2014-06-06 10:25:21 -04:00
[[search-aggregations-metrics-percentile-rank-aggregation]]
=== Percentile Ranks Aggregation
A `multi-value` metrics aggregation that calculates one or more percentile ranks
over numeric values extracted from the aggregated documents. These values
can be extracted either from specific numeric fields in the documents, or
be generated by a provided script.
[NOTE]
==================================================
2015-04-26 11:30:38 -04:00
Please see <<search-aggregations-metrics-percentile-aggregation-approximation>>
and <<search-aggregations-metrics-percentile-aggregation-compression>> for advice
2014-06-06 10:25:21 -04:00
regarding approximation and memory use of the percentile ranks aggregation
==================================================
2015-04-26 11:30:38 -04:00
Percentile rank show the percentage of observed values which are below certain
2014-06-06 10:25:21 -04:00
value. For example, if a value is greater than or equal to 95% of the observed values
it is said to be at the 95th percentile rank.
2015-04-26 11:30:38 -04:00
Assume your data consists of website load times. You may have a service agreement that
2014-06-06 10:25:21 -04:00
95% of page loads completely within 15ms and 99% of page loads complete within 30ms.
Let's look at a range of percentiles representing load time:
[source,js]
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET latency/_search
2014-06-06 10:25:21 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2014-06-06 10:25:21 -04:00
"aggs" : {
2017-08-02 17:47:27 -04:00
"load_time_ranks" : {
2014-06-06 10:25:21 -04:00
"percentile_ranks" : {
2015-02-21 04:19:11 -05:00
"field" : "load_time", <1>
2017-08-02 17:47:27 -04:00
"values" : [500, 600]
2014-06-06 10:25:21 -04:00
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// CONSOLE
// TEST[setup:latency]
2014-06-06 10:25:21 -04:00
<1> The field `load_time` must be a numeric field
The response will look like this:
[source,js]
--------------------------------------------------
{
...
"aggregations": {
2017-08-02 17:47:27 -04:00
"load_time_ranks": {
2014-06-06 10:25:21 -04:00
"values" : {
2017-08-02 17:47:27 -04:00
"500.0": 55.00000000000001,
"600.0": 64.0
2014-06-06 10:25:21 -04:00
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
2014-06-06 10:25:21 -04:00
2015-04-26 11:30:38 -04:00
From this information you can determine you are hitting the 99% load time target but not quite
2014-06-06 10:25:21 -04:00
hitting the 95% load time target
2017-04-18 09:57:50 -04:00
==== Keyed Response
By default the `keyed` flag is set to `true` associates a unique string key with each bucket and returns the ranges as a hash rather than an array. Setting the `keyed` flag to `false` will disable this behavior:
[source,js]
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET latency/_search
2017-04-18 09:57:50 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2017-04-18 09:57:50 -04:00
"aggs": {
2017-08-02 17:47:27 -04:00
"load_time_ranks": {
2017-04-18 09:57:50 -04:00
"percentile_ranks": {
2017-08-02 17:47:27 -04:00
"field": "load_time",
"values": [500, 600],
2017-04-18 09:57:50 -04:00
"keyed": false
}
}
}
}
--------------------------------------------------
// CONSOLE
2017-08-02 17:47:27 -04:00
// TEST[setup:latency]
2017-04-18 09:57:50 -04:00
Response:
[source,js]
--------------------------------------------------
{
...
