2015-08-06 11:24:29 -04:00
|
|
|
[[dynamic-templates]]
|
|
|
|
=== Dynamic templates
|
|
|
|
|
|
|
|
Dynamic templates allow you to define custom mappings that can be applied to
|
|
|
|
dynamically added fields based on:
|
|
|
|
|
|
|
|
* the <<dynamic-mapping,datatype>> detected by Elasticsearch, with <<match-mapping-type,`match_mapping_type`>>.
|
|
|
|
* the name of the field, with <<match-unmatch,`match` and `unmatch`>> or <<match-pattern,`match_pattern`>>.
|
|
|
|
* the full dotted path to the field, with <<path-match-unmatch,`path_match` and `path_unmatch`>>.
|
|
|
|
|
|
|
|
The original field name `{name}` and the detected datatype
|
|
|
|
`{dynamic_type`} <<template-variables,template variables>> can be used in
|
|
|
|
the mapping specification as placeholders.
|
|
|
|
|
|
|
|
IMPORTANT: Dynamic field mappings are only added when a field contains a
|
|
|
|
concrete value -- not `null` or an empty array. This means that if the
|
|
|
|
`null_value` option is used in a `dynamic_template`, it will only be applied
|
|
|
|
after the first document with a concrete value for the field has been
|
|
|
|
indexed.
|
|
|
|
|
|
|
|
Dynamic templates are specified as an array of named objects:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"my_template_name": { <1>
|
|
|
|
... match conditions ... <2>
|
|
|
|
"mapping": { ... } <3>
|
|
|
|
}
|
|
|
|
},
|
|
|
|
...
|
|
|
|
]
|
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// NOTCONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
<1> The template name can be any string value.
|
2016-04-06 18:22:44 -04:00
|
|
|
<2> The match conditions can include any of : `match_mapping_type`, `match`, `match_pattern`, `unmatch`, `path_match`, `path_unmatch`.
|
2015-08-06 11:24:29 -04:00
|
|
|
<3> The mapping that the matched field should use.
|
|
|
|
|
|
|
|
|
2018-08-20 14:00:11 -04:00
|
|
|
Templates are processed in order -- the first matching template wins. When
|
|
|
|
putting new dynamic templates through the <<indices-put-mapping, put mapping>> API,
|
|
|
|
all existing templates are overwritten. This allows for dynamic templates to be
|
|
|
|
reordered or deleted after they were initially added.
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
[[match-mapping-type]]
|
|
|
|
==== `match_mapping_type`
|
|
|
|
|
2018-06-05 02:51:52 -04:00
|
|
|
The `match_mapping_type` is the datatype detected by the json parser. Since
|
|
|
|
JSON doesn't allow to distinguish a `long` from an `integer` or a `double` from
|
2019-01-07 08:44:12 -05:00
|
|
|
a `float`, it will always choose the wider datatype, i.e. `long` for integers
|
2018-06-05 02:51:52 -04:00
|
|
|
and `double` for floating-point numbers.
|
|
|
|
|
|
|
|
The following datatypes may be automatically detected:
|
|
|
|
|
|
|
|
- `boolean` when `true` or `false` are encountered.
|
|
|
|
- `date` when <<date-detection,date detection>> is enabled and a string is
|
|
|
|
found that matches any of the configured date formats.
|
|
|
|
- `double` for numbers with a decimal part.
|
|
|
|
- `long` for numbers without a decimal part.
|
|
|
|
- `object` for objects, also called hashes.
|
|
|
|
- `string` for character strings.
|
|
|
|
|
|
|
|
`*` may also be used in order to match all datatypes.
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
For example, if we wanted to map all integer fields as `integer` instead of
|
2016-03-18 12:01:27 -04:00
|
|
|
`long`, and all `string` fields as both `text` and `keyword`, we
|
2015-08-06 11:24:29 -04:00
|
|
|
could use the following template:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"integers": {
|
|
|
|
"match_mapping_type": "long",
|
|
|
|
"mapping": {
|
|
|
|
"type": "integer"
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"strings": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"mapping": {
|
|
|
|
"type": "text",
|
|
|
|
"fields": {
|
|
|
|
"raw": {
|
|
|
|
"type": "keyword",
|
|
|
|
"ignore_above": 256
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-14 11:47:53 -05:00
|
|
|
PUT my_index/_doc/1
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"my_integer": 5, <1>
|
|
|
|
"my_string": "Some string" <2>
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2016-05-09 09:42:23 -04:00
|
|
|
// CONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
<1> The `my_integer` field is mapped as an `integer`.
|
2016-03-18 12:01:27 -04:00
|
|
|
<2> The `my_string` field is mapped as a `text`, with a `keyword` <<multi-fields,multi field>>.
