From 075bd667139b4157e61b12e7368bd0688df6fde1 Mon Sep 17 00:00:00 2001 From: mikemccand Date: Tue, 26 Aug 2014 06:10:55 -0400 Subject: [PATCH] Core: use Java's built-in ConcurrentHashMap It's risky to have our own snapshot of Java 8's ConcurrentHashMap: unless we keep the sources in sync over time (and OpenJDK's version had already diverged), then we won't get bug/performance fixes. Users can choose to upgrade to Java 8 to see the improvements of CHM. Closes #7392 Closes #7296 --- .../java/jsr166e/ConcurrentHashMapV8.java | 6312 ----------------- src/main/java/jsr166e/CountedCompleter.java | 753 -- src/main/java/jsr166e/ForkJoinPool.java | 3345 --------- src/main/java/jsr166e/ForkJoinTask.java | 1557 ---- .../java/jsr166e/ForkJoinWorkerThread.java | 125 - src/main/java/jsr166e/ThreadLocalRandom.java | 199 - .../concurrent/ConcurrentCollections.java | 27 +- 7 files changed, 9 insertions(+), 12309 deletions(-) delete mode 100644 src/main/java/jsr166e/ConcurrentHashMapV8.java delete mode 100644 src/main/java/jsr166e/CountedCompleter.java delete mode 100644 src/main/java/jsr166e/ForkJoinPool.java delete mode 100644 src/main/java/jsr166e/ForkJoinTask.java delete mode 100644 src/main/java/jsr166e/ForkJoinWorkerThread.java delete mode 100644 src/main/java/jsr166e/ThreadLocalRandom.java diff --git a/src/main/java/jsr166e/ConcurrentHashMapV8.java b/src/main/java/jsr166e/ConcurrentHashMapV8.java deleted file mode 100644 index 103ef57f846..00000000000 --- a/src/main/java/jsr166e/ConcurrentHashMapV8.java +++ /dev/null @@ -1,6312 +0,0 @@ - -// Rev 1.121 copied from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ConcurrentHashMapV8.java?view=markup - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - -import jsr166e.ForkJoinPool; - -import java.io.ObjectStreamField; -import java.io.Serializable; -import java.lang.reflect.ParameterizedType; -import java.lang.reflect.Type; -import java.util.AbstractMap; -import java.util.Arrays; -import java.util.Collection; -import java.util.Comparator; -import java.util.ConcurrentModificationException; -import java.util.Enumeration; -import java.util.HashMap; -import java.util.Hashtable; -import java.util.Iterator; -import java.util.Map; -import java.util.NoSuchElementException; -import java.util.Set; -import java.util.concurrent.ConcurrentMap; -import java.util.concurrent.atomic.AtomicReference; -import java.util.concurrent.atomic.AtomicInteger; -import java.util.concurrent.locks.LockSupport; -import java.util.concurrent.locks.ReentrantLock; - -/** - * A hash table supporting full concurrency of retrievals and - * high expected concurrency for updates. This class obeys the - * same functional specification as {@link java.util.Hashtable}, and - * includes versions of methods corresponding to each method of - * {@code Hashtable}. However, even though all operations are - * thread-safe, retrieval operations do not entail locking, - * and there is not any support for locking the entire table - * in a way that prevents all access. This class is fully - * interoperable with {@code Hashtable} in programs that rely on its - * thread safety but not on its synchronization details. - * - *

Retrieval operations (including {@code get}) generally do not - * block, so may overlap with update operations (including {@code put} - * and {@code remove}). Retrievals reflect the results of the most - * recently completed update operations holding upon their - * onset. (More formally, an update operation for a given key bears a - * happens-before relation with any (non-null) retrieval for - * that key reporting the updated value.) For aggregate operations - * such as {@code putAll} and {@code clear}, concurrent retrievals may - * reflect insertion or removal of only some entries. Similarly, - * Iterators and Enumerations return elements reflecting the state of - * the hash table at some point at or since the creation of the - * iterator/enumeration. They do not throw {@link - * ConcurrentModificationException}. However, iterators are designed - * to be used by only one thread at a time. Bear in mind that the - * results of aggregate status methods including {@code size}, {@code - * isEmpty}, and {@code containsValue} are typically useful only when - * a map is not undergoing concurrent updates in other threads. - * Otherwise the results of these methods reflect transient states - * that may be adequate for monitoring or estimation purposes, but not - * for program control. - * - *

The table is dynamically expanded when there are too many - * collisions (i.e., keys that have distinct hash codes but fall into - * the same slot modulo the table size), with the expected average - * effect of maintaining roughly two bins per mapping (corresponding - * to a 0.75 load factor threshold for resizing). There may be much - * variance around this average as mappings are added and removed, but - * overall, this maintains a commonly accepted time/space tradeoff for - * hash tables. However, resizing this or any other kind of hash - * table may be a relatively slow operation. When possible, it is a - * good idea to provide a size estimate as an optional {@code - * initialCapacity} constructor argument. An additional optional - * {@code loadFactor} constructor argument provides a further means of - * customizing initial table capacity by specifying the table density - * to be used in calculating the amount of space to allocate for the - * given number of elements. Also, for compatibility with previous - * versions of this class, constructors may optionally specify an - * expected {@code concurrencyLevel} as an additional hint for - * internal sizing. Note that using many keys with exactly the same - * {@code hashCode()} is a sure way to slow down performance of any - * hash table. To ameliorate impact, when keys are {@link Comparable}, - * this class may use comparison order among keys to help break ties. - * - *

A {@link Set} projection of a ConcurrentHashMapV8 may be created - * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed - * (using {@link #keySet(Object)} when only keys are of interest, and the - * mapped values are (perhaps transiently) not used or all take the - * same mapping value. - * - *

This class and its views and iterators implement all of the - * optional methods of the {@link Map} and {@link Iterator} - * interfaces. - * - *

Like {@link Hashtable} but unlike {@link HashMap}, this class - * does not allow {@code null} to be used as a key or value. - * - *

ConcurrentHashMapV8s support a set of sequential and parallel bulk - * operations that are designed - * to be safely, and often sensibly, applied even with maps that are - * being concurrently updated by other threads; for example, when - * computing a snapshot summary of the values in a shared registry. - * There are three kinds of operation, each with four forms, accepting - * functions with Keys, Values, Entries, and (Key, Value) arguments - * and/or return values. Because the elements of a ConcurrentHashMapV8 - * are not ordered in any particular way, and may be processed in - * different orders in different parallel executions, the correctness - * of supplied functions should not depend on any ordering, or on any - * other objects or values that may transiently change while - * computation is in progress; and except for forEach actions, should - * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry} - * objects do not support method {@code setValue}. - * - *

- * - *

These bulk operations accept a {@code parallelismThreshold} - * argument. Methods proceed sequentially if the current map size is - * estimated to be less than the given threshold. Using a value of - * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value - * of {@code 1} results in maximal parallelism by partitioning into - * enough subtasks to fully utilize the {@link - * ForkJoinPool#commonPool()} that is used for all parallel - * computations. Normally, you would initially choose one of these - * extreme values, and then measure performance of using in-between - * values that trade off overhead versus throughput. - * - *

The concurrency properties of bulk operations follow - * from those of ConcurrentHashMapV8: Any non-null result returned - * from {@code get(key)} and related access methods bears a - * happens-before relation with the associated insertion or - * update. The result of any bulk operation reflects the - * composition of these per-element relations (but is not - * necessarily atomic with respect to the map as a whole unless it - * is somehow known to be quiescent). Conversely, because keys - * and values in the map are never null, null serves as a reliable - * atomic indicator of the current lack of any result. To - * maintain this property, null serves as an implicit basis for - * all non-scalar reduction operations. For the double, long, and - * int versions, the basis should be one that, when combined with - * any other value, returns that other value (more formally, it - * should be the identity element for the reduction). Most common - * reductions have these properties; for example, computing a sum - * with basis 0 or a minimum with basis MAX_VALUE. - * - *

Search and transformation functions provided as arguments - * should similarly return null to indicate the lack of any result - * (in which case it is not used). In the case of mapped - * reductions, this also enables transformations to serve as - * filters, returning null (or, in the case of primitive - * specializations, the identity basis) if the element should not - * be combined. You can create compound transformations and - * filterings by composing them yourself under this "null means - * there is nothing there now" rule before using them in search or - * reduce operations. - * - *

Methods accepting and/or returning Entry arguments maintain - * key-value associations. They may be useful for example when - * finding the key for the greatest value. Note that "plain" Entry - * arguments can be supplied using {@code new - * AbstractMap.SimpleEntry(k,v)}. - * - *

Bulk operations may complete abruptly, throwing an - * exception encountered in the application of a supplied - * function. Bear in mind when handling such exceptions that other - * concurrently executing functions could also have thrown - * exceptions, or would have done so if the first exception had - * not occurred. - * - *

Speedups for parallel compared to sequential forms are common - * but not guaranteed. Parallel operations involving brief functions - * on small maps may execute more slowly than sequential forms if the - * underlying work to parallelize the computation is more expensive - * than the computation itself. Similarly, parallelization may not - * lead to much actual parallelism if all processors are busy - * performing unrelated tasks. - * - *

All arguments to all task methods must be non-null. - * - *

jsr166e note: During transition, this class - * uses nested functional interfaces with different names but the - * same forms as those expected for JDK8. - * - *

