2017-11-09 11:57:26 -05:00
[[search-rank-eval]]
2019-07-19 14:35:36 -04:00
=== Ranking Evaluation API
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
Allows you to evaluate the quality of ranked search results over a set of
typical search queries.
[[search-rank-eval-api-request]]
==== {api-request-title}
`GET /<index>/_rank_eval`
`POST /<index>/_rank_eval`
[[search-rank-eval-api-desc]]
==== {api-description-title}
The ranking evaluation API allows you to evaluate the quality of ranked search
2017-11-09 11:57:26 -05:00
results over a set of typical search queries. Given this set of queries and a
2018-04-10 06:48:16 -04:00
list of manually rated documents, the `_rank_eval` endpoint calculates and
2017-11-09 11:57:26 -05:00
returns typical information retrieval metrics like _mean reciprocal rank_,
_precision_ or _discounted cumulative gain_.
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
Search quality evaluation starts with looking at the users of your search
application, and the things that they are searching for. Users have a specific
2020-01-20 04:29:36 -05:00
_information need_; for example, they are looking for gift in a web shop or want
2019-09-25 08:55:09 -04:00
to book a flight for their next holiday. They usually enter some search terms
into a search box or some other web form. All of this information, together with
meta information about the user (for example the browser, location, earlier
preferences and so on) then gets translated into a query to the underlying
search system.
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
The challenge for search engineers is to tweak this translation process from
2020-01-20 04:29:36 -05:00
user entries to a concrete query, in such a way that the search results contain
the most relevant information with respect to the user's information need. This
2019-09-25 08:55:09 -04:00
can only be done if the search result quality is evaluated constantly across a
representative test suite of typical user queries, so that improvements in the
2020-01-20 04:29:36 -05:00
rankings for one particular query don't negatively affect the ranking for
2019-09-25 08:55:09 -04:00
other types of queries.
2016-11-17 04:27:57 -05:00
2020-01-20 04:29:36 -05:00
In order to get started with search quality evaluation, you need three basic
things:
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
. A collection of documents you want to evaluate your query performance against,
usually one or more indices.
. A collection of typical search requests that users enter into your system.
2020-01-20 04:29:36 -05:00
. A set of document ratings that represent the documents' relevance with respect
to a search request.
2019-09-25 08:55:09 -04:00
It is important to note that one set of document ratings is needed per test
query, and that the relevance judgements are based on the information need of
the user that entered the query.
2017-11-09 11:57:26 -05:00
2019-09-25 08:55:09 -04:00
The ranking evaluation API provides a convenient way to use this information in
a ranking evaluation request to calculate different search evaluation metrics.
2020-01-20 04:29:36 -05:00
This gives you a first estimation of your overall search quality, as well as a
2019-09-25 08:55:09 -04:00
measurement to optimize against when fine-tuning various aspect of the query
generation in your application.
2017-11-09 11:57:26 -05:00
2019-09-25 08:55:09 -04:00
[[search-rank-eval-api-path-params]]
==== {api-path-parms-title}
`<index>`::
(Required, string) Comma-separated list or wildcard expression of index names
used to limit the request.
[[search-rank-eval-api-query-params]]
==== {api-query-parms-title}
include::{docdir}/rest-api/common-parms.asciidoc[tag=allow-no-indices]
2020-02-24 05:57:32 -05:00
+
Defaults to `true`.
2019-09-25 08:55:09 -04:00
include::{docdir}/rest-api/common-parms.asciidoc[tag=expand-wildcards]
+
--
Defaults to `open`.
