OpenSearch/docs/java-api/aggregations/metrics/tophits-aggregation.asciidoc

80 lines
2.7 KiB
Plaintext
Raw Normal View History

[[java-aggs-metrics-tophits]]
==== Top Hits Aggregation
Here is how you can use
2014-11-30 03:38:50 -05:00
{ref}/search-aggregations-metrics-top-hits-aggregation.html[Top Hits Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
);
--------------------------------------------------
You can use most of the options available for standard search such as `from`, `size`, `sort`, `highlight`, `explain`...
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
.explain(true)
.size(1)
.from(10)
);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.tophits.TopHits;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Terms agg = sr.getAggregations().get("agg");
// For each entry
for (Terms.Bucket entry : agg.getBuckets()) {
String key = entry.getKey(); // bucket key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
// We ask for top_hits for each bucket
TopHits topHits = entry.getAggregations().get("top");
for (SearchHit hit : topHits.getHits().getHits()) {
logger.info(" -> id [{}], _source [{}]", hit.getId(), hit.getSourceAsString());
}
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
key [male], doc_count [5107]
-> id [AUnzSZze9k7PKXtq04x2], _source [{"gender":"male",...}]
-> id [AUnzSZzj9k7PKXtq04x4], _source [{"gender":"male",...}]
-> id [AUnzSZzl9k7PKXtq04x5], _source [{"gender":"male",...}]
key [female], doc_count [4893]
-> id [AUnzSZzM9k7PKXtq04xy], _source [{"gender":"female",...}]
-> id [AUnzSZzp9k7PKXtq04x8], _source [{"gender":"female",...}]
-> id [AUnzSZ0W9k7PKXtq04yS], _source [{"gender":"female",...}]
--------------------------------------------------