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
|
|
|
|
[[match-unmatch]]
|
|
|
|
==== `match` and `unmatch`
|
|
|
|
|
2018-06-07 04:43:31 -04:00
|
|
|
The `match` parameter uses a pattern to match on the field name, while
|
2015-08-06 11:24:29 -04:00
|
|
|
`unmatch` uses a pattern to exclude fields matched by `match`.
|
|
|
|
|
|
|
|
The following example matches all `string` fields whose name starts with
|
|
|
|
`long_` (except for those which end with `_text`) and maps them as `long`
|
|
|
|
fields:
|
|
|
|
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"longs_as_strings": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"match": "long_*",
|
|
|
|
"unmatch": "*_text",
|
|
|
|
"mapping": {
|
|
|
|
"type": "long"
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-14 11:47:53 -05:00
|
|
|
PUT my_index/_doc/1
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"long_num": "5", <1>
|
|
|
|
"long_text": "foo" <2>
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2016-05-09 09:42:23 -04:00
|
|
|
// CONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
<1> The `long_num` field is mapped as a `long`.
|
|
|
|
<2> The `long_text` field uses the default `string` mapping.
|
|
|
|
|
|
|
|
[[match-pattern]]
|
|
|
|
==== `match_pattern`
|
|
|
|
|
2015-12-11 15:03:54 -05:00
|
|
|
The `match_pattern` parameter adjusts the behavior of the `match` parameter
|
|
|
|
such that it supports full Java regular expression matching on the field name
|
|
|
|
instead of simple wildcards, for instance:
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2015-12-11 15:03:54 -05:00
|
|
|
"match_pattern": "regex",
|
|
|
|
"match": "^profit_\d+$"
|
2015-08-06 11:24:29 -04:00
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// NOTCONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
[[path-match-unmatch]]
|
|
|
|
==== `path_match` and `path_unmatch`
|
|
|
|
|
|
|
|
The `path_match` and `path_unmatch` parameters work in the same way as `match`
|
|
|
|
and `unmatch`, but operate on the full dotted path to the field, not just the
|
|
|
|
final name, e.g. `some_object.*.some_field`.
|
|
|
|
|
|
|
|
This example copies the values of any fields in the `name` object to the
|
|
|
|
top-level `full_name` field, except for the `middle` field:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"full_name": {
|
|
|
|
"path_match": "name.*",
|
|
|
|
"path_unmatch": "*.middle",
|
|
|
|
"mapping": {
|
|
|
|
"type": "text",
|
|
|
|
"copy_to": "full_name"
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-14 11:47:53 -05:00
|
|
|
PUT my_index/_doc/1
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"name": {
|
|
|
|
"first": "Alice",
|
|
|
|
"middle": "Mary",
|
|
|
|
"last": "White"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2016-05-09 09:42:23 -04:00
|
|
|
// CONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
|
|
|
|
[[template-variables]]
|
|
|
|
==== `{name}` and `{dynamic_type}`
|
|
|
|
|
|
|
|
The `{name}` and `{dynamic_type}` placeholders are replaced in the `mapping`
|
|
|
|
with the field name and detected dynamic type. The following example sets all
|
|
|
|
string fields to use an <<analyzer,`analyzer`>> with the same name as the
|
|
|
|
field, and disables <<doc-values,`doc_values`>> for all non-string fields:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"named_analyzers": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"match": "*",
|
|
|
|
"mapping": {
|
|
|
|
"type": "text",
|
|
|
|
"analyzer": "{name}"
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"no_doc_values": {
|
|
|
|
"match_mapping_type":"*",
|
|
|
|
"mapping": {
|
|
|
|
"type": "{dynamic_type}",
|
|
|
|
"doc_values": false
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2015-08-06 11:24:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-14 11:47:53 -05:00
|
|
|
PUT my_index/_doc/1
|
2015-08-06 11:24:29 -04:00
|
|
|
{
|
|
|
|
"english": "Some English text", <1>
|
|
|
|
"count": 5 <2>
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2016-05-09 09:42:23 -04:00
|
|
|
// CONSOLE
|
2015-08-06 11:24:29 -04:00
|
|
|
<1> The `english` field is mapped as a `string` field with the `english` analyzer.
|
2018-06-07 04:43:31 -04:00
|
|
|
<2> The `count` field is mapped as a `long` field with `doc_values` disabled.
|
2015-08-06 11:24:29 -04:00
|
|
|
|
2016-03-30 09:56:43 -04:00
|
|
|
[[template-examples]]
|
|
|
|
==== Template examples
|
|
|
|
|
|
|
|
Here are some examples of potentially useful dynamic templates:
|
|
|
|
|
|
|
|
===== Structured search
|
|
|
|
|
2017-11-29 03:44:25 -05:00
|
|
|
By default Elasticsearch will map string fields as a `text` field with a sub
|
2016-03-30 09:56:43 -04:00
|
|
|
`keyword` field. However if you are only indexing structured content and not
|
2017-11-29 03:44:25 -05:00
|
|
|
interested in full text search, you can make Elasticsearch map your fields
|
2016-03-30 09:56:43 -04:00
|
|
|
only as `keyword`s. Note that this means that in order to search those fields,
|
|
|
|
you will have to search on the exact same value that was indexed.