This class is a member of the - * - * Java Collections Framework. - * - * @since 1.5 - * @author Doug Lea - * @param the type of keys maintained by this map - * @param the type of mapped values - */ -public class ConcurrentHashMapV8 extends AbstractMap - implements ConcurrentMap, Serializable { - private static final long serialVersionUID = 7249069246763182397L; - - /** - * An object for traversing and partitioning elements of a source. - * This interface provides a subset of the functionality of JDK8 - * java.util.Spliterator. - */ - public static interface ConcurrentHashMapSpliterator { - /** - * If possible, returns a new spliterator covering - * approximately one half of the elements, which will not be - * covered by this spliterator. Returns null if cannot be - * split. - */ - ConcurrentHashMapSpliterator trySplit(); - /** - * Returns an estimate of the number of elements covered by - * this Spliterator. - */ - long estimateSize(); - - /** Applies the action to each untraversed element */ - void forEachRemaining(Action action); - /** If an element remains, applies the action and returns true. */ - boolean tryAdvance(Action action); - } - - // Sams - /** Interface describing a void action of one argument */ - public interface Action { void apply(A a); } - /** Interface describing a void action of two arguments */ - public interface BiAction { void apply(A a, B b); } - /** Interface describing a function of one argument */ - public interface Fun { T apply(A a); } - /** Interface describing a function of two arguments */ - public interface BiFun { T apply(A a, B b); } - /** Interface describing a function mapping its argument to a double */ - public interface ObjectToDouble { double apply(A a); } - /** Interface describing a function mapping its argument to a long */ - public interface ObjectToLong { long apply(A a); } - /** Interface describing a function mapping its argument to an int */ - public interface ObjectToInt {int apply(A a); } - /** Interface describing a function mapping two arguments to a double */ - public interface ObjectByObjectToDouble { double apply(A a, B b); } - /** Interface describing a function mapping two arguments to a long */ - public interface ObjectByObjectToLong { long apply(A a, B b); } - /** Interface describing a function mapping two arguments to an int */ - public interface ObjectByObjectToInt {int apply(A a, B b); } - /** Interface describing a function mapping two doubles to a double */ - public interface DoubleByDoubleToDouble { double apply(double a, double b); } - /** Interface describing a function mapping two longs to a long */ - public interface LongByLongToLong { long apply(long a, long b); } - /** Interface describing a function mapping two ints to an int */ - public interface IntByIntToInt { int apply(int a, int b); } - - - /* - * Overview: - * - * The primary design goal of this hash table is to maintain - * concurrent readability (typically method get(), but also - * iterators and related methods) while minimizing update - * contention. Secondary goals are to keep space consumption about - * the same or better than java.util.HashMap, and to support high - * initial insertion rates on an empty table by many threads. - * - * This map usually acts as a binned (bucketed) hash table. Each - * key-value mapping is held in a Node. Most nodes are instances - * of the basic Node class with hash, key, value, and next - * fields. However, various subclasses exist: TreeNodes are - * arranged in balanced trees, not lists. TreeBins hold the roots - * of sets of TreeNodes. ForwardingNodes are placed at the heads - * of bins during resizing. ReservationNodes are used as - * placeholders while establishing values in computeIfAbsent and - * related methods. The types TreeBin, ForwardingNode, and - * ReservationNode do not hold normal user keys, values, or - * hashes, and are readily distinguishable during search etc - * because they have negative hash fields and null key and value - * fields. (These special nodes are either uncommon or transient, - * so the impact of carrying around some unused fields is - * insignificant.) - * - * The table is lazily initialized to a power-of-two size upon the - * first insertion. Each bin in the table normally contains a - * list of Nodes (most often, the list has only zero or one Node). - * Table accesses require volatile/atomic reads, writes, and - * CASes. Because there is no other way to arrange this without - * adding further indirections, we use intrinsics - * (sun.misc.Unsafe) operations. - * - * We use the top (sign) bit of Node hash fields for control - * purposes -- it is available anyway because of addressing - * constraints. Nodes with negative hash fields are specially - * handled or ignored in map methods. - * - * Insertion (via put or its variants) of the first node in an - * empty bin is performed by just CASing it to the bin. This is - * by far the most common case for put operations under most - * key/hash distributions. Other update operations (insert, - * delete, and replace) require locks. We do not want to waste - * the space required to associate a distinct lock object with - * each bin, so instead use the first node of a bin list itself as - * a lock. Locking support for these locks relies on builtin - * "synchronized" monitors. - * - * Using the first node of a list as a lock does not by itself - * suffice though: When a node is locked, any update must first - * validate that it is still the first node after locking it, and - * retry if not. Because new nodes are always appended to lists, - * once a node is first in a bin, it remains first until deleted - * or the bin becomes invalidated (upon resizing). - * - * The main disadvantage of per-bin locks is that other update - * operations on other nodes in a bin list protected by the same - * lock can stall, for example when user equals() or mapping - * functions take a long time. However, statistically, under - * random hash codes, this is not a common problem. Ideally, the - * frequency of nodes in bins follows a Poisson distribution - * (http://en.wikipedia.org/wiki/Poisson_distribution) with a - * parameter of about 0.5 on average, given the resizing threshold - * of 0.75, although with a large variance because of resizing - * granularity. Ignoring variance, the expected occurrences of - * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The - * first values are: - * - * 0: 0.60653066 - * 1: 0.30326533 - * 2: 0.07581633 - * 3: 0.01263606 - * 4: 0.00157952 - * 5: 0.00015795 - * 6: 0.00001316 - * 7: 0.00000094 - * 8: 0.00000006 - * more: less than 1 in ten million - * - * Lock contention probability for two threads accessing distinct - * elements is roughly 1 / (8 * #elements) under random hashes. - * - * Actual hash code distributions encountered in practice - * sometimes deviate significantly from uniform randomness. This - * includes the case when N > (1<<30), so some keys MUST collide. - * Similarly for dumb or hostile usages in which multiple keys are - * designed to have identical hash codes or ones that differs only - * in masked-out high bits. So we use a secondary strategy that - * applies when the number of nodes in a bin exceeds a - * threshold. These TreeBins use a balanced tree to hold nodes (a - * specialized form of red-black trees), bounding search time to - * O(log N). Each search step in a TreeBin is at least twice as - * slow as in a regular list, but given that N cannot exceed - * (1<<64) (before running out of addresses) this bounds search - * steps, lock hold times, etc, to reasonable constants (roughly - * 100 nodes inspected per operation worst case) so long as keys - * are Comparable (which is very common -- String, Long, etc). - * TreeBin nodes (TreeNodes) also maintain the same "next" - * traversal pointers as regular nodes, so can be traversed in - * iterators in the same way. - * - * The table is resized when occupancy exceeds a percentage - * threshold (nominally, 0.75, but see below). Any thread - * noticing an overfull bin may assist in resizing after the - * initiating thread allocates and sets up the replacement array. - * However, rather than stalling, these other threads may proceed - * with insertions etc. The use of TreeBins shields us from the - * worst case effects of overfilling while resizes are in - * progress. Resizing proceeds by transferring bins, one by one, - * from the table to the next table. However, threads claim small - * blocks of indices to transfer (via field transferIndex) before - * doing so, reducing contention. A generation stamp in field - * sizeCtl ensures that resizings do not overlap. Because we are - * using power-of-two expansion, the elements from each bin must - * either stay at same index, or move with a power of two - * offset. We eliminate unnecessary node creation by catching - * cases where old nodes can be reused because their next fields - * won't change. On average, only about one-sixth of them need - * cloning when a table doubles. The nodes they replace will be - * garbage collectable as soon as they are no longer referenced by - * any reader thread that may be in the midst of concurrently - * traversing table. Upon transfer, the old table bin contains - * only a special forwarding node (with hash field "MOVED") that - * contains the next table as its key. On encountering a - * forwarding node, access and update operations restart, using - * the new table. - * - * Each bin transfer requires its bin lock, which can stall - * waiting for locks while resizing. However, because other - * threads can join in and help resize rather than contend for - * locks, average aggregate waits become shorter as resizing - * progresses. The transfer operation must also ensure that all - * accessible bins in both the old and new table are usable by any - * traversal. This is arranged in part by proceeding from the - * last bin (table.length - 1) up towards the first. Upon seeing - * a forwarding node, traversals (see class Traverser) arrange to - * move to the new table without revisiting nodes. To ensure that - * no intervening nodes are skipped even when moved out of order, - * a stack (see class TableStack) is created on first encounter of - * a forwarding node during a traversal, to maintain its place if - * later processing the current table. The need for these - * save/restore mechanics is relatively rare, but when one - * forwarding node is encountered, typically many more will be. - * So Traversers use a simple caching scheme to avoid creating so - * many new TableStack nodes. (Thanks to Peter Levart for - * suggesting use of a stack here.) - * - * The traversal scheme also applies to partial traversals of - * ranges of bins (via an alternate Traverser constructor) - * to support partitioned aggregate operations. Also, read-only - * operations give up if ever forwarded to a null table, which - * provides support for shutdown-style clearing, which is also not - * currently implemented. - * - * Lazy table initialization minimizes footprint until first use, - * and also avoids resizings when the first operation is from a - * putAll, constructor with map argument, or deserialization. - * These cases attempt to override the initial capacity settings, - * but harmlessly fail to take effect in cases of races. - * - * The element count is maintained using a specialization of - * LongAdder. We need to incorporate a specialization rather than - * just use a LongAdder in order to access implicit - * contention-sensing that leads to creation of multiple - * CounterCells. The counter mechanics avoid contention on - * updates but can encounter cache thrashing if read too - * frequently during concurrent access. To avoid reading so often, - * resizing under contention is attempted only upon adding to a - * bin already holding two or more nodes. Under uniform hash - * distributions, the probability of this occurring at threshold - * is around 13%, meaning that only about 1 in 8 puts check - * threshold (and after resizing, many fewer do so). - * - * TreeBins use a special form of comparison for search and - * related operations (which is the main reason we cannot use - * existing collections such as TreeMaps). TreeBins contain - * Comparable elements, but may contain others, as well as - * elements that are Comparable but not necessarily Comparable for - * the same T, so we cannot invoke compareTo among them. To handle - * this, the tree is ordered primarily by hash value, then by - * Comparable.compareTo order if applicable. On lookup at a node, - * if elements are not comparable or compare as 0 then both left - * and right children may need to be searched in the case of tied - * hash values. (This corresponds to the full list search that - * would be necessary if all elements were non-Comparable and had - * tied hashes.) On insertion, to keep a total ordering (or as - * close as is required here) across rebalancings, we compare - * classes and identityHashCodes as tie-breakers. The red-black - * balancing code is updated from pre-jdk-collections - * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) - * based in turn on Cormen, Leiserson, and Rivest "Introduction to - * Algorithms" (CLR). - * - * TreeBins also require an additional locking mechanism. While - * list traversal is always possible by readers even during - * updates, tree traversal is not, mainly because of tree-rotations - * that may change the root node and/or its linkages. TreeBins - * include a simple read-write lock mechanism parasitic on the - * main bin-synchronization strategy: Structural adjustments - * associated with an insertion or removal are already bin-locked - * (and so cannot conflict with other writers) but must wait for - * ongoing readers to finish. Since there can be only one such - * waiter, we use a simple scheme using a single "waiter" field to - * block writers. However, readers need never block. If the root - * lock is held, they proceed along the slow traversal path (via - * next-pointers) until the lock becomes available or the list is - * exhausted, whichever comes first. These cases are not fast, but - * maximize aggregate expected throughput. - * - * Maintaining API and serialization compatibility with previous - * versions of this class introduces several oddities. Mainly: We - * leave untouched but unused constructor arguments refering to - * concurrencyLevel. We accept a loadFactor constructor argument, - * but apply it only to initial table capacity (which is the only - * time that we can guarantee to honor it.) We also declare an - * unused "Segment" class that is instantiated in minimal form - * only when serializing. - * - * Also, solely for compatibility with previous versions of this - * class, it extends AbstractMap, even though all of its methods - * are overridden, so it is just useless baggage. - * - * This file is organized to make things a little easier to follow - * while reading than they might otherwise: First the main static - * declarations and utilities, then fields, then main public - * methods (with a few factorings of multiple public methods into - * internal ones), then sizing methods, trees, traversers, and - * bulk operations. - */ - - /* ---------------- Constants -------------- */ - - /** - * The largest possible table capacity. This value must be - * exactly 1<<30 to stay within Java array allocation and indexing - * bounds for power of two table sizes, and is further required - * because the top two bits of 32bit hash fields are used for - * control purposes. - */ - private static final int MAXIMUM_CAPACITY = 1 << 30; - - /** - * The default initial table capacity. Must be a power of 2 - * (i.e., at least 1) and at most MAXIMUM_CAPACITY. - */ - private static final int DEFAULT_CAPACITY = 16; - - /** - * The largest possible (non-power of two) array size. - * Needed by toArray and related methods. - */ - static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; - - /** - * The default concurrency level for this table. Unused but - * defined for compatibility with previous versions of this class. - */ - private static final int DEFAULT_CONCURRENCY_LEVEL = 16; - - /** - * The load factor for this table. Overrides of this value in - * constructors affect only the initial table capacity. The - * actual floating point value isn't normally used -- it is - * simpler to use expressions such as {@code n - (n >>> 2)} for - * the associated resizing threshold. - */ - private static final float LOAD_FACTOR = 0.75f; - - /** - * The bin count threshold for using a tree rather than list for a - * bin. Bins are converted to trees when adding an element to a - * bin with at least this many nodes. The value must be greater - * than 2, and should be at least 8 to mesh with assumptions in - * tree removal about conversion back to plain bins upon - * shrinkage. - */ - static final int TREEIFY_THRESHOLD = 8; - - /** - * The bin count threshold for untreeifying a (split) bin during a - * resize operation. Should be less than TREEIFY_THRESHOLD, and at - * most 6 to mesh with shrinkage detection under removal. - */ - static final int UNTREEIFY_THRESHOLD = 6; - - /** - * The smallest table capacity for which bins may be treeified. - * (Otherwise the table is resized if too many nodes in a bin.) - * The value should be at least 4 * TREEIFY_THRESHOLD to avoid - * conflicts between resizing and treeification thresholds. - */ - static final int MIN_TREEIFY_CAPACITY = 64; - - /** - * Minimum number of rebinnings per transfer step. Ranges are - * subdivided to allow multiple resizer threads. This value - * serves as a lower bound to avoid resizers encountering - * excessive memory contention. The value should be at least - * DEFAULT_CAPACITY. - */ - private static final int MIN_TRANSFER_STRIDE = 16; - - /** - * The number of bits used for generation stamp in sizeCtl. - * Must be at least 6 for 32bit arrays. - */ - private static int RESIZE_STAMP_BITS = 16; - - /** - * The maximum number of threads that can help resize. - * Must fit in 32 - RESIZE_STAMP_BITS bits. - */ - private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; - - /** - * The bit shift for recording size stamp in sizeCtl. - */ - private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; - - /* - * Encodings for Node hash fields. See above for explanation. - */ - static final int MOVED = -1; // hash for forwarding nodes - static final int TREEBIN = -2; // hash for roots of trees - static final int RESERVED = -3; // hash for transient reservations - static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash - - /** Number of CPUS, to place bounds on some sizings */ - static final int NCPU = Runtime.getRuntime().availableProcessors(); - - /** For serialization compatibility. */ - private static final ObjectStreamField[] serialPersistentFields = { - new ObjectStreamField("segments", Segment[].class), - new ObjectStreamField("segmentMask", Integer.TYPE), - new ObjectStreamField("segmentShift", Integer.TYPE) - }; - - /* ---------------- Nodes -------------- */ - - /** - * Key-value entry. This class is never exported out as a - * user-mutable Map.Entry (i.e., one supporting setValue; see - * MapEntry below), but can be used for read-only traversals used - * in bulk tasks. Subclasses of Node with a negative hash field - * are special, and contain null keys and values (but are never - * exported). Otherwise, keys and vals are never null. - */ - static class Node implements Map.Entry { - final int hash; - final K key; - volatile V val; - volatile Node next; - - Node(int hash, K key, V val, Node next) { - this.hash = hash; - this.key = key; - this.val = val; - this.next = next; - } - - public final K getKey() { return key; } - public final V getValue() { return val; } - public final int hashCode() { return key.hashCode() ^ val.hashCode(); } - public final String toString(){ return key + "=" + val; } - public final V setValue(V value) { - throw new UnsupportedOperationException(); - } - - public final boolean equals(Object o) { - Object k, v, u; Map.Entry e; - return ((o instanceof Map.Entry) && - (k = (e = (Map.Entry)o).getKey()) != null && - (v = e.getValue()) != null && - (k == key || k.equals(key)) && - (v == (u = val) || v.equals(u))); - } - - /** - * Virtualized support for map.get(); overridden in subclasses. - */ - Node find(int h, Object k) { - Node e = this; - if (k != null) { - do { - K ek; - if (e.hash == h && - ((ek = e.key) == k || (ek != null && k.equals(ek)))) - return e; - } while ((e = e.next) != null); - } - return null; - } - } - - /* ---------------- Static utilities -------------- */ - - /** - * Spreads (XORs) higher bits of hash to lower and also forces top - * bit to 0. Because the table uses power-of-two masking, sets of - * hashes that vary only in bits above the current mask will - * always collide. (Among known examples are sets of Float keys - * holding consecutive whole numbers in small tables.) So we - * apply a transform that spreads the impact of higher bits - * downward. There is a tradeoff between speed, utility, and - * quality of bit-spreading. Because many common sets of hashes - * are already reasonably distributed (so don't benefit from - * spreading), and because we use trees to handle large sets of - * collisions in bins, we just XOR some shifted bits in the - * cheapest possible way to reduce systematic lossage, as well as - * to incorporate impact of the highest bits that would otherwise - * never be used in index calculations because of table bounds. - */ - static final int spread(int h) { - return (h ^ (h >>> 16)) & HASH_BITS; - } - - /** - * Returns a power of two table size for the given desired capacity. - * See Hackers Delight, sec 3.2 - */ - private static final int tableSizeFor(int c) { - int n = c - 1; - n |= n >>> 1; - n |= n >>> 2; - n |= n >>> 4; - n |= n >>> 8; - n |= n >>> 16; - return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; - } - - /** - * Returns x's Class if it is of the form "class C implements - * Comparable", else null. - */ - static Class comparableClassFor(Object x) { - if (x instanceof Comparable) { - Class c; Type[] ts, as; Type t; ParameterizedType p; - if ((c = x.getClass()) == String.class) // bypass checks - return c; - if ((ts = c.getGenericInterfaces()) != null) { - for (int i = 0; i < ts.length; ++i) { - if (((t = ts[i]) instanceof ParameterizedType) && - ((p = (ParameterizedType)t).getRawType() == - Comparable.class) && - (as = p.getActualTypeArguments()) != null && - as.length == 1 && as[0] == c) // type arg is c - return c; - } - } - } - return null; - } - - /** - * Returns k.compareTo(x) if x matches kc (k's screened comparable - * class), else 0. - */ - @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable - static int compareComparables(Class kc, Object k, Object x) { - return (x == null || x.getClass() != kc ? 0 : - ((Comparable)k).compareTo(x)); - } - - /* ---------------- Table element access -------------- */ - - /* - * Volatile access methods are used for table elements as well as - * elements of in-progress next table while resizing. All uses of - * the tab arguments must be null checked by callers. All callers - * also paranoically precheck that tab's length is not zero (or an - * equivalent check), thus ensuring that any index argument taking - * the form of a hash value anded with (length - 1) is a valid - * index. Note that, to be correct wrt arbitrary concurrency - * errors by users, these checks must operate on local variables, - * which accounts for some odd-looking inline assignments below. - * Note that calls to setTabAt always occur within locked regions, - * and so in principle require only release ordering, not - * full volatile semantics, but are currently coded as volatile - * writes to be conservative. - */ - - @SuppressWarnings("unchecked") - static final Node tabAt(Node[] tab, int i) { - return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); - } - - static final boolean casTabAt(Node[] tab, int i, - Node c, Node v) { - return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); - } - - static final void setTabAt(Node[] tab, int i, Node v) { - U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); - } - - /* ---------------- Fields -------------- */ - - /** - * The array of bins. Lazily initialized upon first insertion. - * Size is always a power of two. Accessed directly by iterators. - */ - transient volatile Node[] table; - - /** - * The next table to use; non-null only while resizing. - */ - private transient volatile Node[] nextTable; - - /** - * Base counter value, used mainly when there is no contention, - * but also as a fallback during table initialization - * races. Updated via CAS. - */ - private transient volatile long baseCount; - - /** - * Table initialization and resizing control. When negative, the - * table is being initialized or resized: -1 for initialization, - * else -(1 + the number of active resizing threads). Otherwise, - * when table is null, holds the initial table size to use upon - * creation, or 0 for default. After initialization, holds the - * next element count value upon which to resize the table. - */ - private transient volatile int sizeCtl; - - /** - * The next table index (plus one) to split while resizing. - */ - private transient volatile int transferIndex; - - /** - * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. - */ - private transient volatile int cellsBusy; - - /** - * Table of counter cells. When non-null, size is a power of 2. - */ - private transient volatile CounterCell[] counterCells; - - // views - private transient KeySetView keySet; - private transient ValuesView values; - private transient EntrySetView entrySet; - - - /* ---------------- Public operations -------------- */ - - /** - * Creates a new, empty map with the default initial table size (16). - */ - public ConcurrentHashMapV8() { - } - - /** - * Creates a new, empty map with an initial table size - * accommodating the specified number of elements without the need - * to dynamically resize. - * - * @param initialCapacity The implementation performs internal - * sizing to accommodate this many elements. - * @throws IllegalArgumentException if the initial capacity of - * elements is negative - */ - public ConcurrentHashMapV8(int initialCapacity) { - if (initialCapacity < 0) - throw new IllegalArgumentException(); - int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? - MAXIMUM_CAPACITY : - tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); - this.sizeCtl = cap; - } - - /** - * Creates a new map with the same mappings as the given map. - * - * @param m the map - */ - public ConcurrentHashMapV8(Map m) { - this.sizeCtl = DEFAULT_CAPACITY; - putAll(m); - } - - /** - * Creates a new, empty map with an initial table size based on - * the given number of elements ({@code initialCapacity}) and - * initial table density ({@code loadFactor}). - * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements, - * given the specified load factor. - * @param loadFactor the load factor (table density) for - * establishing the initial table size - * @throws IllegalArgumentException if the initial capacity of - * elements is negative or the load factor is nonpositive - * - * @since 1.6 - */ - public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { - this(initialCapacity, loadFactor, 1); - } - - /** - * Creates a new, empty map with an initial table size based on - * the given number of elements ({@code initialCapacity}), table - * density ({@code loadFactor}), and number of concurrently - * updating threads ({@code concurrencyLevel}). - * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements, - * given the specified load factor. - * @param loadFactor the load factor (table density) for - * establishing the initial table size - * @param concurrencyLevel the estimated number of concurrently - * updating threads. The implementation may use this value as - * a sizing hint. - * @throws IllegalArgumentException if the initial capacity is - * negative or the load factor or concurrencyLevel are - * nonpositive - */ - public ConcurrentHashMapV8(int initialCapacity, - float loadFactor, int concurrencyLevel) { - if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) - throw new IllegalArgumentException(); - if (initialCapacity < concurrencyLevel) // Use at least as many bins - initialCapacity = concurrencyLevel; // as estimated threads - long size = (long)(1.0 + (long)initialCapacity / loadFactor); - int cap = (size >= (long)MAXIMUM_CAPACITY) ? - MAXIMUM_CAPACITY : tableSizeFor((int)size); - this.sizeCtl = cap; - } - - // Original (since JDK1.2) Map methods - - /** - * {@inheritDoc} - */ - public int size() { - long n = sumCount(); - return ((n < 0L) ? 0 : - (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : - (int)n); - } - - /** - * {@inheritDoc} - */ - public boolean isEmpty() { - return sumCount() <= 0L; // ignore transient negative values - } - - /** - * Returns the value to which the specified key is mapped, - * or {@code null} if this map contains no mapping for the key. - * - *

