150 lines
4.5 KiB
Plaintext
150 lines
4.5 KiB
Plaintext
|
[[search-aggregations-pipeline-series-arithmetic-aggregation]]
|
||
|
=== Series Arithmetic Aggregation
|
||
|
|
||
|
A parent pipeline aggregation which executes a script which can perform per bucket computations on specified metrics
|
||
|
in the parent multi-bucket aggregation. The specified metric must be numeric and the script must return a numeric value.
|
||
|
|
||
|
==== Syntax
|
||
|
|
||
|
A `series_arithmetic` aggregation looks like this in isolation:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"series_arithmetic": {
|
||
|
"buckets_path": {
|
||
|
"my_var1": "the_sum", <1>
|
||
|
"my_var2": "the_value_count"
|
||
|
},
|
||
|
script: "my_var1 / my_var2"
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
<1> Here, `my_var1` is the name of the variable for this buckets path to use in the script, `the_sum` is the path to
|
||
|
the metrics to use for that variable.
|
||
|
|
||
|
|
||
|
.`series_arithmetic` Parameters
|
||
|
|===
|
||
|
|Parameter Name |Description |Required |Default Value
|
||
|
|`script` |The script to run for this aggregation. The script can be inline, file or indexed. (see <<modules-scripting>>
|
||
|
for more details) |Required |
|
||
|
|`buckets_path` |A map of script variables and their associated path to the buckets we wish to use for the variable
|
||
|
(see <<bucket-path-syntax>> for more details) |Required |
|
||
|
|`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
|
||
|
details)|Optional, defaults to `skip` |
|
||
|
|`format` |format to apply to the output value of this aggregation |Optional, defaults to `null` |
|
||
|
|===
|
||
|
|
||
|
The following snippet calculates the ratio percentage of t-shirt sales compared to total sales each month:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"aggs" : {
|
||
|
"sales_per_month" : {
|
||
|
"date_histogram" : {
|
||
|
"field" : "date",
|
||
|
"interval" : "month"
|
||
|
},
|
||
|
"aggs": {
|
||
|
"total_sales": {
|
||
|
"sum": {
|
||
|
"field": "price"
|
||
|
}
|
||
|
},
|
||
|
"t-shirts": {
|
||
|
"filter": {
|
||
|
"term": {
|
||
|
"type": "t-shirt"
|
||
|
}
|
||
|
},
|
||
|
"aggs": {
|
||
|
"sales": {
|
||
|
"sum": {
|
||
|
"field": "price"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"t-shirt-percentage": {
|
||
|
"series_arithmetic": {
|
||
|
"buckets_paths": {
|
||
|
"tShirtSales": "t-shirts>sales",
|
||
|
"totalSales": "total_sales"
|
||
|
},
|
||
|
"script": "tShirtSales / totalSales * 100"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|
||
|
And the following may be the response:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"aggregations": {
|
||
|
"sales_per_month": {
|
||
|
"buckets": [
|
||
|
{
|
||
|
"key_as_string": "2015/01/01 00:00:00",
|
||
|
"key": 1420070400000,
|
||
|
"doc_count": 3,
|
||
|
"total_sales": {
|
||
|
"value": 50
|
||
|
},
|
||
|
"t-shirts": {
|
||
|
"doc_count": 2,
|
||
|
"sales": {
|
||
|
"value": 10
|
||
|
}
|
||
|
},
|
||
|
"t-shirt-percentage": {
|
||
|
"value": 20
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"key_as_string": "2015/02/01 00:00:00",
|
||
|
"key": 1422748800000,
|
||
|
"doc_count": 2
|
||
|
"total_sales": {
|
||
|
"value": 60
|
||
|
},
|
||
|
"t-shirts": {
|
||
|
"doc_count": 1,
|
||
|
"sales": {
|
||
|
"value": 15
|
||
|
}
|
||
|
},
|
||
|
"t-shirt-percentage": {
|
||
|
"value": 25
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"key_as_string": "2015/03/01 00:00:00",
|
||
|
"key": 1425168000000,
|
||
|
"doc_count": 2,
|
||
|
"total_sales": {
|
||
|
"value": 40
|
||
|
},
|
||
|
"t-shirts": {
|
||
|
"doc_count": 1,
|
||
|
"sales": {
|
||
|
"value": 20
|
||
|
}
|
||
|
},
|
||
|
"t-shirt-percentage": {
|
||
|
"value": 50
|
||
|
}
|
||
|
}
|
||
|
]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
|