2013-11-29 06:35:25 -05:00
[[search-aggregations-metrics-valuecount-aggregation]]
2014-05-12 19:35:58 -04:00
=== Value Count Aggregation
2013-11-29 06:35:25 -05:00
A `single-value` metrics aggregation that counts the number of values that are extracted from the aggregated documents.
2014-02-04 05:52:45 -05:00
These values can be extracted either from specific fields in the documents, or be generated by a provided script. Typically,
2013-11-29 06:35:25 -05:00
this aggregator will be used in conjunction with other single-value aggregations. For example, when computing the `avg`
one might be interested in the number of values the average is computed over.
2019-09-05 10:11:25 -04:00
[source,console]
2013-11-29 06:35:25 -05:00
--------------------------------------------------
2017-01-23 10:04:53 -05:00
POST /sales/_search?size=0
2013-11-29 06:35:25 -05:00
{
"aggs" : {
2017-01-23 10:04:53 -05:00
"types_count" : { "value_count" : { "field" : "type" } }
2013-11-29 06:35:25 -05:00
}
}
--------------------------------------------------
2017-01-23 10:04:53 -05:00
// TEST[setup:sales]
2013-11-29 06:35:25 -05:00
Response:
2019-09-06 16:09:09 -04:00
[source,console-result]
2013-11-29 06:35:25 -05:00
--------------------------------------------------
{
...
"aggregations": {
2017-01-23 10:04:53 -05:00
"types_count": {
"value": 7
2013-11-29 06:35:25 -05:00
}
}
}
--------------------------------------------------
2017-01-23 10:04:53 -05:00
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
2013-11-29 06:35:25 -05:00
2017-05-15 14:08:46 -04:00
The name of the aggregation (`types_count` above) also serves as the key by which the aggregation result can be
2013-11-29 06:35:25 -05:00
retrieved from the returned response.
2014-02-04 05:52:45 -05:00
==== Script
2015-04-26 11:30:38 -04:00
2014-02-04 05:52:45 -05:00
Counting the values generated by a script:
2019-09-05 10:11:25 -04:00
[source,console]
2014-02-04 05:52:45 -05:00
--------------------------------------------------
2017-01-23 10:04:53 -05:00
POST /sales/_search?size=0
2014-02-04 05:52:45 -05:00
{
"aggs" : {
2017-01-23 10:04:53 -05:00
"type_count" : {
"value_count" : {
2016-06-27 09:55:16 -04:00
"script" : {
2017-06-09 11:29:25 -04:00
"source" : "doc['type'].value"
2016-06-27 09:55:16 -04:00
}
}
}
2014-02-04 05:52:45 -05:00
}
}
2014-02-28 09:28:50 -05:00
--------------------------------------------------
2017-01-23 10:04:53 -05:00
// TEST[setup:sales]
2015-04-26 11:30:38 -04:00
2017-05-17 17:42:25 -04:00
This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
2015-05-12 05:37:22 -04:00
2019-09-05 10:11:25 -04:00
[source,console]
2015-05-12 05:37:22 -04:00
--------------------------------------------------
2017-01-23 10:04:53 -05:00
POST /sales/_search?size=0
2015-05-12 05:37:22 -04:00
{
"aggs" : {
2017-05-15 14:08:46 -04:00
"types_count" : {
2017-01-23 10:04:53 -05:00
"value_count" : {
2015-05-12 05:37:22 -04:00
"script" : {
2017-06-09 11:29:25 -04:00
"id": "my_script",
2015-05-12 05:37:22 -04:00
"params" : {
2017-01-23 10:04:53 -05:00
"field" : "type"
2015-05-12 05:37:22 -04:00
}
}
}
}
}
}
--------------------------------------------------
2017-05-17 17:42:25 -04:00
// TEST[setup:sales,stored_example_script]