More formally, if this map contains a mapping from a key - * {@code k} to a value {@code v} such that {@code key.equals(k)}, - * then this method returns {@code v}; otherwise it returns - * {@code null}. (There can be at most one such mapping.) - * - * @throws NullPointerException if the specified key is null - */ - public V get(Object key) { - Node[] tab; Node e, p; int n, eh; K ek; - int h = spread(key.hashCode()); - if ((tab = table) != null && (n = tab.length) > 0 && - (e = tabAt(tab, (n - 1) & h)) != null) { - if ((eh = e.hash) == h) { - if ((ek = e.key) == key || (ek != null && key.equals(ek))) - return e.val; - } - else if (eh < 0) - return (p = e.find(h, key)) != null ? p.val : null; - while ((e = e.next) != null) { - if (e.hash == h && - ((ek = e.key) == key || (ek != null && key.equals(ek)))) - return e.val; - } - } - return null; - } - - /** - * Tests if the specified object is a key in this table. - * - * @param key possible key - * @return {@code true} if and only if the specified object - * is a key in this table, as determined by the - * {@code equals} method; {@code false} otherwise - * @throws NullPointerException if the specified key is null - */ - public boolean containsKey(Object key) { - return get(key) != null; - } - - /** - * Returns {@code true} if this map maps one or more keys to the - * specified value. Note: This method may require a full traversal - * of the map, and is much slower than method {@code containsKey}. - * - * @param value value whose presence in this map is to be tested - * @return {@code true} if this map maps one or more keys to the - * specified value - * @throws NullPointerException if the specified value is null - */ - public boolean containsValue(Object value) { - if (value == null) - throw new NullPointerException(); - Node[] t; - if ((t = table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) { - V v; - if ((v = p.val) == value || (v != null && value.equals(v))) - return true; - } - } - return false; - } - - /** - * Maps the specified key to the specified value in this table. - * Neither the key nor the value can be null. - * - *

The value can be retrieved by calling the {@code get} method - * with a key that is equal to the original key. - * - * @param key key with which the specified value is to be associated - * @param value value to be associated with the specified key - * @return the previous value associated with {@code key}, or - * {@code null} if there was no mapping for {@code key} - * @throws NullPointerException if the specified key or value is null - */ - public V put(K key, V value) { - return putVal(key, value, false); - } - - /** Implementation for put and putIfAbsent */ - final V putVal(K key, V value, boolean onlyIfAbsent) { - if (key == null || value == null) throw new NullPointerException(); - int hash = spread(key.hashCode()); - int binCount = 0; - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0) - tab = initTable(); - else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { - if (casTabAt(tab, i, null, - new Node(hash, key, value, null))) - break; // no lock when adding to empty bin - } - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - V oldVal = null; - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - binCount = 1; - for (Node e = f;; ++binCount) { - K ek; - if (e.hash == hash && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - oldVal = e.val; - if (!onlyIfAbsent) - e.val = value; - break; - } - Node pred = e; - if ((e = e.next) == null) { - pred.next = new Node(hash, key, - value, null); - break; - } - } - } - else if (f instanceof TreeBin) { - Node p; - binCount = 2; - if ((p = ((TreeBin)f).putTreeVal(hash, key, - value)) != null) { - oldVal = p.val; - if (!onlyIfAbsent) - p.val = value; - } - } - } - } - if (binCount != 0) { - if (binCount >= TREEIFY_THRESHOLD) - treeifyBin(tab, i); - if (oldVal != null) - return oldVal; - break; - } - } - } - addCount(1L, binCount); - return null; - } - - /** - * Copies all of the mappings from the specified map to this one. - * These mappings replace any mappings that this map had for any of the - * keys currently in the specified map. - * - * @param m mappings to be stored in this map - */ - public void putAll(Map m) { - tryPresize(m.size()); - for (Map.Entry e : m.entrySet()) - putVal(e.getKey(), e.getValue(), false); - } - - /** - * Removes the key (and its corresponding value) from this map. - * This method does nothing if the key is not in the map. - * - * @param key the key that needs to be removed - * @return the previous value associated with {@code key}, or - * {@code null} if there was no mapping for {@code key} - * @throws NullPointerException if the specified key is null - */ - public V remove(Object key) { - return replaceNode(key, null, null); - } - - /** - * Implementation for the four public remove/replace methods: - * Replaces node value with v, conditional upon match of cv if - * non-null. If resulting value is null, delete. - */ - final V replaceNode(Object key, V value, Object cv) { - int hash = spread(key.hashCode()); - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0 || - (f = tabAt(tab, i = (n - 1) & hash)) == null) - break; - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - V oldVal = null; - boolean validated = false; - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - validated = true; - for (Node e = f, pred = null;;) { - K ek; - if (e.hash == hash && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - V ev = e.val; - if (cv == null || cv == ev || - (ev != null && cv.equals(ev))) { - oldVal = ev; - if (value != null) - e.val = value; - else if (pred != null) - pred.next = e.next; - else - setTabAt(tab, i, e.next); - } - break; - } - pred = e; - if ((e = e.next) == null) - break; - } - } - else if (f instanceof TreeBin) { - validated = true; - TreeBin t = (TreeBin)f; - TreeNode r, p; - if ((r = t.root) != null && - (p = r.findTreeNode(hash, key, null)) != null) { - V pv = p.val; - if (cv == null || cv == pv || - (pv != null && cv.equals(pv))) { - oldVal = pv; - if (value != null) - p.val = value; - else if (t.removeTreeNode(p)) - setTabAt(tab, i, untreeify(t.first)); - } - } - } - } - } - if (validated) { - if (oldVal != null) { - if (value == null) - addCount(-1L, -1); - return oldVal; - } - break; - } - } - } - return null; - } - - /** - * Removes all of the mappings from this map. - */ - public void clear() { - long delta = 0L; // negative number of deletions - int i = 0; - Node[] tab = table; - while (tab != null && i < tab.length) { - int fh; - Node f = tabAt(tab, i); - if (f == null) - ++i; - else if ((fh = f.hash) == MOVED) { - tab = helpTransfer(tab, f); - i = 0; // restart - } - else { - synchronized (f) { - if (tabAt(tab, i) == f) { - Node p = (fh >= 0 ? f : - (f instanceof TreeBin) ? - ((TreeBin)f).first : null); - while (p != null) { - --delta; - p = p.next; - } - setTabAt(tab, i++, null); - } - } - } - } - if (delta != 0L) - addCount(delta, -1); - } - - /** - * Returns a {@link Set} view of the keys contained in this map. - * The set is backed by the map, so changes to the map are - * reflected in the set, and vice-versa. The set supports element - * removal, which removes the corresponding mapping from this map, - * via the {@code Iterator.remove}, {@code Set.remove}, - * {@code removeAll}, {@code retainAll}, and {@code clear} - * operations. It does not support the {@code add} or - * {@code addAll} operations. - * - *

The view's {@code iterator} is a "weakly consistent" iterator - * that will never throw {@link ConcurrentModificationException}, - * and guarantees to traverse elements as they existed upon - * construction of the iterator, and may (but is not guaranteed to) - * reflect any modifications subsequent to construction. - * - * @return the set view - */ - public KeySetView keySet() { - KeySetView ks; - return (ks = keySet) != null ? ks : (keySet = new KeySetView(this, null)); - } - - /** - * Returns a {@link Collection} view of the values contained in this map. - * The collection is backed by the map, so changes to the map are - * reflected in the collection, and vice-versa. The collection - * supports element removal, which removes the corresponding - * mapping from this map, via the {@code Iterator.remove}, - * {@code Collection.remove}, {@code removeAll}, - * {@code retainAll}, and {@code clear} operations. It does not - * support the {@code add} or {@code addAll} operations. - * - *

The view's {@code iterator} is a "weakly consistent" iterator - * that will never throw {@link ConcurrentModificationException}, - * and guarantees to traverse elements as they existed upon - * construction of the iterator, and may (but is not guaranteed to) - * reflect any modifications subsequent to construction. - * - * @return the collection view - */ - public Collection values() { - ValuesView vs; - return (vs = values) != null ? vs : (values = new ValuesView(this)); - } - - /** - * Returns a {@link Set} view of the mappings contained in this map. - * The set is backed by the map, so changes to the map are - * reflected in the set, and vice-versa. The set supports element - * removal, which removes the corresponding mapping from the map, - * via the {@code Iterator.remove}, {@code Set.remove}, - * {@code removeAll}, {@code retainAll}, and {@code clear} - * operations. - * - *