--
include::{docdir}/rest-api/common-parms.asciidoc[tag=index-ignore-unavailable]
[[search-rank-eval-api-example]]
==== {api-examples-title}
2017-11-09 11:57:26 -05:00
In its most basic form, a request to the `_rank_eval` endpoint has two sections:
2016-11-17 04:27:57 -05:00
[source,js]
-----------------------------
2017-11-09 11:57:26 -05:00
GET /my_index/_rank_eval
2016-11-17 04:27:57 -05:00
{
2017-11-09 11:57:26 -05:00
"requests": [ ... ], <1>
"metric": { <2>
2018-03-23 13:04:32 -04:00
"mean_reciprocal_rank": { ... } <3>
2017-11-09 11:57:26 -05:00
}
}
2019-04-12 12:26:39 -04:00
-----------------------------
2017-11-09 11:57:26 -05:00
// NOTCONSOLE
2017-11-23 06:31:25 -05:00
<1> a set of typical search requests, together with their provided ratings
2017-11-09 11:57:26 -05:00
<2> definition of the evaluation metric to calculate
<3> a specific metric and its parameters
2019-09-25 08:55:09 -04:00
The request section contains several search requests typical to your
application, along with the document ratings for each particular search request.
2017-11-09 11:57:26 -05:00
[source,js]
-----------------------------
2019-09-25 08:55:09 -04:00
GET /my_index/_rank_eval
{
2016-11-17 04:27:57 -05:00
"requests": [
{
2017-11-09 11:57:26 -05:00
"id": "amsterdam_query", <1>
"request": { <2>
"query": { "match": { "text": "amsterdam" }}
},
"ratings": [ <3>
{ "_index": "my_index", "_id": "doc1", "rating": 0 },
{ "_index": "my_index", "_id": "doc2", "rating": 3},
2017-11-15 11:23:52 -05:00
{ "_index": "my_index", "_id": "doc3", "rating": 1 }
2017-11-09 11:57:26 -05:00
]
2016-11-17 04:27:57 -05:00
},
{
2017-11-09 11:57:26 -05:00
"id": "berlin_query",
"request": {
"query": { "match": { "text": "berlin" }}
},
"ratings": [
{ "_index": "my_index", "_id": "doc1", "rating": 1 }
]
}
]
2019-09-25 08:55:09 -04:00
}
2019-04-12 12:26:39 -04:00
-----------------------------
2017-11-09 11:57:26 -05:00
// NOTCONSOLE
2016-11-17 04:27:57 -05:00
2020-01-20 04:29:36 -05:00
<1> the search request's id, used to group result details later
2017-11-09 11:57:26 -05:00
<2> the query that is being evaluated
2020-01-20 04:29:36 -05:00
<3> a list of document ratings, each entry containing the document's `_index` and
`_id` together with the rating of the document's relevance with regard to this
2019-09-25 08:55:09 -04:00
search request
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
A document `rating` can be any integer value that expresses the relevance of the
2020-01-20 04:29:36 -05:00
document on a user-defined scale. For some of the metrics, just giving a binary
2019-09-25 08:55:09 -04:00
rating (for example `0` for irrelevant and `1` for relevant) will be sufficient,
2020-01-20 04:29:36 -05:00
while other metrics can use a more fine-grained scale.
2016-11-17 04:27:57 -05:00
2020-01-20 04:29:36 -05:00
===== Template-based ranking evaluation
2019-09-25 08:55:09 -04:00
As an alternative to having to provide a single query per test request, it is
possible to specify query templates in the evaluation request and later refer to
2020-01-20 04:29:36 -05:00
them. This way, queries with a similar structure that differ only in their
parameters don't have to be repeated all the time in the `requests` section.
In typical search systems, where user inputs usually get filled into a small
set of query templates, this helps make the evaluation request more succinct.
2017-11-09 11:57:26 -05:00
2016-11-17 04:27:57 -05:00
[source,js]
--------------------------------
2017-11-09 11:57:26 -05:00
GET /my_index/_rank_eval
{
[...]
"templates": [
{
"id": "match_one_field_query", <1>
"template": { <2>
"inline": {
"query": {
"match": { "{{field}}": { "query": "{{query_string}}" }}
}
}
}
}
],
2016-11-17 04:27:57 -05:00
"requests": [
2017-11-09 11:57:26 -05:00
{
"id": "amsterdam_query"
"ratings": [ ... ],
"template_id": "match_one_field_query", <3>
"params": { <4>
"query_string": "amsterdam",
"field": "text"
}
},
[...]
