128 lines
4.5 KiB
Java
Raw Normal View History

Optimize date_histograms across daylight savings time (backport of #55559) (#56334) Rounding dates on a shard that contains a daylight savings time transition is currently something like 1400% slower than when a shard contains dates only on one side of the DST transition. And it makes a ton of short lived garbage. This replaces that implementation with one that benchmarks to having around 30% overhead instead of the 1400%. And it doesn't generate any garbage per search hit. Some background: There are two ways to round in ES: * Round to the nearest time unit (Day/Hour/Week/Month/etc) * Round to the nearest time *interval* (3 days/2 weeks/etc) I'm only optimizing the first one in this change and plan to do the second in a follow up. It turns out that rounding to the nearest unit really *is* two problems: when the unit rounds to midnight (day/week/month/year) and when it doesn't (hour/minute/second). Rounding to midnight is consistently about 25% faster and rounding to individual hour or minutes. This optimization relies on being able to *usually* figure out what the minimum and maximum dates are on the shard. This is similar to an existing optimization where we rewrite time zones that aren't fixed (think America/New_York and its daylight savings time transitions) into fixed time zones so long as there isn't a daylight savings time transition on the shard (UTC-5 or UTC-4 for America/New_York). Once I implement time interval rounding the time zone rewriting optimization *should* no longer be needed. This optimization doesn't come into play for `composite` or `auto_date_histogram` aggs because neither have been migrated to the new `DATE` `ValuesSourceType` which is where that range lookup happens. When they are they will be able to pick up the optimization without much work. I expect this to be substantial for `auto_date_histogram` but less so for `composite` because it deals with fewer values. Note: My 30% overhead figure comes from small numbers of daylight savings time transitions. That overhead gets higher when there are more transitions in logarithmic fashion. When there are two thousand years worth of transitions my algorithm ends up being 250% slower than rounding without a time zone, but java time is 47000% slower at that point, allocating memory as fast as it possibly can.
2020-05-07 09:10:51 -04:00
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.opensearch.common;
Optimize date_histograms across daylight savings time (backport of #55559) (#56334) Rounding dates on a shard that contains a daylight savings time transition is currently something like 1400% slower than when a shard contains dates only on one side of the DST transition. And it makes a ton of short lived garbage. This replaces that implementation with one that benchmarks to having around 30% overhead instead of the 1400%. And it doesn't generate any garbage per search hit. Some background: There are two ways to round in ES: * Round to the nearest time unit (Day/Hour/Week/Month/etc) * Round to the nearest time *interval* (3 days/2 weeks/etc) I'm only optimizing the first one in this change and plan to do the second in a follow up. It turns out that rounding to the nearest unit really *is* two problems: when the unit rounds to midnight (day/week/month/year) and when it doesn't (hour/minute/second). Rounding to midnight is consistently about 25% faster and rounding to individual hour or minutes. This optimization relies on being able to *usually* figure out what the minimum and maximum dates are on the shard. This is similar to an existing optimization where we rewrite time zones that aren't fixed (think America/New_York and its daylight savings time transitions) into fixed time zones so long as there isn't a daylight savings time transition on the shard (UTC-5 or UTC-4 for America/New_York). Once I implement time interval rounding the time zone rewriting optimization *should* no longer be needed. This optimization doesn't come into play for `composite` or `auto_date_histogram` aggs because neither have been migrated to the new `DATE` `ValuesSourceType` which is where that range lookup happens. When they are they will be able to pick up the optimization without much work. I expect this to be substantial for `auto_date_histogram` but less so for `composite` because it deals with fewer values. Note: My 30% overhead figure comes from small numbers of daylight savings time transitions. That overhead gets higher when there are more transitions in logarithmic fashion. When there are two thousand years worth of transitions my algorithm ends up being 250% slower than rounding without a time zone, but java time is 47000% slower at that point, allocating memory as fast as it possibly can.