The view's {@code iterator} is a "weakly consistent" iterator - * that will never throw {@link ConcurrentModificationException}, - * and guarantees to traverse elements as they existed upon - * construction of the iterator, and may (but is not guaranteed to) - * reflect any modifications subsequent to construction. - * - * @return the set view - */ - public Set> entrySet() { - EntrySetView es; - return (es = entrySet) != null ? es : (entrySet = new EntrySetView(this)); - } - - /** - * Returns the hash code value for this {@link Map}, i.e., - * the sum of, for each key-value pair in the map, - * {@code key.hashCode() ^ value.hashCode()}. - * - * @return the hash code value for this map - */ - public int hashCode() { - int h = 0; - Node[] t; - if ((t = table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) - h += p.key.hashCode() ^ p.val.hashCode(); - } - return h; - } - - /** - * Returns a string representation of this map. The string - * representation consists of a list of key-value mappings (in no - * particular order) enclosed in braces ("{@code {}}"). Adjacent - * mappings are separated by the characters {@code ", "} (comma - * and space). Each key-value mapping is rendered as the key - * followed by an equals sign ("{@code =}") followed by the - * associated value. - * - * @return a string representation of this map - */ - public String toString() { - Node[] t; - int f = (t = table) == null ? 0 : t.length; - Traverser it = new Traverser(t, f, 0, f); - StringBuilder sb = new StringBuilder(); - sb.append('{'); - Node p; - if ((p = it.advance()) != null) { - for (;;) { - K k = p.key; - V v = p.val; - sb.append(k == this ? "(this Map)" : k); - sb.append('='); - sb.append(v == this ? "(this Map)" : v); - if ((p = it.advance()) == null) - break; - sb.append(',').append(' '); - } - } - return sb.append('}').toString(); - } - - /** - * Compares the specified object with this map for equality. - * Returns {@code true} if the given object is a map with the same - * mappings as this map. This operation may return misleading - * results if either map is concurrently modified during execution - * of this method. - * - * @param o object to be compared for equality with this map - * @return {@code true} if the specified object is equal to this map - */ - public boolean equals(Object o) { - if (o != this) { - if (!(o instanceof Map)) - return false; - Map m = (Map) o; - Node[] t; - int f = (t = table) == null ? 0 : t.length; - Traverser it = new Traverser(t, f, 0, f); - for (Node p; (p = it.advance()) != null; ) { - V val = p.val; - Object v = m.get(p.key); - if (v == null || (v != val && !v.equals(val))) - return false; - } - for (Map.Entry e : m.entrySet()) { - Object mk, mv, v; - if ((mk = e.getKey()) == null || - (mv = e.getValue()) == null || - (v = get(mk)) == null || - (mv != v && !mv.equals(v))) - return false; - } - } - return true; - } - - /** - * Stripped-down version of helper class used in previous version, - * declared for the sake of serialization compatibility - */ - static class Segment extends ReentrantLock implements Serializable { - private static final long serialVersionUID = 2249069246763182397L; - final float loadFactor; - Segment(float lf) { this.loadFactor = lf; } - } - - /** - * Saves the state of the {@code ConcurrentHashMapV8} instance to a - * stream (i.e., serializes it). - * @param s the stream - * @throws java.io.IOException if an I/O error occurs - * @serialData - * the key (Object) and value (Object) - * for each key-value mapping, followed by a null pair. - * The key-value mappings are emitted in no particular order. - */ - private void writeObject(java.io.ObjectOutputStream s) - throws java.io.IOException { - // For serialization compatibility - // Emulate segment calculation from previous version of this class - int sshift = 0; - int ssize = 1; - while (ssize < DEFAULT_CONCURRENCY_LEVEL) { - ++sshift; - ssize <<= 1; - } - int segmentShift = 32 - sshift; - int segmentMask = ssize - 1; - @SuppressWarnings("unchecked") Segment[] segments = (Segment[]) - new Segment[DEFAULT_CONCURRENCY_LEVEL]; - for (int i = 0; i < segments.length; ++i) - segments[i] = new Segment(LOAD_FACTOR); - s.putFields().put("segments", segments); - s.putFields().put("segmentShift", segmentShift); - s.putFields().put("segmentMask", segmentMask); - s.writeFields(); - - Node[] t; - if ((t = table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) { - s.writeObject(p.key); - s.writeObject(p.val); - } - } - s.writeObject(null); - s.writeObject(null); - segments = null; // throw away - } - - /** - * Reconstitutes the instance from a stream (that is, deserializes it). - * @param s the stream - * @throws ClassNotFoundException if the class of a serialized object - * could not be found - * @throws java.io.IOException if an I/O error occurs - */ - private void readObject(java.io.ObjectInputStream s) - throws java.io.IOException, ClassNotFoundException { - /* - * To improve performance in typical cases, we create nodes - * while reading, then place in table once size is known. - * However, we must also validate uniqueness and deal with - * overpopulated bins while doing so, which requires - * specialized versions of putVal mechanics. - */ - sizeCtl = -1; // force exclusion for table construction - s.defaultReadObject(); - long size = 0L; - Node p = null; - for (;;) { - @SuppressWarnings("unchecked") K k = (K) s.readObject(); - @SuppressWarnings("unchecked") V v = (V) s.readObject(); - if (k != null && v != null) { - p = new Node(spread(k.hashCode()), k, v, p); - ++size; - } - else - break; - } - if (size == 0L) - sizeCtl = 0; - else { - int n; - if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) - n = MAXIMUM_CAPACITY; - else { - int sz = (int)size; - n = tableSizeFor(sz + (sz >>> 1) + 1); - } - @SuppressWarnings("unchecked") - Node[] tab = (Node[])new Node[n]; - int mask = n - 1; - long added = 0L; - while (p != null) { - boolean insertAtFront; - Node next = p.next, first; - int h = p.hash, j = h & mask; - if ((first = tabAt(tab, j)) == null) - insertAtFront = true; - else { - K k = p.key; - if (first.hash < 0) { - TreeBin t = (TreeBin)first; - if (t.putTreeVal(h, k, p.val) == null) - ++added; - insertAtFront = false; - } - else { - int binCount = 0; - insertAtFront = true; - Node q; K qk; - for (q = first; q != null; q = q.next) { - if (q.hash == h && - ((qk = q.key) == k || - (qk != null && k.equals(qk)))) { - insertAtFront = false; - break; - } - ++binCount; - } - if (insertAtFront && binCount >= TREEIFY_THRESHOLD) { - insertAtFront = false; - ++added; - p.next = first; - TreeNode hd = null, tl = null; - for (q = p; q != null; q = q.next) { - TreeNode t = new TreeNode - (q.hash, q.key, q.val, null, null); - if ((t.prev = tl) == null) - hd = t; - else - tl.next = t; - tl = t; - } - setTabAt(tab, j, new TreeBin(hd)); - } - } - } - if (insertAtFront) { - ++added; - p.next = first; - setTabAt(tab, j, p); - } - p = next; - } - table = tab; - sizeCtl = n - (n >>> 2); - baseCount = added; - } - } - - // ConcurrentMap methods - - /** - * {@inheritDoc} - * - * @return the previous value associated with the specified key, - * or {@code null} if there was no mapping for the key - * @throws NullPointerException if the specified key or value is null - */ - public V putIfAbsent(K key, V value) { - return putVal(key, value, true); - } - - /** - * {@inheritDoc} - * - * @throws NullPointerException if the specified key is null - */ - public boolean remove(Object key, Object value) { - if (key == null) - throw new NullPointerException(); - return value != null && replaceNode(key, null, value) != null; - } - - /** - * {@inheritDoc} - * - * @throws NullPointerException if any of the arguments are null - */ - public boolean replace(K key, V oldValue, V newValue) { - if (key == null || oldValue == null || newValue == null) - throw new NullPointerException(); - return replaceNode(key, newValue, oldValue) != null; - } - - /** - * {@inheritDoc} - * - * @return the previous value associated with the specified key, - * or {@code null} if there was no mapping for the key - * @throws NullPointerException if the specified key or value is null - */ - public V replace(K key, V value) { - if (key == null || value == null) - throw new NullPointerException(); - return replaceNode(key, value, null); - } - - // Overrides of JDK8+ Map extension method defaults - - /** - * Returns the value to which the specified key is mapped, or the - * given default value if this map contains no mapping for the - * key. - * - * @param key the key whose associated value is to be returned - * @param defaultValue the value to return if this map contains - * no mapping for the given key - * @return the mapping for the key, if present; else the default value - * @throws NullPointerException if the specified key is null - */ - public V getOrDefault(Object key, V defaultValue) { - V v; - return (v = get(key)) == null ? defaultValue : v; - } - - public void forEach(BiAction action) { - if (action == null) throw new NullPointerException(); - Node[] t; - if ((t = table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) { - action.apply(p.key, p.val); - } - } - } - - public void replaceAll(BiFun function) { - if (function == null) throw new NullPointerException(); - Node[] t; - if ((t = table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) { - V oldValue = p.val; - for (K key = p.key;;) { - V newValue = function.apply(key, oldValue); - if (newValue == null) - throw new NullPointerException(); - if (replaceNode(key, newValue, oldValue) != null || - (oldValue = get(key)) == null) - break; - } - } - } - } - - /** - * If the specified key is not already associated with a value, - * attempts to compute its value using the given mapping function - * and enters it into this map unless {@code null}. The entire - * method invocation is performed atomically, so the function is - * applied at most once per key. Some attempted update operations - * on this map by other threads may be blocked while computation - * is in progress, so the computation should be short and simple, - * and must not attempt to update any other mappings of this map. - * - * @param key key with which the specified value is to be associated - * @param mappingFunction the function to compute a value - * @return the current (existing or computed) value associated with - * the specified key, or null if the computed value is null - * @throws NullPointerException if the specified key or mappingFunction - * is null - * @throws IllegalStateException if the computation detectably - * attempts a recursive update to this map that would - * otherwise never complete - * @throws RuntimeException or Error if the mappingFunction does so, - * in which case the mapping is left unestablished - */ - public V computeIfAbsent(K key, Fun mappingFunction) { - if (key == null || mappingFunction == null) - throw new NullPointerException(); - int h = spread(key.hashCode()); - V val = null; - int binCount = 0; - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0) - tab = initTable(); - else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { - Node r = new ReservationNode(); - synchronized (r) { - if (casTabAt(tab, i, null, r)) { - binCount = 1; - Node node = null; - try { - if ((val = mappingFunction.apply(key)) != null) - node = new Node(h, key, val, null); - } finally { - setTabAt(tab, i, node); - } - } - } - if (binCount != 0) - break; - } - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - boolean added = false; - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - binCount = 1; - for (Node e = f;; ++binCount) { - K ek; V ev; - if (e.hash == h && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - val = e.val; - break; - } - Node pred = e; - if ((e = e.next) == null) { - if ((val = mappingFunction.apply(key)) != null) { - added = true; - pred.next = new Node(h, key, val, null); - } - break; - } - } - } - else if (f instanceof TreeBin) { - binCount = 2; - TreeBin t = (TreeBin)f; - TreeNode r, p; - if ((r = t.root) != null && - (p = r.findTreeNode(h, key, null)) != null) - val = p.val; - else if ((val = mappingFunction.apply(key)) != null) { - added = true; - t.putTreeVal(h, key, val); - } - } - } - } - if (binCount != 0) { - if (binCount >= TREEIFY_THRESHOLD) - treeifyBin(tab, i); - if (!added) - return val; - break; - } - } - } - if (val != null) - addCount(1L, binCount); - return val; - } - - /** - * If the value for the specified key is present, attempts to - * compute a new mapping given the key and its current mapped - * value. The entire method invocation is performed atomically. - * Some attempted update operations on this map by other threads - * may be blocked while computation is in progress, so the - * computation should be short and simple, and must not attempt to - * update any other mappings of this map. - * - * @param key key with which a value may be associated - * @param remappingFunction the function to compute a value - * @return the new value associated with the specified key, or null if none - * @throws NullPointerException if the specified key or remappingFunction - * is null - * @throws IllegalStateException if the computation detectably - * attempts a recursive update to this map that would - * otherwise never complete - * @throws RuntimeException or Error if the remappingFunction does so, - * in which case the mapping is unchanged - */ - public V computeIfPresent(K key, BiFun remappingFunction) { - if (key == null || remappingFunction == null) - throw new NullPointerException(); - int h = spread(key.hashCode()); - V val = null; - int delta = 0; - int binCount = 0; - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0) - tab = initTable(); - else if ((f = tabAt(tab, i = (n - 1) & h)) == null) - break; - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - binCount = 1; - for (Node e = f, pred = null;; ++binCount) { - K ek; - if (e.hash == h && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - val = remappingFunction.apply(key, e.val); - if (val != null) - e.val = val; - else { - delta = -1; - Node en = e.next; - if (pred != null) - pred.next = en; - else - setTabAt(tab, i, en); - } - break; - } - pred = e; - if ((e = e.next) == null) - break; - } - } - else if (f instanceof TreeBin) { - binCount = 2; - TreeBin t = (TreeBin)f; - TreeNode r, p; - if ((r = t.root) != null && - (p = r.findTreeNode(h, key, null)) != null) { - val = remappingFunction.apply(key, p.val); - if (val != null) - p.val = val; - else { - delta = -1; - if (t.removeTreeNode(p)) - setTabAt(tab, i, untreeify(t.first)); - } - } - } - } - } - if (binCount != 0) - break; - } - } - if (delta != 0) - addCount((long)delta, binCount); - return val; - } - - /** - * Attempts to compute a mapping for the specified key and its - * current mapped value (or {@code null} if there is no current - * mapping). The entire method invocation is performed atomically. - * Some attempted update operations on this map by other threads - * may be blocked while computation is in progress, so the - * computation should be short and simple, and must not attempt to - * update any other mappings of this Map. - * - * @param key key with which the specified value is to be associated - * @param remappingFunction the function to compute a value - * @return the new value associated with the specified key, or null if none - * @throws NullPointerException if the specified key or remappingFunction - * is null - * @throws IllegalStateException if the computation detectably - * attempts a recursive update to this map that would - * otherwise never complete - * @throws RuntimeException or Error if the remappingFunction does so, - * in which case the mapping is unchanged - */ - public V compute(K key, - BiFun remappingFunction) { - if (key == null || remappingFunction == null) - throw new NullPointerException(); - int h = spread(key.hashCode()); - V val = null; - int delta = 0; - int binCount = 0; - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0) - tab = initTable(); - else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { - Node r = new ReservationNode(); - synchronized (r) { - if (casTabAt(tab, i, null, r)) { - binCount = 1; - Node node = null; - try { - if ((val = remappingFunction.apply(key, null)) != null) { - delta = 1; - node = new Node(h, key, val, null); - } - } finally { - setTabAt(tab, i, node); - } - } - } - if (binCount != 0) - break; - } - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - binCount = 1; - for (Node e = f, pred = null;; ++binCount) { - K ek; - if (e.hash == h && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - val = remappingFunction.apply(key, e.val); - if (val != null) - e.val = val; - else { - delta = -1; - Node en = e.next; - if (pred != null) - pred.next = en; - else - setTabAt(tab, i, en); - } - break; - } - pred = e; - if ((e = e.next) == null) { - val = remappingFunction.apply(key, null); - if (val != null) { - delta = 1; - pred.next = - new Node(h, key, val, null); - } - break; - } - } - } - else if (f instanceof TreeBin) { - binCount = 1; - TreeBin t = (TreeBin)f; - TreeNode r, p; - if ((r = t.root) != null) - p = r.findTreeNode(h, key, null); - else - p = null; - V pv = (p == null) ? null : p.val; - val = remappingFunction.apply(key, pv); - if (val != null) { - if (p != null) - p.val = val; - else { - delta = 1; - t.putTreeVal(h, key, val); - } - } - else if (p != null) { - delta = -1; - if (t.removeTreeNode(p)) - setTabAt(tab, i, untreeify(t.first)); - } - } - } - } - if (binCount != 0) { - if (binCount >= TREEIFY_THRESHOLD) - treeifyBin(tab, i); - break; - } - } - } - if (delta != 0) - addCount((long)delta, binCount); - return val; - } - - /** - * If the specified key is not already associated with a - * (non-null) value, associates it with the given value. - * Otherwise, replaces the value with the results of the given - * remapping function, or removes if {@code null}. The entire - * method invocation is performed atomically. Some attempted - * update operations on this map by other threads may be blocked - * while computation is in progress, so the computation should be - * short and simple, and must not attempt to update any other - * mappings of this Map. - * - * @param key key with which the specified value is to be associated - * @param value the value to use if absent - * @param remappingFunction the function to recompute a value if present - * @return the new value associated with the specified key, or null if none - * @throws NullPointerException if the specified key or the - * remappingFunction is null - * @throws RuntimeException or Error if the remappingFunction does so, - * in which case the mapping is unchanged - */ - public V merge(K key, V value, BiFun remappingFunction) { - if (key == null || value == null || remappingFunction == null) - throw new NullPointerException(); - int h = spread(key.hashCode()); - V val = null; - int delta = 0; - int binCount = 0; - for (Node[] tab = table;;) { - Node f; int n, i, fh; - if (tab == null || (n = tab.length) == 0) - tab = initTable(); - else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { - if (casTabAt(tab, i, null, new Node(h, key, value, null))) { - delta = 1; - val = value; - break; - } - } - else if ((fh = f.hash) == MOVED) - tab = helpTransfer(tab, f); - else { - synchronized (f) { - if (tabAt(tab, i) == f) { - if (fh >= 0) { - binCount = 1; - for (Node e = f, pred = null;; ++binCount) { - K ek; - if (e.hash == h && - ((ek = e.key) == key || - (ek != null && key.equals(ek)))) { - val = remappingFunction.apply(e.val, value); - if (val != null) - e.val = val; - else { - delta = -1; - Node en = e.next; - if (pred != null) - pred.next = en; - else - setTabAt(tab, i, en); - } - break; - } - pred = e; - if ((e = e.next) == null) { - delta = 1; - val = value; - pred.next = - new Node(h, key, val, null); - break; - } - } - } - else if (f instanceof TreeBin) { - binCount = 2; - TreeBin t = (TreeBin)f; - TreeNode r = t.root; - TreeNode p = (r == null) ? null : - r.findTreeNode(h, key, null); - val = (p == null) ? value : - remappingFunction.apply(p.val, value); - if (val != null) { - if (p != null) - p.val = val; - else { - delta = 1; - t.putTreeVal(h, key, val); - } - } - else if (p != null) { - delta = -1; - if (t.removeTreeNode(p)) - setTabAt(tab, i, untreeify(t.first)); - } - } - } - } - if (binCount != 0) { - if (binCount >= TREEIFY_THRESHOLD) - treeifyBin(tab, i); - break; - } - } - } - if (delta != 0) - addCount((long)delta, binCount); - return val; - } - - // Hashtable legacy methods - - /** - * Legacy method testing if some key maps into the specified value - * in this table. This method is identical in functionality to - * {@link #containsValue(Object)}, and exists solely to ensure - * full compatibility with class {@link java.util.Hashtable}, - * which supported this method prior to introduction of the - * Java Collections framework. - * - * @param value a value to search for - * @return {@code true} if and only if some key maps to the - * {@code value} argument in this table as - * determined by the {@code equals} method; - * {@code false} otherwise - * @throws NullPointerException if the specified value is null - */ - @Deprecated public boolean contains(Object value) { - return containsValue(value); - } - - /** - * Returns an enumeration of the keys in this table. - * - * @return an enumeration of the keys in this table - * @see #keySet() - */ - public Enumeration keys() { - Node[] t; - int f = (t = table) == null ? 