2015-05-05 02:27:52 -04:00
[[query-dsl-geo-distance-query]]
2015-06-03 19:59:22 -04:00
=== Geo Distance Query
2013-08-28 19:24:34 -04:00
Filters documents that include only hits that exists within a specific
2016-05-24 05:58:43 -04:00
distance from a geo point. Assuming the following mapping and indexed
document:
2013-08-28 19:24:34 -04:00
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
PUT /my_locations
{
"mappings": {
"location": {
"properties": {
"pin": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
}
}
}
PUT /my_locations/location/1
2013-08-28 19:24:34 -04:00
{
"pin" : {
"location" : {
"lat" : 40.12,
"lon" : -71.34
}
}
}
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
// TESTSETUP
2013-08-28 19:24:34 -04:00
Then the following simple query can be executed with a `geo_distance`
filter:
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
GET /my_locations/location/_search
2013-08-28 19:24:34 -04:00
{
2016-05-24 05:58:43 -04:00
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "200km",
"pin.location" : {
"lat" : 40,
"lon" : -70
}
2013-08-28 19:24:34 -04:00
}
}
}
}
2013-11-08 07:50:40 -05:00
}
2013-08-28 19:24:34 -04:00
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
==== Accepted Formats
2013-08-28 19:24:34 -04:00
In much the same way the `geo_point` type can accept different
representation of the geo point, the filter can accept it as well:
[float]
2015-06-03 19:59:22 -04:00
===== Lat Lon As Properties
2013-08-28 19:24:34 -04:00
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
GET /my_locations/location/_search
2013-08-28 19:24:34 -04:00
{
2016-05-24 05:58:43 -04:00
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "12km",
"pin.location" : {
"lat" : 40,
"lon" : -70
}
2013-08-28 19:24:34 -04:00
}
}
}
}
}
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
===== Lat Lon As Array
2013-08-28 19:24:34 -04:00
Format in `[lon, lat]`, note, the order of lon/lat here in order to
conform with http://geojson.org/[GeoJSON].
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
GET /my_locations/location/_search
2013-08-28 19:24:34 -04:00
{
2016-05-24 05:58:43 -04:00
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "12km",
"pin.location" : [-70, 40]
}
2013-08-28 19:24:34 -04:00
}
}
}
}
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
===== Lat Lon As String
2013-08-28 19:24:34 -04:00
Format in `lat,lon`.
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
GET /my_locations/location/_search
2013-08-28 19:24:34 -04:00
{
2016-05-24 05:58:43 -04:00
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "12km",
"pin.location" : "40,-70"
}
2013-08-28 19:24:34 -04:00
}
}
}
}
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
===== Geohash
2013-08-28 19:24:34 -04:00
[source,js]
--------------------------------------------------
2016-05-24 05:58:43 -04:00
GET /my_locations/location/_search
2013-08-28 19:24:34 -04:00
{
2016-05-24 05:58:43 -04:00
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "12km",
"pin.location" : "drm3btev3e86"
}
2013-08-28 19:24:34 -04:00
}
}
}
}
--------------------------------------------------
2016-05-24 05:58:43 -04:00
// CONSOLE
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
==== Options
2013-08-28 19:24:34 -04:00
The following are options allowed on the filter:
2013-11-08 07:50:40 -05:00
[horizontal]
`distance`::
The radius of the circle centred on the specified location. Points which
fall into this circle are considered to be matches. The `distance` can be
specified in various units. See <<distance-units>>.
`distance_type`::
2015-05-05 04:03:15 -04:00
How to compute the distance. Can either be `sloppy_arc` (default), `arc` (slightly more precise but significantly slower) or `plane` (faster, but inaccurate on long distances and close to the poles).
2013-11-08 07:50:40 -05:00
`optimize_bbox`::
Whether to use the optimization of first running a bounding box check
before the distance check. Defaults to `memory` which will do in memory
checks. Can also have values of `indexed` to use indexed value check (make
sure the `geo_point` type index lat lon in this case), or `none` which
2016-08-23 10:14:17 -04:00
disables bounding box optimization. deprecated[2.2]
2013-11-08 07:50:40 -05:00
2015-08-07 16:55:22 -04:00
`_name`::
Optional name field to identify the query
2016-05-04 06:04:28 -04:00
`ignore_malformed`::
deprecated[5.0.0,Use `validation_method` instead] Set to `true` to accept geo points with invalid latitude or
longitude (default is `false`).
2016-04-28 08:06:27 -04:00
`validation_method`::
2015-08-07 16:55:22 -04:00
2016-04-28 08:06:27 -04:00
Set to `IGNORE_MALFORMED` to accept geo points with invalid latitude or
longitude, set to `COERCE` to additionally try and infer correct
coordinates (default is `STRICT`).
2013-08-28 19:24:34 -04:00
[float]
2015-06-03 19:59:22 -04:00
==== geo_point Type
2013-08-28 19:24:34 -04:00
The filter *requires* the `geo_point` type to be set on the relevant
field.
[float]
2015-06-03 19:59:22 -04:00
==== Multi Location Per Document
2013-08-28 19:24:34 -04:00
The `geo_distance` filter can work with multiple locations / points per
document. Once a single location / point matches the filter, the
document will be included in the filter.
2016-04-14 06:38:48 -04:00
[float]
==== Ignore Unmapped
When set to `true` the `ignore_unmapped` option will ignore an unmapped field
and will not match any documents for this query. This can be useful when
querying multiple indexes which might have different mappings. When set to
`false` (the default value) the query will throw an exception if the field
is not mapped.