2016-11-17 04:27:57 -05:00
}
--------------------------------
2017-11-09 11:57:26 -05:00
// NOTCONSOLE
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
<1> the template id
<2> the template definition to use
2019-01-07 08:44:12 -05:00
<3> a reference to a previously defined template
2017-11-09 11:57:26 -05:00
<4> the parameters to use to fill the template
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
===== Available evaluation metrics
2020-01-20 04:29:36 -05:00
The `metric` section determines which of the available evaluation metrics
will be used. The following metrics are supported:
2016-11-17 04:27:57 -05:00
2017-12-15 04:45:44 -05:00
[float]
2019-04-30 10:19:09 -04:00
[[k-precision]]
2019-07-19 14:35:36 -04:00
===== Precision at K (P@k)
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
This metric measures the number of relevant results in the top k search results.
2020-01-20 04:29:36 -05:00
It's a form of the well-known
2019-09-25 08:55:09 -04:00
https://en.wikipedia.org/wiki/Information_retrieval#Precision[Precision] metric
that only looks at the top k documents. It is the fraction of relevant documents
2020-01-20 04:29:36 -05:00
in those first k results. A precision at 10 (P@10) value of 0.6 then means six
out of the 10 top hits are relevant with respect to the user's information need.
2019-09-25 08:55:09 -04:00
P@k works well as a simple evaluation metric that has the benefit of being easy
2020-01-20 04:29:36 -05:00
to understand and explain. Documents in the collection need to be rated as either
relevant or irrelevant with respect to the current query. P@k does not take
into account the position of the relevant documents within the top k results,
so a ranking of ten results that contains one relevant result in position 10 is
equally as good as a ranking of ten results that contains one relevant result
in position 1.
2016-11-17 04:27:57 -05:00
2019-09-09 12:35:50 -04:00
[source,console]
2016-11-17 04:27:57 -05:00
--------------------------------
2017-11-09 11:57:26 -05:00
GET /twitter/_rank_eval
2016-11-17 04:27:57 -05:00
{
2016-11-17 09:01:04 -05:00
"requests": [
{
"id": "JFK query",
"request": { "query": { "match_all": {}}},
"ratings": []
}],
2016-11-17 04:27:57 -05:00
"metric": {
"precision": {
2018-03-23 13:04:32 -04:00
"k" : 20,
2017-11-09 11:57:26 -05:00
"relevant_rating_threshold": 1,
"ignore_unlabeled": false
2016-11-17 04:27:57 -05:00
}
}
}
--------------------------------
2016-11-17 11:03:46 -05:00
// TEST[setup:twitter]
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
The `precision` metric takes the following optional parameters
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
[cols="<,<",options="header",]
|=======================================================================
|Parameter |Description
2018-03-23 13:04:32 -04:00
|`k` |sets the maximum number of documents retrieved per query. This value will act in place of the usual `size` parameter
in the query. Defaults to 10.
|`relevant_rating_threshold` |sets the rating threshold above which documents are considered to be
2017-11-09 11:57:26 -05:00
"relevant". Defaults to `1`.
|`ignore_unlabeled` |controls how unlabeled documents in the search results are counted.
If set to 'true', unlabeled documents are ignored and neither count as relevant or irrelevant. Set to 'false' (the default), they are treated as irrelevant.
|=======================================================================
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
2017-12-15 04:45:44 -05:00
[float]
2019-07-19 14:35:36 -04:00
===== Mean reciprocal rank
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
For every query in the test suite, this metric calculates the reciprocal of the
2020-01-20 04:29:36 -05:00
rank of the first relevant document. For example, finding the first relevant
2019-09-25 08:55:09 -04:00
result in position 3 means the reciprocal rank is 1/3. The reciprocal rank for
each query is averaged across all queries in the test suite to give the
https://en.wikipedia.org/wiki/Mean_reciprocal_rank[mean reciprocal rank].