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2016-03-30 09:56:43 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"strings_as_keywords": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"mapping": {
|
|
|
|
"type": "keyword"
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// CONSOLE
|
2016-03-30 09:56:43 -04:00
|
|
|
|
2019-04-30 10:19:09 -04:00
|
|
|
[[text-only-mappings-strings]]
|
2016-03-30 09:56:43 -04:00
|
|
|
===== `text`-only mappings for strings
|
|
|
|
|
|
|
|
On the contrary to the previous example, if the only thing that you care about
|
|
|
|
on your string fields is full-text search, and if you don't plan on running
|
|
|
|
aggregations, sorting or exact search on your string fields, you could tell
|
2017-11-29 03:44:25 -05:00
|
|
|
Elasticsearch to map it only as a text field (which was the default behaviour
|
2016-03-30 09:56:43 -04:00
|
|
|
before 5.0):
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2016-03-30 09:56:43 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"strings_as_text": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"mapping": {
|
|
|
|
"type": "text"
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// CONSOLE
|
2016-03-30 09:56:43 -04:00
|
|
|
|
|
|
|
===== Disabled norms
|
|
|
|
|
|
|
|
Norms are index-time scoring factors. If you do not care about scoring, which
|
|
|
|
would be the case for instance if you never sort documents by score, you could
|
|
|
|
disable the storage of these scoring factors in the index and save some space.
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2016-03-30 09:56:43 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"strings_as_keywords": {
|
|
|
|
"match_mapping_type": "string",
|
|
|
|
"mapping": {
|
|
|
|
"type": "text",
|
|
|
|
"norms": false,
|
|
|
|
"fields": {
|
|
|
|
"keyword": {
|
|
|
|
"type": "keyword",
|
|
|
|
"ignore_above": 256
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// CONSOLE
|
2016-03-30 09:56:43 -04:00
|
|
|
|
|
|
|
The sub `keyword` field appears in this template to be consistent with the
|
2016-04-29 10:42:03 -04:00
|
|
|
default rules of dynamic mappings. Of course if you do not need them because
|
2016-03-30 09:56:43 -04:00
|
|
|
you don't need to perform exact search or aggregate on this field, you could
|
|
|
|
remove it as described in the previous section.
|
|
|
|
|
|
|
|
===== Time-series
|
|
|
|
|
2017-11-29 03:44:25 -05:00
|
|
|
When doing time series analysis with Elasticsearch, it is common to have many
|
2016-03-30 09:56:43 -04:00
|
|
|
numeric fields that you will often aggregate on but never filter on. In such a
|
|
|
|
case, you could disable indexing on those fields to save disk space and also
|
|
|
|
maybe gain some indexing speed:
|
|
|
|
|
|
|
|
[source,js]
|
|
|
|
--------------------------------------------------
|
2019-01-22 09:13:52 -05:00
|
|
|
PUT my_index
|
2016-03-30 09:56:43 -04:00
|
|
|
{
|
|
|
|
"mappings": {
|
2019-01-22 09:13:52 -05:00
|
|
|
"dynamic_templates": [
|
|
|
|
{
|
|
|
|
"unindexed_longs": {
|
|
|
|
"match_mapping_type": "long",
|
|
|
|
"mapping": {
|
|
|
|
"type": "long",
|
|
|
|
"index": false
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"unindexed_doubles": {
|
|
|
|
"match_mapping_type": "double",
|
|
|
|
"mapping": {
|
|
|
|
"type": "float", <1>
|
|
|
|
"index": false
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
2019-01-22 09:13:52 -05:00
|
|
|
}
|
|
|
|
]
|
2016-03-30 09:56:43 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
--------------------------------------------------
|
2017-05-04 21:01:14 -04:00
|
|
|
// CONSOLE
|
2016-03-30 09:56:43 -04:00
|
|
|
<1> Like the default dynamic mapping rules, doubles are mapped as floats, which
|
|
|
|
are usually accurate enough, yet require half the disk space.
|
|
|
|
|