"aggregations": {
2017-08-02 17:47:27 -04:00
"load_time_ranks": {
2017-04-18 09:57:50 -04:00
"values": [
{
2017-08-02 17:47:27 -04:00
"key": 500.0,
"value": 55.00000000000001
2017-04-18 09:57:50 -04:00
},
{
2017-08-02 17:47:27 -04:00
"key": 600.0,
"value": 64.0
2017-04-18 09:57:50 -04:00
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
2017-08-02 17:47:27 -04:00
2014-06-06 10:25:21 -04:00
==== Script
The percentile rank metric supports scripting. For example, if our load times
are in milliseconds but we want to specify values in seconds, we could use
a script to convert them on-the-fly:
[source,js]
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET latency/_search
2014-06-06 10:25:21 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2014-06-06 10:25:21 -04:00
"aggs" : {
2017-08-02 17:47:27 -04:00
"load_time_ranks" : {
2014-06-06 10:25:21 -04:00
"percentile_ranks" : {
2017-08-02 17:47:27 -04:00
"values" : [500, 600],
2015-05-12 05:37:22 -04:00
"script" : {
2016-06-27 09:55:16 -04:00
"lang": "painless",
2017-06-09 11:29:25 -04:00
"source": "doc['load_time'].value / params.timeUnit", <1>
2015-05-12 05:37:22 -04:00
"params" : {
"timeUnit" : 1000 <2>
}
2014-06-06 10:25:21 -04:00
}
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// CONSOLE
// TEST[setup:latency]
2014-06-06 10:25:21 -04:00
<1> The `field` parameter is replaced with a `script` parameter, which uses the
script to generate values which percentile ranks are calculated on
<2> Scripting supports parameterized input just like any other script
2015-04-26 11:30:38 -04:00
2017-05-17 17:42:25 -04:00
This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
2015-05-12 05:37:22 -04:00
[source,js]
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET latency/_search
2015-05-12 05:37:22 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2015-05-12 05:37:22 -04:00
"aggs" : {
2017-08-02 17:47:27 -04:00
"load_time_ranks" : {
2015-05-12 05:37:22 -04:00
"percentile_ranks" : {
2017-08-02 17:47:27 -04:00
"values" : [500, 600],
2015-05-12 05:37:22 -04:00
"script" : {
2017-06-09 11:29:25 -04:00
"id": "my_script",
2017-08-02 17:47:27 -04:00
"params": {
"field": "load_time"
2015-05-12 05:37:22 -04:00
}
}
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// CONSOLE
// TEST[setup:latency,stored_example_script]
2015-05-12 05:37:22 -04:00
2015-07-20 07:23:21 -04:00
==== HDR Histogram
2017-07-18 08:06:22 -04:00
NOTE: This setting exposes the internal implementation of HDR Histogram and the syntax may change in the future.
2015-07-20 07:23:21 -04:00
2016-07-27 03:48:35 -04:00
https://github.com/HdrHistogram/HdrHistogram[HDR Histogram] (High Dynamic Range Histogram) is an alternative implementation
that can be useful when calculating percentile ranks for latency measurements as it can be faster than the t-digest implementation
with the trade-off of a larger memory footprint. This implementation maintains a fixed worse-case percentage error (specified as a
number of significant digits). This means that if data is recorded with values from 1 microsecond up to 1 hour (3,600,000,000
microseconds) in a histogram set to 3 significant digits, it will maintain a value resolution of 1 microsecond for values up to
2015-07-20 07:23:21 -04:00
1 millisecond and 3.6 seconds (or better) for the maximum tracked value (1 hour).
The HDR Histogram can be used by specifying the `method` parameter in the request:
[source,js]
--------------------------------------------------
2017-12-14 11:47:53 -05:00
GET latency/_search
2015-07-20 07:23:21 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2015-07-20 07:23:21 -04:00
"aggs" : {
2017-08-02 17:47:27 -04:00
"load_time_ranks" : {
2015-07-20 07:23:21 -04:00
"percentile_ranks" : {
"field" : "load_time",
2017-08-02 17:47:27 -04:00
"values" : [500, 600],
2016-07-27 03:48:35 -04:00
"hdr": { <1>
"number_of_significant_value_digits" : 3 <2>
}
2015-07-20 07:23:21 -04:00
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// CONSOLE
// TEST[setup:latency]
2016-07-27 03:48:35 -04:00
<1> `hdr` object indicates that HDR Histogram should be used to calculate the percentiles and specific settings for this algorithm can be specified inside the object
2015-07-20 07:23:21 -04:00
<2> `number_of_significant_value_digits` specifies the resolution of values for the histogram in number of significant digits
2016-07-27 03:48:35 -04:00
The HDRHistogram only supports positive values and will error if it is passed a negative value. It is also not a good idea to use
2015-07-20 07:23:21 -04:00
the HDRHistogram if the range of values is unknown as this could lead to high memory usage.
2015-05-07 10:46:40 -04:00
==== Missing value
The `missing` parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.
[source,js]
--------------------------------------------------
2018-04-13 03:07:51 -04:00
GET latency/_search
2015-05-07 10:46:40 -04:00
{
2017-08-02 17:47:27 -04:00
"size": 0,
2015-05-07 10:46:40 -04:00
"aggs" : {
2017-08-02 17:47:27 -04:00
"load_time_ranks" : {
2015-05-07 10:46:40 -04:00
"percentile_ranks" : {
2017-08-02 17:47:27 -04:00
"field" : "load_time",
"values" : [500, 600],
2015-05-07 10:46:40 -04:00
"missing": 10 <1>
}
}
}
}
--------------------------------------------------
2017-08-02 17:47:27 -04:00
// CONSOLE
// TEST[setup:latency]
<1> Documents without a value in the `load_time` field will fall into the same bucket as documents that have the value `10`.