` |The path to the cardinality aggregation we wish to find the cumulative cardinality for (see <<buckets-path-syntax>> for more
|
|
|
|
details) |Required |
|
|
|
|
|`format` |format to apply to the output value of this aggregation |Optional |`null`
|
|
|
|
|===
|
|
|
|
|
|
|
|
The following snippet calculates the cumulative cardinality of the total daily `users`:
|
|
|
|
|
2019-09-05 10:11:25 -04:00
|
|
|
[source,console]
|
2019-08-26 16:19:55 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
GET /user_hits/_search
|
|
|
|
{
|
|
|
|
"size": 0,
|
|
|
|
"aggs" : {
|
|
|
|
"users_per_day" : {
|
|
|
|
"date_histogram" : {
|
|
|
|
"field" : "timestamp",
|
|
|
|
"calendar_interval" : "day"
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"distinct_users": {
|
|
|
|
"cardinality": {
|
|
|
|
"field": "user_id"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"cumulative_cardinality": {
|
|
|
|
"buckets_path": "distinct_users" <1>
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:user_hits]
|
|
|
|
|
|
|
|
<1> `buckets_path` instructs this aggregation to use the output of the `distinct_users` aggregation for the cumulative cardinality
|
|
|
|
|
|
|
|
And the following may be the response:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
|
|
|
{
|
|
|
|
"took": 11,
|
|
|
|
"timed_out": false,
|
|
|
|
"_shards": ...,
|
|
|
|
"hits": ...,
|
|
|
|
"aggregations": {
|
|
|
|
"users_per_day": {
|
|
|
|
"buckets": [
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-01T00:00:00.000Z",
|
|
|
|
"key": 1546300800000,
|
|
|
|
"doc_count": 2,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 2
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 2
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-02T00:00:00.000Z",
|
|
|
|
"key": 1546387200000,
|
|
|
|
"doc_count": 2,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 2
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 3
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-03T00:00:00.000Z",
|
|
|
|
"key": 1546473600000,
|
|
|
|
"doc_count": 3,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 3
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 4
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
|
|
|
|
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
|
|
|
|
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
|
|
|
|
|
|
|
|
|
|
|
|
Note how the second day, `2019-01-02`, has two distinct users but the `total_new_users` metric generated by the
|
|
|
|
cumulative pipeline agg only increments to three. This means that only one of the two users that day were
|
|
|
|
new, the other had already been seen in the previous day. This happens again on the third day, where only
|
|
|
|
one of three users is completely new.
|
|
|
|
|
|
|
|
==== Incremental cumulative cardinality
|
|
|
|
|
|
|
|
The `cumulative_cardinality` agg will show you the total, distinct count since the beginning of the time period
|
|
|
|
being queried. Sometimes, however, it is useful to see the "incremental" count. Meaning, how many new users
|
|
|
|
are added each day, rather than the total cumulative count.
|
|
|
|
|
|
|
|
This can be accomplished by adding a `derivative` aggregation to our query:
|
|
|
|
|
2019-09-05 10:11:25 -04:00
|
|
|
[source,console]
|
2019-08-26 16:19:55 -04:00
|
|
|
--------------------------------------------------
|
|
|
|
GET /user_hits/_search
|
|
|
|
{
|
|
|
|
"size": 0,
|
|
|
|
"aggs" : {
|
|
|
|
"users_per_day" : {
|
|
|
|
"date_histogram" : {
|
|
|
|
"field" : "timestamp",
|
|
|
|
"calendar_interval" : "day"
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"distinct_users": {
|
|
|
|
"cardinality": {
|
|
|
|
"field": "user_id"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"cumulative_cardinality": {
|
|
|
|
"buckets_path": "distinct_users"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"incremental_new_users": {
|
|
|
|
"derivative": {
|
|
|
|
"buckets_path": "total_new_users"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TEST[setup:user_hits]
|
|
|
|
|
|
|
|
|
|
|
|
And the following may be the response:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
|
|
|
{
|
|
|
|
"took": 11,
|
|
|
|
"timed_out": false,
|
|
|
|
"_shards": ...,
|
|
|
|
"hits": ...,
|
|
|
|
"aggregations": {
|
|
|
|
"users_per_day": {
|
|
|
|
"buckets": [
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-01T00:00:00.000Z",
|
|
|
|
"key": 1546300800000,
|
|
|
|
"doc_count": 2,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 2
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 2
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-02T00:00:00.000Z",
|
|
|
|
"key": 1546387200000,
|
|
|
|
"doc_count": 2,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 2
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 3
|
|
|
|
},
|
|
|
|
"incremental_new_users": {
|
|
|
|
"value": 1.0
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"key_as_string": "2019-01-03T00:00:00.000Z",
|
|
|
|
"key": 1546473600000,
|
|
|
|
"doc_count": 3,
|
|
|
|
"distinct_users": {
|
|
|
|
"value": 3
|
|
|
|
},
|
|
|
|
"total_new_users": {
|
|
|
|
"value": 4
|
|
|
|
},
|
|
|
|
"incremental_new_users": {
|
|
|
|
"value": 1.0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
|
|
|
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
|
|
|
|
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
|
|
|
|
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
|