OpenSearch/docs/reference/aggregations/metrics/boxplot-aggregation.asciidoc

187 lines
4.9 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[testenv="basic"]
[[search-aggregations-metrics-boxplot-aggregation]]
=== Boxplot Aggregation
A `boxplot` metrics aggregation that computes boxplot of numeric values extracted from the aggregated documents.
These values can be generated by a provided script or extracted from specific numeric or
<<histogram,histogram fields>> in the documents.
The `boxplot` aggregation returns essential information for making a https://en.wikipedia.org/wiki/Box_plot[box plot]: minimum, maximum
median, first quartile (25th percentile) and third quartile (75th percentile) values.
==== Syntax
A `boxplot` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"boxplot": {
"field": "load_time"
}
}
--------------------------------------------------
// NOTCONSOLE
Let's look at a boxplot representing load time:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"load_time_boxplot": {
"boxplot": {
"field": "load_time" <1>
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> The field `load_time` must be a numeric field
The response will look like this:
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"load_time_boxplot": {
"min": 0.0,
"max": 990.0,
"q1": 165.0,
"q2": 445.0,
"q3": 725.0
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
==== Script
The boxplot metric supports scripting. For example, if our load times
are in milliseconds but we want values calculated in seconds, we could use
a script to convert them on-the-fly:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"load_time_boxplot": {
"boxplot": {
"script": {
"lang": "painless",
"source": "doc['load_time'].value / params.timeUnit", <1>
"params": {
"timeUnit": 1000 <2>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> The `field` parameter is replaced with a `script` parameter, which uses the
script to generate values which percentiles are calculated on
<2> Scripting supports parameterized input just like any other script
This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a
stored script use the following syntax:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"load_time_boxplot": {
"boxplot": {
"script": {
"id": "my_script",
"params": {
"field": "load_time"
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:latency,stored_example_script]
[[search-aggregations-metrics-boxplot-aggregation-approximation]]
==== Boxplot values are (usually) approximate
The algorithm used by the `boxplot` metric is called TDigest (introduced by
Ted Dunning in
https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf[Computing Accurate Quantiles using T-Digests]).
[WARNING]
====
Boxplot as other percentile aggregations are also
https://en.wikipedia.org/wiki/Nondeterministic_algorithm[non-deterministic].
This means you can get slightly different results using the same data.
====
[[search-aggregations-metrics-boxplot-aggregation-compression]]
==== Compression
Approximate algorithms must balance memory utilization with estimation accuracy.
This balance can be controlled using a `compression` parameter:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"load_time_boxplot": {
"boxplot": {
"field": "load_time",
"compression": 200 <1>
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> Compression controls memory usage and approximation error
include::percentile-aggregation.asciidoc[tags=t-digest]
==== Missing value
The `missing` parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"grade_boxplot": {
"boxplot": {
"field": "grade",
"missing": 10 <1>
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.