0 : t.length; - return new KeyIterator(t, f, 0, f, this); - } - - /** - * Returns an enumeration of the values in this table. - * - * @return an enumeration of the values in this table - * @see #values() - */ - public Enumeration elements() { - Node[] t; - int f = (t = table) == null ? 0 : t.length; - return new ValueIterator(t, f, 0, f, this); - } - - // ConcurrentHashMapV8-only methods - - /** - * Returns the number of mappings. This method should be used - * instead of {@link #size} because a ConcurrentHashMapV8 may - * contain more mappings than can be represented as an int. The - * value returned is an estimate; the actual count may differ if - * there are concurrent insertions or removals. - * - * @return the number of mappings - * @since 1.8 - */ - public long mappingCount() { - long n = sumCount(); - return (n < 0L) ? 0L : n; // ignore transient negative values - } - - /** - * Creates a new {@link Set} backed by a ConcurrentHashMapV8 - * from the given type to {@code Boolean.TRUE}. - * - * @return the new set - * @since 1.8 - */ - public static KeySetView newKeySet() { - return new KeySetView - (new ConcurrentHashMapV8(), Boolean.TRUE); - } - - /** - * Creates a new {@link Set} backed by a ConcurrentHashMapV8 - * from the given type to {@code Boolean.TRUE}. - * - * @param initialCapacity The implementation performs internal - * sizing to accommodate this many elements. - * @return the new set - * @throws IllegalArgumentException if the initial capacity of - * elements is negative - * @since 1.8 - */ - public static KeySetView newKeySet(int initialCapacity) { - return new KeySetView - (new ConcurrentHashMapV8(initialCapacity), Boolean.TRUE); - } - - /** - * Returns a {@link Set} view of the keys in this map, using the - * given common mapped value for any additions (i.e., {@link - * Collection#add} and {@link Collection#addAll(Collection)}). - * This is of course only appropriate if it is acceptable to use - * the same value for all additions from this view. - * - * @param mappedValue the mapped value to use for any additions - * @return the set view - * @throws NullPointerException if the mappedValue is null - */ - public KeySetView keySet(V mappedValue) { - if (mappedValue == null) - throw new NullPointerException(); - return new KeySetView(this, mappedValue); - } - - /* ---------------- Special Nodes -------------- */ - - /** - * A node inserted at head of bins during transfer operations. - */ - static final class ForwardingNode extends Node { - final Node[] nextTable; - ForwardingNode(Node[] tab) { - super(MOVED, null, null, null); - this.nextTable = tab; - } - - Node find(int h, Object k) { - // loop to avoid arbitrarily deep recursion on forwarding nodes - outer: for (Node[] tab = nextTable;;) { - Node e; int n; - if (k == null || tab == null || (n = tab.length) == 0 || - (e = tabAt(tab, (n - 1) & h)) == null) - return null; - for (;;) { - int eh; K ek; - if ((eh = e.hash) == h && - ((ek = e.key) == k || (ek != null && k.equals(ek)))) - return e; - if (eh < 0) { - if (e instanceof ForwardingNode) { - tab = ((ForwardingNode)e).nextTable; - continue outer; - } - else - return e.find(h, k); - } - if ((e = e.next) == null) - return null; - } - } - } - } - - /** - * A place-holder node used in computeIfAbsent and compute - */ - static final class ReservationNode extends Node { - ReservationNode() { - super(RESERVED, null, null, null); - } - - Node find(int h, Object k) { - return null; - } - } - - /* ---------------- Table Initialization and Resizing -------------- */ - - /** - * Returns the stamp bits for resizing a table of size n. - * Must be negative when shifted left by RESIZE_STAMP_SHIFT. - */ - static final int resizeStamp(int n) { - return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); - } - - /** - * Initializes table, using the size recorded in sizeCtl. - */ - private final Node[] initTable() { - Node[] tab; int sc; - while ((tab = table) == null || tab.length == 0) { - if ((sc = sizeCtl) < 0) - Thread.yield(); // lost initialization race; just spin - else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { - try { - if ((tab = table) == null || tab.length == 0) { - int n = (sc > 0) ? sc : DEFAULT_CAPACITY; - @SuppressWarnings("unchecked") - Node[] nt = (Node[])new Node[n]; - table = tab = nt; - sc = n - (n >>> 2); - } - } finally { - sizeCtl = sc; - } - break; - } - } - return tab; - } - - /** - * Adds to count, and if table is too small and not already - * resizing, initiates transfer. If already resizing, helps - * perform transfer if work is available. Rechecks occupancy - * after a transfer to see if another resize is already needed - * because resizings are lagging additions. - * - * @param x the count to add - * @param check if <0, don't check resize, if <= 1 only check if uncontended - */ - private final void addCount(long x, int check) { - CounterCell[] as; long b, s; - if ((as = counterCells) != null || - !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { - CounterHashCode hc; CounterCell a; long v; int m; - boolean uncontended = true; - if ((hc = threadCounterHashCode.get()) == null || - as == null || (m = as.length - 1) < 0 || - (a = as[m & hc.code]) == null || - !(uncontended = - U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { - fullAddCount(x, hc, uncontended); - return; - } - if (check <= 1) - return; - s = sumCount(); - } - if (check >= 0) { - Node[] tab, nt; int n, sc; - while (s >= (long)(sc = sizeCtl) && (tab = table) != null && - (n = tab.length) < MAXIMUM_CAPACITY) { - int rs = resizeStamp(n); - if (sc < 0) { - if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || - sc == rs + MAX_RESIZERS || (nt = nextTable) == null || - transferIndex <= 0) - break; - if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) - transfer(tab, nt); - } - else if (U.compareAndSwapInt(this, SIZECTL, sc, - (rs << RESIZE_STAMP_SHIFT) + 2)) - transfer(tab, null); - s = sumCount(); - } - } - } - - /** - * Helps transfer if a resize is in progress. - */ - final Node[] helpTransfer(Node[] tab, Node f) { - Node[] nextTab; int sc; - if (tab != null && (f instanceof ForwardingNode) && - (nextTab = ((ForwardingNode)f).nextTable) != null) { - int rs = resizeStamp(tab.length); - while (nextTab == nextTable && table == tab && - (sc = sizeCtl) < 0) { - if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || - sc == rs + MAX_RESIZERS || transferIndex <= 0) - break; - if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { - transfer(tab, nextTab); - break; - } - } - return nextTab; - } - return table; - } - - /** - * Tries to presize table to accommodate the given number of elements. - * - * @param size number of elements (doesn't need to be perfectly accurate) - */ - private final void tryPresize(int size) { - int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : - tableSizeFor(size + (size >>> 1) + 1); - int sc; - while ((sc = sizeCtl) >= 0) { - Node[] tab = table; int n; - if (tab == null || (n = tab.length) == 0) { - n = (sc > c) ? sc : c; - if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { - try { - if (table == tab) { - @SuppressWarnings("unchecked") - Node[] nt = (Node[])new Node[n]; - table = nt; - sc = n - (n >>> 2); - } - } finally { - sizeCtl = sc; - } - } - } - else if (c <= sc || n >= MAXIMUM_CAPACITY) - break; - else if (tab == table) { - int rs = resizeStamp(n); - if (sc < 0) { - Node[] nt; - if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || - sc == rs + MAX_RESIZERS || (nt = nextTable) == null || - transferIndex <= 0) - break; - if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) - transfer(tab, nt); - } - else if (U.compareAndSwapInt(this, SIZECTL, sc, - (rs << RESIZE_STAMP_SHIFT) + 2)) - transfer(tab, null); - } - } - } - - /** - * Moves and/or copies the nodes in each bin to new table. See - * above for explanation. - */ - private final void transfer(Node[] tab, Node[] nextTab) { - int n = tab.length, stride; - if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) - stride = MIN_TRANSFER_STRIDE; // subdivide range - if (nextTab == null) { // initiating - try { - @SuppressWarnings("unchecked") - Node[] nt = (Node[])new Node[n << 1]; - nextTab = nt; - } catch (Throwable ex) { // try to cope with OOME - sizeCtl = Integer.MAX_VALUE; - return; - } - nextTable = nextTab; - transferIndex = n; - } - int nextn = nextTab.length; - ForwardingNode fwd = new ForwardingNode(nextTab); - boolean advance = true; - boolean finishing = false; // to ensure sweep before committing nextTab - for (int i = 0, bound = 0;;) { - Node f; int fh; - while (advance) { - int nextIndex, nextBound; - if (--i >= bound || finishing) - advance = false; - else if ((nextIndex = transferIndex) <= 0) { - i = -1; - advance = false; - } - else if (U.compareAndSwapInt - (this, TRANSFERINDEX, nextIndex, - nextBound = (nextIndex > stride ? - nextIndex - stride : 0))) { - bound = nextBound; - i = nextIndex - 1; - advance = false; - } - } - if (i < 0 || i >= n || i + n >= nextn) { - int sc; - if (finishing) { - nextTable = null; - table = nextTab; - sizeCtl = (n << 1) - (n >>> 1); - return; - } - if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { - if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) - return; - finishing = advance = true; - i = n; // recheck before commit - } - } - else if ((f = tabAt(tab, i)) == null) - advance = casTabAt(tab, i, null, fwd); - else if ((fh = f.hash) == MOVED) - advance = true; // already processed - else { - synchronized (f) { - if (tabAt(tab, i) == f) { - Node ln, hn; - if (fh >= 0) { - int runBit = fh & n; - Node lastRun = f; - for (Node p = f.next; p != null; p = p.next) { - int b = p.hash & n; - if (b != runBit) { - runBit = b; - lastRun = p; - } - } - if (runBit == 0) { - ln = lastRun; - hn = null; - } - else { - hn = lastRun; - ln = null; - } - for (Node p = f; p != lastRun; p = p.next) { - int ph = p.hash; K pk = p.key; V pv = p.val; - if ((ph & n) == 0) - ln = new Node(ph, pk, pv, ln); - else - hn = new Node(ph, pk, pv, hn); - } - setTabAt(nextTab, i, ln); - setTabAt(nextTab, i + n, hn); - setTabAt(tab, i, fwd); - advance = true; - } - else if (f instanceof TreeBin) { - TreeBin t = (TreeBin)f; - TreeNode lo = null, loTail = null; - TreeNode hi = null, hiTail = null; - int lc = 0, hc = 0; - for (Node e = t.first; e != null; e = e.next) { - int h = e.hash; - TreeNode p = new TreeNode - (h, e.key, e.val, null, null); - if ((h & n) == 0) { - if ((p.prev = loTail) == null) - lo = p; - else - loTail.next = p; - loTail = p; - ++lc; - } - else { - if ((p.prev = hiTail) == null) - hi = p; - else - hiTail.next = p; - hiTail = p; - ++hc; - } - } - ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : - (hc != 0) ? new TreeBin(lo) : t; - hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : - (lc != 0) ? new TreeBin(hi) : t; - setTabAt(nextTab, i, ln); - setTabAt(nextTab, i + n, hn); - setTabAt(tab, i, fwd); - advance = true; - } - } - } - } - } - } - - /* ---------------- Conversion from/to TreeBins -------------- */ - - /** - * Replaces all linked nodes in bin at given index unless table is - * too small, in which case resizes instead. - */ - private final void treeifyBin(Node[] tab, int index) { - Node b; int n, sc; - if (tab != null) { - if ((n = tab.length) < MIN_TREEIFY_CAPACITY) - tryPresize(n << 1); - else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { - synchronized (b) { - if (tabAt(tab, index) == b) { - TreeNode hd = null, tl = null; - for (Node e = b; e != null; e = e.next) { - TreeNode p = - new TreeNode(e.hash, e.key, e.val, - null, null); - if ((p.prev = tl) == null) - hd = p; - else - tl.next = p; - tl = p; - } - setTabAt(tab, index, new TreeBin(hd)); - } - } - } - } - } - - /** - * Returns a list on non-TreeNodes replacing those in given list. - */ - static Node untreeify(Node b) { - Node hd = null, tl = null; - for (Node q = b; q != null; q = q.next) { - Node p = new Node(q.hash, q.key, q.val, null); - if (tl == null) - hd = p; - else - tl.next = p; - tl = p; - } - return hd; - } - - /* ---------------- TreeNodes -------------- */ - - /** - * Nodes for use in TreeBins - */ - static final class TreeNode extends Node { - TreeNode parent; // red-black tree links - TreeNode left; - TreeNode right; - TreeNode prev; // needed to unlink next upon deletion - boolean red; - - TreeNode(int hash, K key, V val, Node next, - TreeNode parent) { - super(hash, key, val, next); - this.parent = parent; - } - - Node find(int h, Object k) { - return findTreeNode(h, k, null); - } - - /** - * Returns the TreeNode (or null if not found) for the given key - * starting at given root. - */ - final TreeNode findTreeNode(int h, Object k, Class kc) { - if (k != null) { - TreeNode p = this; - do { - int ph, dir; K pk; TreeNode q; - TreeNode pl = p.left, pr = p.right; - if ((ph = p.hash) > h) - p = pl; - else if (ph < h) - p = pr; - else if ((pk = p.key) == k || (pk != null && k.equals(pk))) - return p; - else if (pl == null) - p = pr; - else if (pr == null) - p = pl; - else if ((kc != null || - (kc = comparableClassFor(k)) != null) && - (dir = compareComparables(kc, k, pk)) != 0) - p = (dir < 0) ? pl : pr; - else if ((q = pr.findTreeNode(h, k, kc)) != null) - return q; - else - p = pl; - } while (p != null); - } - return null; - } - } - - /* ---------------- TreeBins -------------- */ - - /** - * TreeNodes used at the heads of bins. TreeBins do not hold user - * keys or values, but instead point to list of TreeNodes and - * their root. They also maintain a parasitic read-write lock - * forcing writers (who hold bin lock) to wait for readers (who do - * not) to complete before tree restructuring operations. - */ - static final class TreeBin extends Node { - TreeNode root; - volatile TreeNode first; - volatile Thread waiter; - volatile int lockState; - // values for lockState - static final int WRITER = 1; // set while holding write lock - static final int WAITER = 2; // set when waiting for write lock - static final int READER = 4; // increment value for setting read lock - - /** - * Tie-breaking utility for ordering insertions when equal - * hashCodes and non-comparable. We don't require a total - * order, just a consistent insertion rule to maintain - * equivalence across rebalancings. Tie-breaking further than - * necessary simplifies testing a bit. - */ - static int tieBreakOrder(Object a, Object b) { - int d; - if (a == null || b == null || - (d = a.getClass().getName(). - compareTo(b.getClass().getName())) == 0) - d = (System.identityHashCode(a) <= System.identityHashCode(b) ? - -1 : 1); - return d; - } - - /** - * Creates bin with initial set of nodes headed by b. - */ - TreeBin(TreeNode b) { - super(TREEBIN, null, null, null); - this.first = b; - TreeNode r = null; - for (TreeNode x = b, next; x != null; x = next) { - next = (TreeNode)x.next; - x.left = x.right = null; - if (r == null) { - x.parent = null; - x.red = false; - r = x; - } - else { - K k = x.key; - int h = x.hash; - Class kc = null; - for (TreeNode p = r;;) { - int dir, ph; - K pk = p.key; - if ((ph = p.hash) > h) - dir = -1; - else if (ph < h) - dir = 1; - else if ((kc == null && - (kc = comparableClassFor(k)) == null) || - (dir = compareComparables(kc, k, pk)) == 0) - dir = tieBreakOrder(k, pk); - TreeNode xp = p; - if ((p = (dir <= 0) ? p.left : p.right) == null) { - x.parent = xp; - if (dir <= 0) - xp.left = x; - else - xp.right = x; - r = balanceInsertion(r, x); - break; - } - } - } - } - this.root = r; - assert checkInvariants(root); - } - - /** - * Acquires write lock for tree restructuring. - */ - private final void lockRoot() { - if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) - contendedLock(); // offload to separate method - } - - /** - * Releases write lock for tree restructuring. - */ - private final void unlockRoot() { - lockState = 0; - } - - /** - * Possibly blocks awaiting root lock. - */ - private final void contendedLock() { - boolean waiting = false; - for (int s;;) { - if (((s = lockState) & ~WAITER) == 0) { - if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { - if (waiting) - waiter = null; - return; - } - } - else if ((s & WAITER) == 0) { - if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { - waiting = true; - waiter = Thread.currentThread(); - } - } - else if (waiting) - LockSupport.park(this); - } - } - - /** - * Returns matching node or null if none. Tries to search - * using tree comparisons from root, but continues linear - * search when lock not available. - */ - final Node find(int h, Object k) { - if (k != null) { - for (Node e = first; e != null; ) { - int s; K ek; - if (((s = lockState) & (WAITER|WRITER)) != 0) { - if (e.hash == h && - ((ek = e.key) == k || (ek != null && k.equals(ek)))) - return e; - e = e.next; - } - else if (U.compareAndSwapInt(this, LOCKSTATE, s, - s + READER)) { - TreeNode r, p; - try { - p = ((r = root) == null ? null : - r.findTreeNode(h, k, null)); - } finally { - Thread w; - int ls; - do {} while (!U.compareAndSwapInt - (this, LOCKSTATE, - ls = lockState, ls - READER)); - if (ls == (READER|WAITER) && (w = waiter) != null) - LockSupport.unpark(w); - } - return p; - } - } - } - return null; - } - - /** - * Finds or adds a node. - * @return null if added - */ - final TreeNode putTreeVal(int h, K k, V v) { - Class kc = null; - boolean searched = false; - for (TreeNode p = root;;) { - int dir, ph; K pk; - if (p == null) { - first = root = new TreeNode(h, k, v, null, null); - break; - } - else if ((ph = p.hash) > h) - dir = -1; - else if (ph < h) - dir = 1; - else if ((pk = p.key) == k || (pk != null && k.equals(pk))) - return p; - else if ((kc == null && - (kc = comparableClassFor(k)) == null) || - (dir = compareComparables(kc, k, pk)) == 0) { - if (!searched) { - TreeNode q, ch; - searched = true; - if (((ch = p.left) != null && - (q = ch.findTreeNode(h, k, kc)) != null) || - ((ch = p.right) != null && - (q = ch.findTreeNode(h, k, kc)) != null)) - return q; - } - dir = tieBreakOrder(k, pk); - } - - TreeNode xp = p; - if ((p = (dir <= 0) ? p.left : p.right) == null) { - TreeNode x, f = first; - first = x = new TreeNode(h, k, v, f, xp); - if (f != null) - f.prev = x; - if (dir <= 0) - xp.left = x; - else - xp.right = x; - if (!xp.red) - x.red = true; - else { - lockRoot(); - try { - root = balanceInsertion(root, x); - } finally { - unlockRoot(); - } - } - break; - } - } - assert checkInvariants(root); - return null; - } - - /** - * Removes the given node, that must be present before this - * call. This is messier than typical red-black deletion code - * because we cannot swap the contents of an interior node - * with a leaf successor that is pinned by "next" pointers - * that are accessible independently of lock. So instead we - * swap the tree linkages. - * - * @return true if now too small, so should be untreeified - */ - final boolean removeTreeNode(TreeNode p) { - TreeNode next = (TreeNode)p.next; - TreeNode pred = p.prev; // unlink traversal pointers - TreeNode r, rl; - if (pred == null) - first = next; - else - pred.next = next; - if (next != null) - next.prev = pred; - if (first == null) { - root = null; - return true; - } - if ((r = root) == null || r.right == null || // too small - (rl = r.left) == null || rl.left == null) - return true; - lockRoot(); - try { - TreeNode replacement; - TreeNode pl = p.left; - TreeNode pr = p.right; - if (pl != null && pr != null) { - TreeNode s = pr, sl; - while ((sl = s.left) != null) // find successor - s = sl; - boolean c = s.red; s.red = p.red; p.red = c; // swap colors - TreeNode sr = s.right; - TreeNode pp = p.parent; - if (s == pr) { // p was s's direct parent - p.parent = s; - s.right = p; - } - else { - TreeNode sp = s.parent; - if ((p.parent = sp) != null) { - if (s == sp.left) - sp.left = p; - else - sp.right = p; - } - if ((s.right = pr) != null) - pr.parent = s; - } - p.left = null; - if ((p.right = sr) != null) - sr.parent = p; - if ((s.left = pl) != null) - pl.parent = s; - if ((s.parent = pp) == null) - r = s; - else if (p == pp.left) - pp.left = s; - else - pp.right = s; - if (sr != null) - replacement = sr; - else - replacement = p; - } - else if (pl != null) - replacement = pl; - else if (pr != null) - replacement = pr; - else - replacement = p; - if (replacement != p) { - TreeNode pp = replacement.parent = p.parent; - if (pp == null) - r = replacement; - else if (p == pp.left) - pp.left = replacement; - else - pp.right = replacement; - p.left = p.right = p.parent = null; - } - - root = (p.red) ? r : balanceDeletion(r, replacement); - - if (p == replacement) { // detach pointers - TreeNode pp; - if ((pp = p.parent) != null) { - if (p == pp.left) - pp.left = null; - else if (p == pp.right) - pp.right = null; - p.parent = null; - } - } - } finally { - unlockRoot(); - } - assert checkInvariants(root); - return false; - } - - /* ------------------------------------------------------------ */ - // Red-black tree methods, all adapted from CLR - - static TreeNode rotateLeft(TreeNode root, - TreeNode p) { - TreeNode r, pp, rl; - if (p != null && (r = p.right) != null) { - if ((rl = p.right = r.left) != null) - rl.parent = p; - if ((pp = r.parent = p.parent) == null) - (root = r).red = false; - else if (pp.left == p) - pp.left = r; - else - pp.right = r; - r.left = p; - p.parent = r; - } - return root; - } - - static TreeNode rotateRight(TreeNode root, - TreeNode p) { - TreeNode l, pp, lr; - if (p != null && (l = p.left) != null) { - if ((lr = p.left = l.right) != null) - lr.parent = p; - if ((pp = l.parent = p.parent) == null) - (root = l).red = false; - else if (pp.right == p) - pp.right = l; - else - pp.left = l; - l.right = p; - p.parent = l; - } - return root; - } - - static TreeNode balanceInsertion(TreeNode root, - TreeNode x) { - x.red = true; - for (TreeNode xp, xpp, xppl, xppr;;) { - if ((xp = x.parent) == null) { - x.red = false; - return x; - } - else if (!xp.red || (xpp = xp.parent) == null) - return root; - if (xp == (xppl = xpp.left)) { - if ((xppr = xpp.right) != null && xppr.red) { - xppr.red = false; - xp.red = false; - xpp.red = true; - x = xpp; - } - else { - if (x == xp.right) { - root = rotateLeft(root, x = xp); - xpp = (xp = x.parent) == null ? null : xp.parent; - } - if (xp != null) { - xp.red = false; - if (xpp != null) { - xpp.red = true; - root = rotateRight(root, xpp); - } - } - } - } - else { - if (xppl != null && xppl.red) { - xppl.red = false; - xp.red = false; - xpp.red = true; - x = xpp; - } - else { - if (x == xp.left) { - root = rotateRight(root, x = xp); - xpp = (xp = x.parent) == null ? null : xp.parent; - } - if (xp != null) { - xp.red = false; - if (xpp != null) { - xpp.red = true; - root = rotateLeft(root, xpp); - } - } - } - } - } - } - - static TreeNode balanceDeletion(TreeNode root, - TreeNode x) { - for (TreeNode xp, xpl, xpr;;) { - if (x == null || x == root) - return root; - else if ((xp = x.parent) == null) { - x.red = false; - return x; - } - else if (x.red) { - x.red = false; - return root; - } - else if ((xpl = xp.left) == x) { - if ((xpr = xp.right) != null && xpr.red) { - xpr.red = false; - xp.red = true; - root = rotateLeft(root, xp); - xpr = (xp = x.parent) == null ? null : xp.right; - } - if (xpr == null) - x = xp; - else { - TreeNode sl = xpr.left, sr = xpr.right; - if ((sr == null || !sr.red) && - (sl == null || !sl.red)) { - xpr.red = true; - x = xp; - } - else { - if (sr == null || !sr.red) { - if (sl != null) - sl.red = false; - xpr.red = true; - root = rotateRight(root, xpr); - xpr = (xp = x.parent) == null ? - null : xp.right; - } - if (xpr != null) { - xpr.red = (xp == null) ? false : xp.red; - if ((sr = xpr.right) != null) - sr.red = false; - } - if (xp != null) { - xp.red = false; - root = rotateLeft(root, xp); - } - x = root; - } - } - } - else { // symmetric - if (xpl != null && xpl.red) { - xpl.red = false; - xp.red = true; - root = rotateRight(root, xp); - xpl = (xp = x.parent) == null ? null : xp.left; - } - if (xpl == null) - x = xp; - else { - TreeNode sl = xpl.left, sr = xpl.right; - if ((sl == null || !sl.red) && - (sr == null || !sr.red)) { - xpl.red = true; - x = xp; - } - else { - if (sl == null || !sl.red) { - if (sr != null) - sr.red = false; - xpl.red = true; - root = rotateLeft(root, xpl); - xpl = (xp = x.parent) == null ? - null : xp.left; - } - if (xpl != null) { - xpl.red = (xp == null) ? false : xp.red; - if ((sl = xpl.left) != null) - sl.red = false; - } - if (xp != null) { - xp.red = false; - root = rotateRight(root, xp); - } - x = root; - } - } - } - } - } - - /** - * Recursive invariant check - */ - static boolean checkInvariants(TreeNode t) { - TreeNode tp = t.parent, tl = t.left, tr = t.right, - tb = t.prev, tn = (TreeNode)t.next; - if (tb != null && tb.next != t) - return false; - if (tn != null && tn.prev != t) - return false; - if (tp != null && t != tp.left && t != tp.right) - return false; - if (tl != null && (tl.parent != t || tl.hash > t.hash)) - return false; - if (tr != null && (tr.parent != t || tr.hash < t.hash)) - return false; - if (t.red && tl != null && tl.red && tr != null && tr.red) - return false; - if (tl != null && !checkInvariants(tl)) - return false; - if (tr != null && !checkInvariants(tr)) - return false; - return true; - } - - private static final sun.misc.Unsafe U; - private static final long LOCKSTATE; - static { - try { - U = getUnsafe(); - Class k = TreeBin.class; - LOCKSTATE = U.objectFieldOffset - (k.getDeclaredField("lockState")); - } catch (Exception e) { - throw new Error(e); - } - } - } - - /* ----------------Table Traversal -------------- */ - - /** - * Records the table, its length, and current traversal index for a - * traverser that must process a region of a forwarded table before - * proceeding with current table. - */ - static final class TableStack { - int length; - int index; - Node[] tab; - TableStack next; - } - - /** - * Encapsulates traversal for methods such as containsValue; also - * serves as a base class for other iterators and spliterators. - * - * Method advance visits once each still-valid node that was - * reachable upon iterator construction. It might miss some that - * were added to a bin after the bin was visited, which is OK wrt - * consistency guarantees. Maintaining this property in the face - * of possible ongoing resizes requires a fair amount of - * bookkeeping state that is difficult to optimize away amidst - * volatile accesses. Even so, traversal maintains reasonable - * throughput. - * - * Normally, iteration proceeds bin-by-bin traversing lists. - * However, if the table has been resized, then all future steps - * must traverse both the bin at the current index as well as at - * (index + baseSize); and so on for further resizings. To - * paranoically cope with potential sharing by users of iterators - * across threads, iteration terminates if a bounds checks fails - * for a table read. - */ - static class Traverser { - Node[] tab; // current table; updated if resized - Node next; // the next entry to use - TableStack stack, spare; // to save/restore on ForwardingNodes - int index; // index of bin to use next - int baseIndex; // current index of initial table - int baseLimit; // index bound for initial table - final int baseSize; // initial table size - - Traverser(Node[] tab, int size, int index, int limit) { - this.tab = tab; - this.baseSize = size; - this.baseIndex = this.index = index; - this.baseLimit = limit; - this.next = null; - } - - /** - * Advances if possible, returning next valid node, or null if none. - */ - final Node advance() { - Node e; - if ((e = next) != null) - e = e.next; - for (;;) { - Node[] t; int i, n; // must use locals in checks - if (e != null) - return next = e; - if (baseIndex >= baseLimit || (t = tab) == null || - (n = t.length) <= (i = index) || i < 0) - return next = null; - if ((e = tabAt(t, i)) != null && e.hash < 0) { - if (e instanceof ForwardingNode) { - tab = ((ForwardingNode)e).nextTable; - e = null; - pushState(t, i, n); - continue; - } - else if (e instanceof TreeBin) - e = ((TreeBin)e).first; - else - e = null; - } - if (stack != null) - recoverState(n); - else if ((index = i + baseSize) >= n) - index = ++baseIndex; // visit upper slots if present - } - } - - /** - * Saves traversal state upon encountering a forwarding node. - */ - private void pushState(Node[] t, int i, int n) { - TableStack s = spare; // reuse if possible - if (s != null) - spare = s.next; - else - s = new TableStack(); - s.tab = t; - s.length = n; - s.index = i; - s.next = stack; - stack = s; - } - - /** - * Possibly pops traversal state. - * - * @param n length of current table - */ - private void recoverState(int n) { - TableStack s; int len; - while ((s = stack) != null && (index += (len = s.length)) >= n) { - n = len; - index = s.index; - tab = s.tab; - s.tab = null; - TableStack next = s.next; - s.next = spare; // save for reuse - stack = next; - spare = s; - } - if (s == null && (index += baseSize) >= n) - index = ++baseIndex; - } - } - - /** - * Base of key, value, and entry Iterators. Adds fields to - * Traverser to support iterator.remove. - */ - static class BaseIterator extends Traverser { - final ConcurrentHashMapV8 map; - Node lastReturned; - BaseIterator(Node[] tab, int size, int index, int limit, - ConcurrentHashMapV8 map) { - super(tab, size, index, limit); - this.map = map; - advance(); - } - - public final boolean hasNext() { return next != null; } - public final boolean hasMoreElements() { return next != null; } - - public final void remove() { - Node p; - if ((p = lastReturned) == null) - throw new IllegalStateException(); - lastReturned = null; - map.replaceNode(p.key, null, null); - } - } - - static final class KeyIterator extends BaseIterator - implements Iterator, Enumeration { - KeyIterator(Node[] tab, int index, int size, int limit, - ConcurrentHashMapV8 map) { - super(tab, index, size, limit, map); - } - - public final K next() { - Node p; - if ((p = next) == null) - throw new NoSuchElementException(); - K k = p.key; - lastReturned = p; - advance(); - return k; - } - - public final K nextElement() { return next(); } - } - - static final class ValueIterator extends BaseIterator - implements Iterator, Enumeration { - ValueIterator(Node[] tab, int index, int size, int limit, - ConcurrentHashMapV8 map) { - super(tab, index, size, limit, map); - } - - public final V next() { - Node p; - if ((p = next) == null) - throw new NoSuchElementException(); - V v = p.val; - lastReturned = p; - advance(); - return v; - } - - public final V nextElement() { return next(); } - } - - static final class EntryIterator extends BaseIterator - implements Iterator> { - EntryIterator(Node[] tab, int index, int size, int limit, - ConcurrentHashMapV8 map) { - super(tab, index, size, limit, map); - } - - public final Map.Entry next() { - Node p; - if ((p = next) == null) - throw new NoSuchElementException(); - K k = p.key; - V v = p.val; - lastReturned = p; - advance(); - return new MapEntry(k, v, map); - } - } - - /** - * Exported Entry for EntryIterator - */ - static final class MapEntry implements Map.Entry { - final K key; // non-null - V val; // non-null - final ConcurrentHashMapV8 map; - MapEntry(K key, V val, ConcurrentHashMapV8 map) { - this.key = key; - this.val = val; - this.map = map; - } - public K getKey() { return key; } - public V getValue() { return val; } - public int hashCode() { return key.hashCode() ^ val.hashCode(); } - public String toString() { return key + "=" + val; } - - public boolean equals(Object o) { - Object k, v; Map.Entry e; - return ((o instanceof Map.Entry) && - (k = (e = (Map.Entry)o).getKey()) != null && - (v = e.getValue()) != null && - (k == key || k.equals(key)) && - (v == val || v.equals(val))); - } - - /** - * Sets our entry's value and writes through to the map. The - * value to return is somewhat arbitrary here. Since we do not - * necessarily track asynchronous changes, the most recent - * "previous" value could be different from what we return (or - * could even have been removed, in which case the put will - * re-establish). We do not and cannot guarantee more. - */ - public V setValue(V value) { - if (value == null) throw new NullPointerException(); - V v = val; - val = value; - map.put(key, value); - return v; - } - } - - static final class KeySpliterator extends Traverser - implements ConcurrentHashMapSpliterator { - long est; // size estimate - KeySpliterator(Node[] tab, int size, int index, int limit, - long est) { - super(tab, size, index, limit); - this.est = est; - } - - public ConcurrentHashMapSpliterator trySplit() { - int i, f, h; - return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : - new KeySpliterator(tab, baseSize, baseLimit = h, - f, est >>>= 1); - } - - public void forEachRemaining(Action action) { - if (action == null) throw new NullPointerException(); - for (Node p; (p = advance()) != null;) - action.apply(p.key); - } - - public boolean tryAdvance(Action action) { - if (action == null) throw new NullPointerException(); - Node p; - if ((p = advance()) == null) - return false; - action.apply(p.key); - return true; - } - - public long estimateSize() { return est; } - - } - - static final class ValueSpliterator extends Traverser - implements ConcurrentHashMapSpliterator { - long est; // size estimate - ValueSpliterator(Node[] tab, int size, int index, int limit, - long est) { - super(tab, size, index, limit); - this.est = est; - } - - public ConcurrentHashMapSpliterator trySplit() { - int i, f, h; - return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : - new ValueSpliterator(tab, baseSize, baseLimit = h, - f, est >>>= 1); - } - - public void forEachRemaining(Action action) { - if (action == null) throw new NullPointerException(); - for (Node p; (p = advance()) != null;) - action.apply(p.val); - } - - public boolean tryAdvance(Action action) { - if (action == null) throw new NullPointerException(); - Node p; - if ((p = advance()) == null) - return false; - action.apply(p.val); - return true; - } - - public long estimateSize() { return est; } - - } - - static final class EntrySpliterator extends Traverser - implements ConcurrentHashMapSpliterator> { - final ConcurrentHashMapV8 map; // To export MapEntry - long est; // size estimate - EntrySpliterator(Node[] tab, int size, int index, int limit, - long est, ConcurrentHashMapV8 map) { - super(tab, size, index, limit); - this.map = map; - this.est = est; - } - - public ConcurrentHashMapSpliterator> trySplit() { - int i, f, h; - return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : - new EntrySpliterator(tab, baseSize, baseLimit = h, - f, est >>>= 1, map); - } - - public void forEachRemaining(Action> action) { - if (action == null) throw new NullPointerException(); - for (Node p; (p = advance()) != null; ) - action.apply(new MapEntry(p.key, p.val, map)); - } - - public boolean tryAdvance(Action> action) { - if (action == null) throw new NullPointerException(); - Node p; - if ((p = advance()) == null) - return false; - action.apply(new MapEntry(p.key, p.val, map)); - return true; - } - - public long estimateSize() { return est; } - - } - - // Parallel bulk operations - - /** - * Computes initial batch value for bulk tasks. The returned value - * is approximately exp2 of the number of times (minus one) to - * split task by two before executing leaf action. This value is - * faster to compute and more convenient to use as a guide to - * splitting than is the depth, since it is used while dividing by - * two anyway. - */ - final int batchFor(long b) { - long n; - if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b) - return 0; - int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4 - return (b <= 0L || (n /= b) >= sp) ? sp : (int)n; - } - - /** - * Performs the given action for each (key, value). - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param action the action - * @since 1.8 - */ - public void forEach(long parallelismThreshold, - BiAction action) { - if (action == null) throw new NullPointerException(); - new ForEachMappingTask - (null, batchFor(parallelismThreshold), 0, 0, table, - action).invoke(); - } - - /** - * Performs the given action for each non-null transformation - * of each (key, value). - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case the action is not applied) - * @param action the action - * @since 1.8 - */ - public void forEach(long parallelismThreshold, - BiFun transformer, - Action action) { - if (transformer == null || action == null) - throw new NullPointerException(); - new ForEachTransformedMappingTask - (null, batchFor(parallelismThreshold), 0, 0, table, - transformer, action).invoke(); - } - - /** - * Returns a non-null result from applying the given search - * function on each (key, value), or null if none. Upon - * success, further element processing is suppressed and the - * results of any other parallel invocations of the search - * function are ignored. