OpenSearch/docs/reference/ml/functions/geo.asciidoc

105 lines
3.1 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[[ml-geo-functions]]
=== Geographic functions
The geographic functions detect anomalies in the geographic location of the
input data.
The {xpackml} features include the following geographic function: `lat_long`.
NOTE: You cannot create forecasts for jobs that contain geographic functions.
You also cannot add rules with conditions to detectors that use geographic
functions.
[float]
[[ml-lat-long]]
==== Lat_long
The `lat_long` function detects anomalies in the geographic location of the
input data.
This function supports the following properties:
* `field_name` (required)
* `by_field_name` (optional)
* `over_field_name` (optional)
* `partition_field_name` (optional)
For more information about those properties,
see {ref}/ml-job-resource.html#ml-detectorconfig[Detector Configuration Objects].
.Example 1: Analyzing transactions with the lat_long function
[source,js]
--------------------------------------------------
PUT _ml/anomaly_detectors/example1
{
"analysis_config": {
"detectors": [{
"function" : "lat_long",
"field_name" : "transactionCoordinates",
"by_field_name" : "creditCardNumber"
}]
},
"data_description": {
"time_field":"timestamp",
"time_format": "epoch_ms"
}
}
--------------------------------------------------
// CONSOLE
// TEST[skip:needs-licence]
If you use this `lat_long` function in a detector in your job, it
detects anomalies where the geographic location of a credit card transaction is
unusual for a particular customers credit card. An anomaly might indicate fraud.
IMPORTANT: The `field_name` that you supply must be a single string that contains
two comma-separated numbers of the form `latitude,longitude`. The `latitude` and
`longitude` must be in the range -180 to 180 and represent a point on the
surface of the Earth.
For example, JSON data might contain the following transaction coordinates:
[source,js]
--------------------------------------------------
{
"time": 1460464275,
"transactionCoordinates": "40.7,-74.0",
"creditCardNumber": "1234123412341234"
}
--------------------------------------------------
// NOTCONSOLE
In {es}, location data is likely to be stored in `geo_point` fields. For more
information, see {ref}/geo-point.html[Geo-point datatype]. This data type is not
supported natively in {xpackml} features. You can, however, use Painless scripts
in `script_fields` in your {dfeed} to transform the data into an appropriate
format. For example, the following Painless script transforms
`"coords": {"lat" : 41.44, "lon":90.5}` into `"lat-lon": "41.44,90.5"`:
[source,js]
--------------------------------------------------
PUT _ml/datafeeds/datafeed-test2
{
"job_id": "farequote",
"indices": ["farequote"],
"query": {
"match_all": {
"boost": 1
}
},
"script_fields": {
"lat-lon": {
"script": {
"source": "doc['coords'].lat + ',' + doc['coords'].lon",
"lang": "painless"
}
}
}
}
--------------------------------------------------
// CONSOLE
// TEST[skip:setup:farequote_job]
For more information, see <<ml-configuring-transform>>.