2020-05-07 09:10:51 -04:00
import org.opensearch.common.time.DateFormatter;
import org.opensearch.common.unit.TimeValue;
import org.opensearch.search.aggregations.bucket.histogram.DateHistogramAggregationBuilder;
Optimize date_histograms across daylight savings time (backport of #55559) (#56334) Rounding dates on a shard that contains a daylight savings time transition is currently something like 1400% slower than when a shard contains dates only on one side of the DST transition. And it makes a ton of short lived garbage. This replaces that implementation with one that benchmarks to having around 30% overhead instead of the 1400%. And it doesn't generate any garbage per search hit. Some background: There are two ways to round in ES: * Round to the nearest time unit (Day/Hour/Week/Month/etc) * Round to the nearest time *interval* (3 days/2 weeks/etc) I'm only optimizing the first one in this change and plan to do the second in a follow up. It turns out that rounding to the nearest unit really *is* two problems: when the unit rounds to midnight (day/week/month/year) and when it doesn't (hour/minute/second). Rounding to midnight is consistently about 25% faster and rounding to individual hour or minutes. This optimization relies on being able to *usually* figure out what the minimum and maximum dates are on the shard. This is similar to an existing optimization where we rewrite time zones that aren't fixed (think America/New_York and its daylight savings time transitions) into fixed time zones so long as there isn't a daylight savings time transition on the shard (UTC-5 or UTC-4 for America/New_York). Once I implement time interval rounding the time zone rewriting optimization *should* no longer be needed. This optimization doesn't come into play for `composite` or `auto_date_histogram` aggs because neither have been migrated to the new `DATE` `ValuesSourceType` which is where that range lookup happens. When they are they will be able to pick up the optimization without much work. I expect this to be substantial for `auto_date_histogram` but less so for `composite` because it deals with fewer values. Note: My 30% overhead figure comes from small numbers of daylight savings time transitions. That overhead gets higher when there are more transitions in logarithmic fashion. When there are two thousand years worth of transitions my algorithm ends up being 250% slower than rounding without a time zone, but java time is 47000% slower at that point, allocating memory as fast as it possibly can.
2020-05-07 09:10:51 -04:00
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;
import java.time.ZoneId;
import java.util.concurrent.TimeUnit;
import java.util.function.Supplier;
@Fork(2)
@Warmup(iterations = 10)
@Measurement(iterations = 5)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
public class RoundingBenchmark {
private static final DateFormatter FORMATTER = DateFormatter.forPattern("date_optional_time");
@Param({
"2000-01-01 to 2020-01-01", // A super long range
"2000-10-01 to 2000-11-01", // A whole month which is pretty believable
"2000-10-29 to 2000-10-30", // A date right around daylight savings time.
"2000-06-01 to 2000-06-02" // A date fully in one time zone. Should be much faster than above.
})
public String range;
@Param({ "java time", "es" })
public String rounder;
@Param({ "UTC", "America/New_York" })
public String zone;
@Param({ "calendar year", "calendar hour", "10d", "5d", "1h" })
public String interval;
Optimize date_histograms across daylight savings time (backport of #55559) (#56334) Rounding dates on a shard that contains a daylight savings time transition is currently something like 1400% slower than when a shard contains dates only on one side of the DST transition. And it makes a ton of short lived garbage. This replaces that implementation with one that benchmarks to having around 30% overhead instead of the 1400%. And it doesn't generate any garbage per search hit. Some background: There are two ways to round in ES: * Round to the nearest time unit (Day/Hour/Week/Month/etc) * Round to the nearest time *interval* (3 days/2 weeks/etc) I'm only optimizing the first one in this change and plan to do the second in a follow up. It turns out that rounding to the nearest unit really *is* two problems: when the unit rounds to midnight (day/week/month/year) and when it doesn't (hour/minute/second). Rounding to midnight is consistently about 25% faster and rounding to individual hour or minutes. This optimization relies on being able to *usually* figure out what the minimum and maximum dates are on the shard. This is similar to an existing optimization where we rewrite time zones that aren't fixed (think America/New_York and its daylight savings time transitions) into fixed time zones so long as there isn't a daylight savings time transition on the shard (UTC-5 or UTC-4 for America/New_York). Once I implement time interval rounding the time zone rewriting optimization *should* no longer be needed. This optimization doesn't come into play for `composite` or `auto_date_histogram` aggs because neither have been migrated to the new `DATE` `ValuesSourceType` which is where that range lookup happens. When they are they will be able to pick up the optimization without much work. I expect this to be substantial for `auto_date_histogram` but less so for `composite` because it deals with fewer values. Note: My 30% overhead figure comes from small numbers of daylight savings time transitions. That overhead gets higher when there are more transitions in logarithmic fashion. When there are two thousand years worth of transitions my algorithm ends up being 250% slower than rounding without a time zone, but java time is 47000% slower at that point, allocating memory as fast as it possibly can.