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param searchFunction a function returning a non-null - * result on success, else null - * @return a non-null result from applying the given search - * function on each (key, value), or null if none - * @since 1.8 - */ - public U search(long parallelismThreshold, - BiFun searchFunction) { - if (searchFunction == null) throw new NullPointerException(); - return new SearchMappingsTask - (null, batchFor(parallelismThreshold), 0, 0, table, - searchFunction, new AtomicReference()).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all (key, value) pairs using the given reducer to - * combine values, or null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case it is not combined) - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all (key, value) pairs - * @since 1.8 - */ - public U reduce(long parallelismThreshold, - BiFun transformer, - BiFun reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceMappingsTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all (key, value) pairs using the given reducer to - * combine values, and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all (key, value) pairs - * @since 1.8 - */ - public double reduceToDouble(long parallelismThreshold, - ObjectByObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceMappingsToDoubleTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all (key, value) pairs using the given reducer to - * combine values, and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all (key, value) pairs - * @since 1.8 - */ - public long reduceToLong(long parallelismThreshold, - ObjectByObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceMappingsToLongTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all (key, value) pairs using the given reducer to - * combine values, and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all (key, value) pairs - * @since 1.8 - */ - public int reduceToInt(long parallelismThreshold, - ObjectByObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceMappingsToIntTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Performs the given action for each key. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param action the action - * @since 1.8 - */ - public void forEachKey(long parallelismThreshold, - Action action) { - if (action == null) throw new NullPointerException(); - new ForEachKeyTask - (null, batchFor(parallelismThreshold), 0, 0, table, - action).invoke(); - } - - /** - * Performs the given action for each non-null transformation - * of each key. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case the action is not applied) - * @param action the action - * @since 1.8 - */ - public void forEachKey(long parallelismThreshold, - Fun transformer, - Action action) { - if (transformer == null || action == null) - throw new NullPointerException(); - new ForEachTransformedKeyTask - (null, batchFor(parallelismThreshold), 0, 0, table, - transformer, action).invoke(); - } - - /** - * Returns a non-null result from applying the given search - * function on each key, or null if none. Upon success, - * further element processing is suppressed and the results of - * any other parallel invocations of the search function are - * ignored. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param searchFunction a function returning a non-null - * result on success, else null - * @return a non-null result from applying the given search - * function on each key, or null if none - * @since 1.8 - */ - public U searchKeys(long parallelismThreshold, - Fun searchFunction) { - if (searchFunction == null) throw new NullPointerException(); - return new SearchKeysTask - (null, batchFor(parallelismThreshold), 0, 0, table, - searchFunction, new AtomicReference()).invoke(); - } - - /** - * Returns the result of accumulating all keys using the given - * reducer to combine values, or null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param reducer a commutative associative combining function - * @return the result of accumulating all keys using the given - * reducer to combine values, or null if none - * @since 1.8 - */ - public K reduceKeys(long parallelismThreshold, - BiFun reducer) { - if (reducer == null) throw new NullPointerException(); - return new ReduceKeysTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all keys using the given reducer to combine values, or - * null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case it is not combined) - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all keys - * @since 1.8 - */ - public U reduceKeys(long parallelismThreshold, - Fun transformer, - BiFun reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceKeysTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all keys using the given reducer to combine values, and - * the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all keys - * @since 1.8 - */ - public double reduceKeysToDouble(long parallelismThreshold, - ObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceKeysToDoubleTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all keys using the given reducer to combine values, and - * the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all keys - * @since 1.8 - */ - public long reduceKeysToLong(long parallelismThreshold, - ObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceKeysToLongTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all keys using the given reducer to combine values, and - * the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all keys - * @since 1.8 - */ - public int reduceKeysToInt(long parallelismThreshold, - ObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceKeysToIntTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Performs the given action for each value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param action the action - * @since 1.8 - */ - public void forEachValue(long parallelismThreshold, - Action action) { - if (action == null) - throw new NullPointerException(); - new ForEachValueTask - (null, batchFor(parallelismThreshold), 0, 0, table, - action).invoke(); - } - - /** - * Performs the given action for each non-null transformation - * of each value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case the action is not applied) - * @param action the action - * @since 1.8 - */ - public void forEachValue(long parallelismThreshold, - Fun transformer, - Action action) { - if (transformer == null || action == null) - throw new NullPointerException(); - new ForEachTransformedValueTask - (null, batchFor(parallelismThreshold), 0, 0, table, - transformer, action).invoke(); - } - - /** - * Returns a non-null result from applying the given search - * function on each value, or null if none. Upon success, - * further element processing is suppressed and the results of - * any other parallel invocations of the search function are - * ignored. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param searchFunction a function returning a non-null - * result on success, else null - * @return a non-null result from applying the given search - * function on each value, or null if none - * @since 1.8 - */ - public U searchValues(long parallelismThreshold, - Fun searchFunction) { - if (searchFunction == null) throw new NullPointerException(); - return new SearchValuesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - searchFunction, new AtomicReference()).invoke(); - } - - /** - * Returns the result of accumulating all values using the - * given reducer to combine values, or null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param reducer a commutative associative combining function - * @return the result of accumulating all values - * @since 1.8 - */ - public V reduceValues(long parallelismThreshold, - BiFun reducer) { - if (reducer == null) throw new NullPointerException(); - return new ReduceValuesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all values using the given reducer to combine values, or - * null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case it is not combined) - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all values - * @since 1.8 - */ - public U reduceValues(long parallelismThreshold, - Fun transformer, - BiFun reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceValuesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all values using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all values - * @since 1.8 - */ - public double reduceValuesToDouble(long parallelismThreshold, - ObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceValuesToDoubleTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all values using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all values - * @since 1.8 - */ - public long reduceValuesToLong(long parallelismThreshold, - ObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceValuesToLongTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all values using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all values - * @since 1.8 - */ - public int reduceValuesToInt(long parallelismThreshold, - ObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceValuesToIntTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Performs the given action for each entry. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param action the action - * @since 1.8 - */ - public void forEachEntry(long parallelismThreshold, - Action> action) { - if (action == null) throw new NullPointerException(); - new ForEachEntryTask(null, batchFor(parallelismThreshold), 0, 0, table, - action).invoke(); - } - - /** - * Performs the given action for each non-null transformation - * of each entry. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case the action is not applied) - * @param action the action - * @since 1.8 - */ - public void forEachEntry(long parallelismThreshold, - Fun, ? extends U> transformer, - Action action) { - if (transformer == null || action == null) - throw new NullPointerException(); - new ForEachTransformedEntryTask - (null, batchFor(parallelismThreshold), 0, 0, table, - transformer, action).invoke(); - } - - /** - * Returns a non-null result from applying the given search - * function on each entry, or null if none. Upon success, - * further element processing is suppressed and the results of - * any other parallel invocations of the search function are - * ignored. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param searchFunction a function returning a non-null - * result on success, else null - * @return a non-null result from applying the given search - * function on each entry, or null if none - * @since 1.8 - */ - public U searchEntries(long parallelismThreshold, - Fun, ? extends U> searchFunction) { - if (searchFunction == null) throw new NullPointerException(); - return new SearchEntriesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - searchFunction, new AtomicReference()).invoke(); - } - - /** - * Returns the result of accumulating all entries using the - * given reducer to combine values, or null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param reducer a commutative associative combining function - * @return the result of accumulating all entries - * @since 1.8 - */ - public Map.Entry reduceEntries(long parallelismThreshold, - BiFun, Map.Entry, ? extends Map.Entry> reducer) { - if (reducer == null) throw new NullPointerException(); - return new ReduceEntriesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all entries using the given reducer to combine values, - * or null if none. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element, or null if there is no transformation (in - * which case it is not combined) - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all entries - * @since 1.8 - */ - public U reduceEntries(long parallelismThreshold, - Fun, ? extends U> transformer, - BiFun reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceEntriesTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all entries using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all entries - * @since 1.8 - */ - public double reduceEntriesToDouble(long parallelismThreshold, - ObjectToDouble> transformer, - double basis, - DoubleByDoubleToDouble reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceEntriesToDoubleTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all entries using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all entries - * @since 1.8 - */ - public long reduceEntriesToLong(long parallelismThreshold, - ObjectToLong> transformer, - long basis, - LongByLongToLong reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceEntriesToLongTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - /** - * Returns the result of accumulating the given transformation - * of all entries using the given reducer to combine values, - * and the given basis as an identity value. - * - * @param parallelismThreshold the (estimated) number of elements - * needed for this operation to be executed in parallel - * @param transformer a function returning the transformation - * for an element - * @param basis the identity (initial default value) for the reduction - * @param reducer a commutative associative combining function - * @return the result of accumulating the given transformation - * of all entries - * @since 1.8 - */ - public int reduceEntriesToInt(long parallelismThreshold, - ObjectToInt> transformer, - int basis, - IntByIntToInt reducer) { - if (transformer == null || reducer == null) - throw new NullPointerException(); - return new MapReduceEntriesToIntTask - (null, batchFor(parallelismThreshold), 0, 0, table, - null, transformer, basis, reducer).invoke(); - } - - - /* ----------------Views -------------- */ - - /** - * Base class for views. - */ - abstract static class CollectionView - implements Collection, java.io.Serializable { - private static final long serialVersionUID = 7249069246763182397L; - final ConcurrentHashMapV8 map; - CollectionView(ConcurrentHashMapV8 map) { this.map = map; } - - /** - * Returns the map backing this view. - * - * @return the map backing this view - */ - public ConcurrentHashMapV8 getMap() { return map; } - - /** - * Removes all of the elements from this view, by removing all - * the mappings from the map backing this view. - */ - public final void clear() { map.clear(); } - public final int size() { return map.size(); } - public final boolean isEmpty() { return map.isEmpty(); } - - // implementations below rely on concrete classes supplying these - // abstract methods - /** - * Returns a "weakly consistent" iterator that will never - * throw {@link ConcurrentModificationException}, and - * guarantees to traverse elements as they existed upon - * construction of the iterator, and may (but is not - * guaranteed to) reflect any modifications subsequent to - * construction. - */ - public abstract Iterator iterator(); - public abstract boolean contains(Object o); - public abstract boolean remove(Object o); - - private static final String oomeMsg = "Required array size too large"; - - public final Object[] toArray() { - long sz = map.mappingCount(); - if (sz > MAX_ARRAY_SIZE) - throw new OutOfMemoryError(oomeMsg); - int n = (int)sz; - Object[] r = new Object[n]; - int i = 0; - for (E e : this) { - if (i == n) { - if (n >= MAX_ARRAY_SIZE) - throw new OutOfMemoryError(oomeMsg); - if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) - n = MAX_ARRAY_SIZE; - else - n += (n >>> 1) + 1; - r = Arrays.copyOf(r, n); - } - r[i++] = e; - } - return (i == n) ? r : Arrays.copyOf(r, i); - } - - @SuppressWarnings("unchecked") - public final T[] toArray(T[] a) { - long sz = map.mappingCount(); - if (sz > MAX_ARRAY_SIZE) - throw new OutOfMemoryError(oomeMsg); - int m = (int)sz; - T[] r = (a.length >= m) ? a : - (T[])java.lang.reflect.Array - .newInstance(a.getClass().getComponentType(), m); - int n = r.length; - int i = 0; - for (E e : this) { - if (i == n) { - if (n >= MAX_ARRAY_SIZE) - throw new OutOfMemoryError(oomeMsg); - if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) - n = MAX_ARRAY_SIZE; - else - n += (n >>> 1) + 1; - r = Arrays.copyOf(r, n); - } - r[i++] = (T)e; - } - if (a == r && i < n) { - r[i] = null; // null-terminate - return r; - } - return (i == n) ? r : Arrays.copyOf(r, i); - } - - /** - * Returns a string representation of this collection. - * The string representation consists of the string representations - * of the collection's elements in the order they are returned by - * its iterator, enclosed in square brackets ({@code "[]"}). - * Adjacent elements are separated by the characters {@code ", "} - * (comma and space). Elements are converted to strings as by - * {@link String#valueOf(Object)}. - * - * @return a string representation of this collection - */ - public final String toString() { - StringBuilder sb = new StringBuilder(); - sb.append('['); - Iterator it = iterator(); - if (it.hasNext()) { - for (;;) { - Object e = it.next(); - sb.append(e == this ? "(this Collection)" : e); - if (!it.hasNext()) - break; - sb.append(',').append(' '); - } - } - return sb.append(']').toString(); - } - - public final boolean containsAll(Collection c) { - if (c != this) { - for (Object e : c) { - if (e == null || !contains(e)) - return false; - } - } - return true; - } - - public final boolean removeAll(Collection c) { - boolean modified = false; - for (Iterator it = iterator(); it.hasNext();) { - if (c.contains(it.next())) { - it.remove(); - modified = true; - } - } - return modified; - } - - public final boolean retainAll(Collection c) { - boolean modified = false; - for (Iterator it = iterator(); it.hasNext();) { - if (!c.contains(it.next())) { - it.remove(); - modified = true; - } - } - return modified; - } - - } - - /** - * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in - * which additions may optionally be enabled by mapping to a - * common value. This class cannot be directly instantiated. - * See {@link #keySet() keySet()}, - * {@link #keySet(Object) keySet(V)}, - * {@link #newKeySet() newKeySet()}, - * {@link #newKeySet(int) newKeySet(int)}. - * - * @since 1.8 - */ - public static class KeySetView extends CollectionView - implements Set, java.io.Serializable { - private static final long serialVersionUID = 7249069246763182397L; - private final V value; - KeySetView(ConcurrentHashMapV8 map, V value) { // non-public - super(map); - this.value = value; - } - - /** - * Returns the default mapped value for additions, - * or {@code null} if additions are not supported. - * - * @return the default mapped value for additions, or {@code null} - * if not supported - */ - public V getMappedValue() { return value; } - - /** - * {@inheritDoc} - * @throws NullPointerException if the specified key is null - */ - public boolean contains(Object o) { return map.containsKey(o); } - - /** - * Removes the key from this map view, by removing the key (and its - * corresponding value) from the backing map. This method does - * nothing if the key is not in the map. - * - * @param o the key to be removed from the backing map - * @return {@code true} if the backing map contained the specified key - * @throws NullPointerException if the specified key is null - */ - public boolean remove(Object o) { return map.remove(o) != null; } - - /** - * @return an iterator over the keys of the backing map - */ - public Iterator iterator() { - Node[] t; - ConcurrentHashMapV8 m = map; - int f = (t = m.table) == null ? 