2016-11-17 04:27:57 -05:00
2019-09-09 12:35:50 -04:00
[source,console]
2016-11-17 04:27:57 -05:00
--------------------------------
2017-11-09 11:57:26 -05:00
GET /twitter/_rank_eval
2016-11-17 04:27:57 -05:00
{
2016-11-17 09:01:04 -05:00
"requests": [
{
"id": "JFK query",
"request": { "query": { "match_all": {}}},
"ratings": []
}],
2016-11-17 04:27:57 -05:00
"metric": {
2017-11-15 11:23:52 -05:00
"mean_reciprocal_rank": {
2018-03-23 13:04:32 -04:00
"k" : 20,
2017-11-15 11:23:52 -05:00
"relevant_rating_threshold" : 1
}
2016-11-17 04:27:57 -05:00
}
}
--------------------------------
2016-11-17 11:03:46 -05:00
// TEST[setup:twitter]
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
The `mean_reciprocal_rank` metric takes the following optional parameters
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
[cols="<,<",options="header",]
|=======================================================================
|Parameter |Description
2018-03-23 13:04:32 -04:00
|`k` |sets the maximum number of documents retrieved per query. This value will act in place of the usual `size` parameter
in the query. Defaults to 10.
2017-11-23 06:31:25 -05:00
|`relevant_rating_threshold` |Sets the rating threshold above which documents are considered to be
2017-11-09 11:57:26 -05:00
"relevant". Defaults to `1`.
|=======================================================================
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
2017-12-15 04:45:44 -05:00
[float]
2019-07-19 14:35:36 -04:00
===== Discounted cumulative gain (DCG)
2016-11-17 04:27:57 -05:00
2019-09-25 08:55:09 -04:00
In contrast to the two metrics above,
https://en.wikipedia.org/wiki/Discounted_cumulative_gain[discounted cumulative gain]
2020-01-20 04:29:36 -05:00
takes both the rank and the rating of the search results into account.
2017-11-09 11:57:26 -05:00
2019-09-25 08:55:09 -04:00
The assumption is that highly relevant documents are more useful for the user
when appearing at the top of the result list. Therefore, the DCG formula reduces
the contribution that high ratings for documents on lower search ranks have on
the overall DCG metric.
2016-11-17 04:27:57 -05:00
2019-09-09 12:35:50 -04:00
[source,console]
2016-11-17 04:27:57 -05:00
--------------------------------
2017-11-09 11:57:26 -05:00
GET /twitter/_rank_eval
2016-11-17 04:27:57 -05:00
{
2016-11-17 09:01:04 -05:00
"requests": [
{
"id": "JFK query",
"request": { "query": { "match_all": {}}},
"ratings": []
}],
2016-11-17 04:27:57 -05:00
"metric": {
"dcg": {
2018-03-23 13:04:32 -04:00
"k" : 20,
2017-11-09 11:57:26 -05:00
"normalize": false
2016-11-17 04:27:57 -05:00
}
}
}
--------------------------------
2016-11-17 11:03:46 -05:00
// TEST[setup:twitter]
2016-11-17 04:27:57 -05:00
2017-11-09 11:57:26 -05:00
The `dcg` metric takes the following optional parameters:
[cols="<,<",options="header",]
|=======================================================================
|Parameter |Description
2018-03-23 13:04:32 -04:00
|`k` |sets the maximum number of documents retrieved per query. This value will act in place of the usual `size` parameter
in the query. Defaults to 10.
2017-11-09 11:57:26 -05:00
|`normalize` | If set to `true`, this metric will calculate the https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG[Normalized DCG].
|=======================================================================
2019-09-25 08:55:09 -04:00
2018-07-24 13:58:34 -04:00
[float]
2019-07-19 14:35:36 -04:00
===== Expected Reciprocal Rank (ERR)
2018-07-24 13:58:34 -04:00
2019-09-25 08:55:09 -04:00
Expected Reciprocal Rank (ERR) is an extension of the classical reciprocal rank
for the graded relevance case (Olivier Chapelle, Donald Metzler, Ya Zhang, and
Pierre Grinspan. 2009.
http://olivier.chapelle.cc/pub/err.pdf[Expected reciprocal rank for graded relevance].)
It is based on the assumption of a cascade model of search, in which a user
scans through ranked search results in order and stops at the first document
that satisfies the information need. For this reason, it is a good metric for
2020-01-20 04:29:36 -05:00
question answering and navigation queries, but less so for survey-oriented
2019-09-25 08:55:09 -04:00
information needs where the user is interested in finding many relevant
documents in the top k results.
