OpenSearch/docs/reference/ml/df-analytics/apis/explain-dfanalytics.asciidoc

142 lines
3.3 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[testenv="platinum"]
[[explain-dfanalytics]]
=== Explain {dfanalytics} API
[subs="attributes"]
++++
<titleabbrev>Explain {dfanalytics} API</titleabbrev>
++++
Explains a {dataframe-analytics-config}.
experimental[]
[[ml-explain-dfanalytics-request]]
==== {api-request-title}
`GET _ml/data_frame/analytics/_explain` +
`POST _ml/data_frame/analytics/_explain` +
`GET _ml/data_frame/analytics/<data_frame_analytics_id>/_explain` +
`POST _ml/data_frame/analytics/<data_frame_analytics_id>/_explain`
[[ml-explain-dfanalytics-prereq]]
==== {api-prereq-title}
* You must have `monitor_ml` privilege to use this API. For more
information, see <<security-privileges>> and <<built-in-roles>>.
[[ml-explain-dfanalytics-desc]]
==== {api-description-title}
This API provides explanations for a {dataframe-analytics-config} that either
exists already or one that has not been created yet.
The following explanations are provided:
* which fields are included or not in the analysis and why,
* how much memory is estimated to be required. The estimate can be used when
deciding the appropriate value for `model_memory_limit` setting later on,
about either an existing {dfanalytics-job} or one that has not been created yet.
[[ml-explain-dfanalytics-path-params]]
==== {api-path-parms-title}
`<data_frame_analytics_id>`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics]
[[ml-explain-dfanalytics-request-body]]
==== {api-request-body-title}
`data_frame_analytics_config`::
(Optional, object) Intended configuration of {dfanalytics-job}. Note that `id`
and `dest` don't need to be provided in the context of this API.
[[ml-explain-dfanalytics-results]]
==== {api-response-body-title}
The API returns a response that contains the following:
`field_selection`::
(array)
include::{docdir}/ml/ml-shared.asciidoc[tag=field-selection]
`memory_estimation`::
(object)
include::{docdir}/ml/ml-shared.asciidoc[tag=memory-estimation]
[[ml-explain-dfanalytics-example]]
==== {api-examples-title}
[source,console]
--------------------------------------------------
POST _ml/data_frame/analytics/_explain
{
"data_frame_analytics_config": {
"source": {
"index": "houses_sold_last_10_yrs"
},
"analysis": {
"regression": {
"dependent_variable": "price"
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns the following results:
[source,console-result]
----
{
"field_selection": [
{
"field": "number_of_bedrooms",
"mappings_types": ["integer"],
"is_included": true,
"is_required": false,
"feature_type": "numerical"
},
{
"field": "postcode",
"mappings_types": ["text"],
"is_included": false,
"is_required": false,
"reason": "[postcode.keyword] is preferred because it is aggregatable"
},
{
"field": "postcode.keyword",
"mappings_types": ["keyword"],
"is_included": true,
"is_required": false,
"feature_type": "categorical"
},
{
"field": "price",
"mappings_types": ["float"],
"is_included": true,
"is_required": true,
"feature_type": "numerical"
}
],
"memory_estimation": {
"expected_memory_without_disk": "128MB",
"expected_memory_with_disk": "32MB"
}
}
----