2020-05-07 09:10:51 -04:00
@Param({ "1", "10000", "1000000", "100000000" })
public int count;
private long min;
private long max;
private long[] dates;
private Supplier<Rounding.Prepared> rounderBuilder;
@Setup
public void buildDates() {
String[] r = range.split(" to ");
min = FORMATTER.parseMillis(r[0]);
max = FORMATTER.parseMillis(r[1]);
dates = new long[count];
long date = min;
long diff = (max - min) / dates.length;
for (int i = 0; i < dates.length; i++) {
if (date >= max) {
throw new IllegalStateException("made a bad date [" + date + "]");
}
dates[i] = date;
date += diff;
}
Rounding.Builder roundingBuilder;
if (interval.startsWith("calendar ")) {
roundingBuilder = Rounding.builder(
DateHistogramAggregationBuilder.DATE_FIELD_UNITS.get(interval.substring("calendar ".length()))
);
} else {
roundingBuilder = Rounding.builder(TimeValue.parseTimeValue(interval, "interval"));
}
Rounding rounding = roundingBuilder.timeZone(ZoneId.of(zone)).build();
Optimize date_histograms across daylight savings time (backport of #55559) (#56334) Rounding dates on a shard that contains a daylight savings time transition is currently something like 1400% slower than when a shard contains dates only on one side of the DST transition. And it makes a ton of short lived garbage. This replaces that implementation with one that benchmarks to having around 30% overhead instead of the 1400%. And it doesn't generate any garbage per search hit. Some background: There are two ways to round in ES: * Round to the nearest time unit (Day/Hour/Week/Month/etc) * Round to the nearest time *interval* (3 days/2 weeks/etc) I'm only optimizing the first one in this change and plan to do the second in a follow up. It turns out that rounding to the nearest unit really *is* two problems: when the unit rounds to midnight (day/week/month/year) and when it doesn't (hour/minute/second). Rounding to midnight is consistently about 25% faster and rounding to individual hour or minutes. This optimization relies on being able to *usually* figure out what the minimum and maximum dates are on the shard. This is similar to an existing optimization where we rewrite time zones that aren't fixed (think America/New_York and its daylight savings time transitions) into fixed time zones so long as there isn't a daylight savings time transition on the shard (UTC-5 or UTC-4 for America/New_York). Once I implement time interval rounding the time zone rewriting optimization *should* no longer be needed. This optimization doesn't come into play for `composite` or `auto_date_histogram` aggs because neither have been migrated to the new `DATE` `ValuesSourceType` which is where that range lookup happens. When they are they will be able to pick up the optimization without much work. I expect this to be substantial for `auto_date_histogram` but less so for `composite` because it deals with fewer values. Note: My 30% overhead figure comes from small numbers of daylight savings time transitions. That overhead gets higher when there are more transitions in logarithmic fashion. When there are two thousand years worth of transitions my algorithm ends up being 250% slower than rounding without a time zone, but java time is 47000% slower at that point, allocating memory as fast as it possibly can.
2020-05-07 09:10:51 -04:00
switch (rounder) {
case "java time":
rounderBuilder = rounding::prepareJavaTime;
break;
case "es":
rounderBuilder = () -> rounding.prepare(min, max);
break;
default:
throw new IllegalArgumentException("Expectd rounder to be [java time] or [es]");
}
}
@Benchmark
public void round(Blackhole bh) {
Rounding.Prepared rounder = rounderBuilder.get();
for (int i = 0; i < dates.length; i++) {
bh.consume(rounder.round(dates[i]));
}
}
@Benchmark
public void nextRoundingValue(Blackhole bh) {
Rounding.Prepared rounder = rounderBuilder.get();
for (int i = 0; i < dates.length; i++) {
bh.consume(rounder.nextRoundingValue(dates[i]));
}
}
}