75 lines
2.7 KiB
Plaintext
75 lines
2.7 KiB
Plaintext
|
[role="xpack"]
|
||
|
[testenv="basic"]
|
||
|
[[search-aggregations-pipeline-inference-bucket-aggregation]]
|
||
|
=== Inference Bucket Aggregation
|
||
|
|
||
|
A parent pipeline aggregation which loads a pre-trained model and performs inference on the
|
||
|
collated result field from the parent bucket aggregation.
|
||
|
|
||
|
[[inference-bucket-agg-syntax]]
|
||
|
==== Syntax
|
||
|
|
||
|
A `inference` aggregation looks like this in isolation:
|
||
|
|
||
|
[source,js]
|
||
|
--------------------------------------------------
|
||
|
{
|
||
|
"inference": {
|
||
|
"model_id": "a_model_for_inference", <1>
|
||
|
"inference_config": { <2>
|
||
|
"regression_config": {
|
||
|
"num_top_feature_importance_values": 2
|
||
|
}
|
||
|
},
|
||
|
"buckets_path": {
|
||
|
"avg_cost": "avg_agg", <3>
|
||
|
"max_cost": "max_agg"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
--------------------------------------------------
|
||
|
// NOTCONSOLE
|
||
|
<1> The ID of model to use.
|
||
|
<2> The optional inference config which overrides the model's default settings
|
||
|
<3> Map the value of `avg_agg` to the model's input field `avg_cost`
|
||
|
|
||
|
[[inference-bucket-params]]
|
||
|
.`inference` Parameters
|
||
|
[options="header"]
|
||
|
|===
|
||
|
|Parameter Name |Description |Required |Default Value
|
||
|
| `model_id` | The ID of the model to load and infer against | Required | -
|
||
|
| `inference_config` | Contains the inference type and its options. There are two types: <<inference-agg-regression-opt,`regression`>> and <<inference-agg-classification-opt,`classification`>> | Optional | -
|
||
|
| `buckets_path` | Defines the paths to the input aggregations and maps the aggregation names to the field names expected by the model.
|
||
|
See <<buckets-path-syntax>> for more details | Required | -
|
||
|
|===
|
||
|
|
||
|
|
||
|
==== Configuration options for {infer} models
|
||
|
The `inference_config` setting is optional and usaully isn't required as the pre-trained models come equipped with sensible defaults.
|
||
|
In the context of aggregations some options can overridden for each of the 2 types of model.
|
||
|
|
||
|
[discrete]
|
||
|
[[inference-agg-regression-opt]]
|
||
|
===== Configuration options for {regression} models
|
||
|
|
||
|
`num_top_feature_importance_values`::
|
||
|
(Optional, integer)
|
||
|
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-regression-num-top-feature-importance-values]
|
||
|
|
||
|
[discrete]
|
||
|
[[inference-agg-classification-opt]]
|
||
|
===== Configuration options for {classification} models
|
||
|
|
||
|
`num_top_classes`::
|
||
|
(Optional, integer)
|
||
|
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes]
|
||
|
|
||
|
`num_top_feature_importance_values`::
|
||
|
(Optional, integer)
|
||
|
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-feature-importance-values]
|
||
|
|
||
|
`prediction_field_type`::
|
||
|
(Optional, string)
|
||
|
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-prediction-field-type]
|