The metric models the expectation of the reciprocal of the position at which a
2020-01-20 04:29:36 -05:00
user stops reading through the result list. This means that a relevant document
in a top ranking position will have a large contribution to the overall score.
However, the same document will contribute much less to the score if it appears
in a lower rank; even more so if there are some relevant (but maybe less relevant)
documents preceding it. In this way, the ERR metric discounts documents that
2019-09-25 08:55:09 -04:00
are shown after very relevant documents. This introduces a notion of dependency
in the ordering of relevant documents that e.g. Precision or DCG don't account
for.
2018-07-24 13:58:34 -04:00
2019-09-09 12:35:50 -04:00
[source,console]
2018-07-24 13:58:34 -04:00
--------------------------------
GET /twitter/_rank_eval
{
"requests": [
{
"id": "JFK query",
"request": { "query": { "match_all": {}}},
"ratings": []
}],
"metric": {
"expected_reciprocal_rank": {
"maximum_relevance" : 3,
"k" : 20
}
}
}
--------------------------------
// TEST[setup:twitter]
The `expected_reciprocal_rank` metric takes the following parameters:
[cols="<,<",options="header",]
|=======================================================================
|Parameter |Description
2020-01-20 04:29:36 -05:00
| `maximum_relevance` | Mandatory parameter. The highest relevance grade used in the user-supplied
2018-07-24 13:58:34 -04:00
relevance judgments.
|`k` | sets the maximum number of documents retrieved per query. This value will act in place of the usual `size` parameter
in the query. Defaults to 10.
|=======================================================================
2017-11-09 11:57:26 -05:00
2019-09-25 08:55:09 -04:00
===== Response format
The response of the `_rank_eval` endpoint contains the overall calculated result
for the defined quality metric, a `details` section with a breakdown of results
for each query in the test suite and an optional `failures` section that shows
potential errors of individual queries. The response has the following format:
2016-11-17 04:27:57 -05:00
2017-11-13 15:37:29 -05:00
[source,js]
--------------------------------
{
"rank_eval": {
2018-07-23 16:25:02 -04:00
"metric_score": 0.4, <1>
2017-11-13 15:37:29 -05:00
"details": {
"my_query_id1": { <2>
2018-07-23 16:25:02 -04:00
"metric_score": 0.6, <3>
2018-07-20 05:43:46 -04:00
"unrated_docs": [ <4>
2017-11-13 15:37:29 -05:00
{
"_index": "my_index",
"_id": "1960795"
}, [...]
],
"hits": [
{
"hit": { <5>
"_index": "my_index",
"_type": "page",
"_id": "1528558",
"_score": 7.0556192
},
"rating": 1
}, [...]
],
"metric_details": { <6>
2018-01-30 11:48:09 -05:00
"precision" : {
"relevant_docs_retrieved": 6,
"docs_retrieved": 10
}
2017-11-13 15:37:29 -05:00
}
},
2018-01-11 09:52:11 -05:00
"my_query_id2" : { [...] }
2017-11-13 15:37:29 -05:00
},
"failures": { [...] }
}
}
--------------------------------
// NOTCONSOLE
<1> the overall evaluation quality calculated by the defined metric
<2> the `details` section contains one entry for every query in the original `requests` section, keyed by the search request id
2018-07-23 16:25:02 -04:00
<3> the `metric_score` in the `details` section shows the contribution of this query to the global quality metric score
2018-07-20 05:43:46 -04:00
<4> the `unrated_docs` section contains an `_index` and `_id` entry for each document in the search result for this
2017-11-13 15:37:29 -05:00
query that didn't have a ratings value. This can be used to ask the user to supply ratings for these documents
2020-01-20 04:29:36 -05:00
<5> the `hits` section shows a grouping of the search results with their supplied ratings
2017-11-13 15:37:29 -05:00
<6> the `metric_details` give additional information about the calculated quality metric (e.g. how many of the retrieved
2020-01-20 04:29:36 -05:00
documents were relevant). The content varies for each metric but allows for better interpretation of the results