0 : t.length; - return new KeyIterator(t, f, 0, f, m); - } - - /** - * Adds the specified key to this set view by mapping the key to - * the default mapped value in the backing map, if defined. - * - * @param e key to be added - * @return {@code true} if this set changed as a result of the call - * @throws NullPointerException if the specified key is null - * @throws UnsupportedOperationException if no default mapped value - * for additions was provided - */ - public boolean add(K e) { - V v; - if ((v = value) == null) - throw new UnsupportedOperationException(); - return map.putVal(e, v, true) == null; - } - - /** - * Adds all of the elements in the specified collection to this set, - * as if by calling {@link #add} on each one. - * - * @param c the elements to be inserted into this set - * @return {@code true} if this set changed as a result of the call - * @throws NullPointerException if the collection or any of its - * elements are {@code null} - * @throws UnsupportedOperationException if no default mapped value - * for additions was provided - */ - public boolean addAll(Collection c) { - boolean added = false; - V v; - if ((v = value) == null) - throw new UnsupportedOperationException(); - for (K e : c) { - if (map.putVal(e, v, true) == null) - added = true; - } - return added; - } - - public int hashCode() { - int h = 0; - for (K e : this) - h += e.hashCode(); - return h; - } - - public boolean equals(Object o) { - Set c; - return ((o instanceof Set) && - ((c = (Set)o) == this || - (containsAll(c) && c.containsAll(this)))); - } - - public ConcurrentHashMapSpliterator spliteratorJSR166() { - Node[] t; - ConcurrentHashMapV8 m = map; - long n = m.sumCount(); - int f = (t = m.table) == null ? 0 : t.length; - return new KeySpliterator(t, f, 0, f, n < 0L ? 0L : n); - } - - public void forEach(Action action) { - if (action == null) throw new NullPointerException(); - Node[] t; - if ((t = map.table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) - action.apply(p.key); - } - } - } - - /** - * A view of a ConcurrentHashMapV8 as a {@link Collection} of - * values, in which additions are disabled. This class cannot be - * directly instantiated. See {@link #values()}. - */ - static final class ValuesView extends CollectionView - implements Collection, java.io.Serializable { - private static final long serialVersionUID = 2249069246763182397L; - ValuesView(ConcurrentHashMapV8 map) { super(map); } - public final boolean contains(Object o) { - return map.containsValue(o); - } - - public final boolean remove(Object o) { - if (o != null) { - for (Iterator it = iterator(); it.hasNext();) { - if (o.equals(it.next())) { - it.remove(); - return true; - } - } - } - return false; - } - - public final Iterator iterator() { - ConcurrentHashMapV8 m = map; - Node[] t; - int f = (t = m.table) == null ? 0 : t.length; - return new ValueIterator(t, f, 0, f, m); - } - - public final boolean add(V e) { - throw new UnsupportedOperationException(); - } - public final boolean addAll(Collection c) { - throw new UnsupportedOperationException(); - } - - public ConcurrentHashMapSpliterator spliteratorJS166() { - Node[] t; - ConcurrentHashMapV8 m = map; - long n = m.sumCount(); - int f = (t = m.table) == null ? 0 : t.length; - return new ValueSpliterator(t, f, 0, f, n < 0L ? 0L : n); - } - - public void forEach(Action action) { - if (action == null) throw new NullPointerException(); - Node[] t; - if ((t = map.table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) - action.apply(p.val); - } - } - } - - /** - * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value) - * entries. This class cannot be directly instantiated. See - * {@link #entrySet()}. - */ - static final class EntrySetView extends CollectionView> - implements Set>, java.io.Serializable { - private static final long serialVersionUID = 2249069246763182397L; - EntrySetView(ConcurrentHashMapV8 map) { super(map); } - - public boolean contains(Object o) { - Object k, v, r; Map.Entry e; - return ((o instanceof Map.Entry) && - (k = (e = (Map.Entry)o).getKey()) != null && - (r = map.get(k)) != null && - (v = e.getValue()) != null && - (v == r || v.equals(r))); - } - - public boolean remove(Object o) { - Object k, v; Map.Entry e; - return ((o instanceof Map.Entry) && - (k = (e = (Map.Entry)o).getKey()) != null && - (v = e.getValue()) != null && - map.remove(k, v)); - } - - /** - * @return an iterator over the entries of the backing map - */ - public Iterator> iterator() { - ConcurrentHashMapV8 m = map; - Node[] t; - int f = (t = m.table) == null ? 0 : t.length; - return new EntryIterator(t, f, 0, f, m); - } - - public boolean add(Entry e) { - return map.putVal(e.getKey(), e.getValue(), false) == null; - } - - public boolean addAll(Collection> c) { - boolean added = false; - for (Entry e : c) { - if (add(e)) - added = true; - } - return added; - } - - public final int hashCode() { - int h = 0; - Node[] t; - if ((t = map.table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) { - h += p.hashCode(); - } - } - return h; - } - - public final boolean equals(Object o) { - Set c; - return ((o instanceof Set) && - ((c = (Set)o) == this || - (containsAll(c) && c.containsAll(this)))); - } - - public ConcurrentHashMapSpliterator> spliteratorJSR166() { - Node[] t; - ConcurrentHashMapV8 m = map; - long n = m.sumCount(); - int f = (t = m.table) == null ? 0 : t.length; - return new EntrySpliterator(t, f, 0, f, n < 0L ? 0L : n, m); - } - - public void forEach(Action> action) { - if (action == null) throw new NullPointerException(); - Node[] t; - if ((t = map.table) != null) { - Traverser it = new Traverser(t, t.length, 0, t.length); - for (Node p; (p = it.advance()) != null; ) - action.apply(new MapEntry(p.key, p.val, map)); - } - } - - } - - // ------------------------------------------------------- - - /** - * Base class for bulk tasks. Repeats some fields and code from - * class Traverser, because we need to subclass CountedCompleter. - */ - abstract static class BulkTask extends CountedCompleter { - Node[] tab; // same as Traverser - Node next; - int index; - int baseIndex; - int baseLimit; - final int baseSize; - int batch; // split control - - BulkTask(BulkTask par, int b, int i, int f, Node[] t) { - super(par); - this.batch = b; - this.index = this.baseIndex = i; - if ((this.tab = t) == null) - this.baseSize = this.baseLimit = 0; - else if (par == null) - this.baseSize = this.baseLimit = t.length; - else { - this.baseLimit = f; - this.baseSize = par.baseSize; - } - } - - /** - * Same as Traverser version - */ - final Node advance() { - Node e; - if ((e = next) != null) - e = e.next; - for (;;) { - Node[] t; int i, n; K ek; // must use locals in checks - if (e != null) - return next = e; - if (baseIndex >= baseLimit || (t = tab) == null || - (n = t.length) <= (i = index) || i < 0) - return next = null; - if ((e = tabAt(t, index)) != null && e.hash < 0) { - if (e instanceof ForwardingNode) { - tab = ((ForwardingNode)e).nextTable; - e = null; - continue; - } - else if (e instanceof TreeBin) - e = ((TreeBin)e).first; - else - e = null; - } - if ((index += baseSize) >= n) - index = ++baseIndex; // visit upper slots if present - } - } - } - - /* - * Task classes. Coded in a regular but ugly format/style to - * simplify checks that each variant differs in the right way from - * others. The null screenings exist because compilers cannot tell - * that we've already null-checked task arguments, so we force - * simplest hoisted bypass to help avoid convoluted traps. - */ - @SuppressWarnings("serial") - static final class ForEachKeyTask - extends BulkTask { - final Action action; - ForEachKeyTask - (BulkTask p, int b, int i, int f, Node[] t, - Action action) { - super(p, b, i, f, t); - this.action = action; - } - public final void compute() { - final Action action; - if ((action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachKeyTask - (this, batch >>>= 1, baseLimit = h, f, tab, - action).fork(); - } - for (Node p; (p = advance()) != null;) - action.apply(p.key); - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachValueTask - extends BulkTask { - final Action action; - ForEachValueTask - (BulkTask p, int b, int i, int f, Node[] t, - Action action) { - super(p, b, i, f, t); - this.action = action; - } - public final void compute() { - final Action action; - if ((action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachValueTask - (this, batch >>>= 1, baseLimit = h, f, tab, - action).fork(); - } - for (Node p; (p = advance()) != null;) - action.apply(p.val); - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachEntryTask - extends BulkTask { - final Action> action; - ForEachEntryTask - (BulkTask p, int b, int i, int f, Node[] t, - Action> action) { - super(p, b, i, f, t); - this.action = action; - } - public final void compute() { - final Action> action; - if ((action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachEntryTask - (this, batch >>>= 1, baseLimit = h, f, tab, - action).fork(); - } - for (Node p; (p = advance()) != null; ) - action.apply(p); - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachMappingTask - extends BulkTask { - final BiAction action; - ForEachMappingTask - (BulkTask p, int b, int i, int f, Node[] t, - BiAction action) { - super(p, b, i, f, t); - this.action = action; - } - public final void compute() { - final BiAction action; - if ((action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachMappingTask - (this, batch >>>= 1, baseLimit = h, f, tab, - action).fork(); - } - for (Node p; (p = advance()) != null; ) - action.apply(p.key, p.val); - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachTransformedKeyTask - extends BulkTask { - final Fun transformer; - final Action action; - ForEachTransformedKeyTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun transformer, Action action) { - super(p, b, i, f, t); - this.transformer = transformer; this.action = action; - } - public final void compute() { - final Fun transformer; - final Action action; - if ((transformer = this.transformer) != null && - (action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachTransformedKeyTask - (this, batch >>>= 1, baseLimit = h, f, tab, - transformer, action).fork(); - } - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.key)) != null) - action.apply(u); - } - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachTransformedValueTask - extends BulkTask { - final Fun transformer; - final Action action; - ForEachTransformedValueTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun transformer, Action action) { - super(p, b, i, f, t); - this.transformer = transformer; this.action = action; - } - public final void compute() { - final Fun transformer; - final Action action; - if ((transformer = this.transformer) != null && - (action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachTransformedValueTask - (this, batch >>>= 1, baseLimit = h, f, tab, - transformer, action).fork(); - } - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.val)) != null) - action.apply(u); - } - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachTransformedEntryTask - extends BulkTask { - final Fun, ? extends U> transformer; - final Action action; - ForEachTransformedEntryTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun, ? extends U> transformer, Action action) { - super(p, b, i, f, t); - this.transformer = transformer; this.action = action; - } - public final void compute() { - final Fun, ? extends U> transformer; - final Action action; - if ((transformer = this.transformer) != null && - (action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachTransformedEntryTask - (this, batch >>>= 1, baseLimit = h, f, tab, - transformer, action).fork(); - } - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p)) != null) - action.apply(u); - } - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class ForEachTransformedMappingTask - extends BulkTask { - final BiFun transformer; - final Action action; - ForEachTransformedMappingTask - (BulkTask p, int b, int i, int f, Node[] t, - BiFun transformer, - Action action) { - super(p, b, i, f, t); - this.transformer = transformer; this.action = action; - } - public final void compute() { - final BiFun transformer; - final Action action; - if ((transformer = this.transformer) != null && - (action = this.action) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - new ForEachTransformedMappingTask - (this, batch >>>= 1, baseLimit = h, f, tab, - transformer, action).fork(); - } - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.key, p.val)) != null) - action.apply(u); - } - propagateCompletion(); - } - } - } - - @SuppressWarnings("serial") - static final class SearchKeysTask - extends BulkTask { - final Fun searchFunction; - final AtomicReference result; - SearchKeysTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun searchFunction, - AtomicReference result) { - super(p, b, i, f, t); - this.searchFunction = searchFunction; this.result = result; - } - public final U getRawResult() { return result.get(); } - public final void compute() { - final Fun searchFunction; - final AtomicReference result; - if ((searchFunction = this.searchFunction) != null && - (result = this.result) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - if (result.get() != null) - return; - addToPendingCount(1); - new SearchKeysTask - (this, batch >>>= 1, baseLimit = h, f, tab, - searchFunction, result).fork(); - } - while (result.get() == null) { - U u; - Node p; - if ((p = advance()) == null) { - propagateCompletion(); - break; - } - if ((u = searchFunction.apply(p.key)) != null) { - if (result.compareAndSet(null, u)) - quietlyCompleteRoot(); - break; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class SearchValuesTask - extends BulkTask { - final Fun searchFunction; - final AtomicReference result; - SearchValuesTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun searchFunction, - AtomicReference result) { - super(p, b, i, f, t); - this.searchFunction = searchFunction; this.result = result; - } - public final U getRawResult() { return result.get(); } - public final void compute() { - final Fun searchFunction; - final AtomicReference result; - if ((searchFunction = this.searchFunction) != null && - (result = this.result) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - if (result.get() != null) - return; - addToPendingCount(1); - new SearchValuesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - searchFunction, result).fork(); - } - while (result.get() == null) { - U u; - Node p; - if ((p = advance()) == null) { - propagateCompletion(); - break; - } - if ((u = searchFunction.apply(p.val)) != null) { - if (result.compareAndSet(null, u)) - quietlyCompleteRoot(); - break; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class SearchEntriesTask - extends BulkTask { - final Fun, ? extends U> searchFunction; - final AtomicReference result; - SearchEntriesTask - (BulkTask p, int b, int i, int f, Node[] t, - Fun, ? extends U> searchFunction, - AtomicReference result) { - super(p, b, i, f, t); - this.searchFunction = searchFunction; this.result = result; - } - public final U getRawResult() { return result.get(); } - public final void compute() { - final Fun, ? extends U> searchFunction; - final AtomicReference result; - if ((searchFunction = this.searchFunction) != null && - (result = this.result) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - if (result.get() != null) - return; - addToPendingCount(1); - new SearchEntriesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - searchFunction, result).fork(); - } - while (result.get() == null) { - U u; - Node p; - if ((p = advance()) == null) { - propagateCompletion(); - break; - } - if ((u = searchFunction.apply(p)) != null) { - if (result.compareAndSet(null, u)) - quietlyCompleteRoot(); - return; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class SearchMappingsTask - extends BulkTask { - final BiFun searchFunction; - final AtomicReference result; - SearchMappingsTask - (BulkTask p, int b, int i, int f, Node[] t, - BiFun searchFunction, - AtomicReference result) { - super(p, b, i, f, t); - this.searchFunction = searchFunction; this.result = result; - } - public final U getRawResult() { return result.get(); } - public final void compute() { - final BiFun searchFunction; - final AtomicReference result; - if ((searchFunction = this.searchFunction) != null && - (result = this.result) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - if (result.get() != null) - return; - addToPendingCount(1); - new SearchMappingsTask - (this, batch >>>= 1, baseLimit = h, f, tab, - searchFunction, result).fork(); - } - while (result.get() == null) { - U u; - Node p; - if ((p = advance()) == null) { - propagateCompletion(); - break; - } - if ((u = searchFunction.apply(p.key, p.val)) != null) { - if (result.compareAndSet(null, u)) - quietlyCompleteRoot(); - break; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class ReduceKeysTask - extends BulkTask { - final BiFun reducer; - K result; - ReduceKeysTask rights, nextRight; - ReduceKeysTask - (BulkTask p, int b, int i, int f, Node[] t, - ReduceKeysTask nextRight, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.reducer = reducer; - } - public final K getRawResult() { return result; } - public final void compute() { - final BiFun reducer; - if ((reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new ReduceKeysTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, reducer)).fork(); - } - K r = null; - for (Node p; (p = advance()) != null; ) { - K u = p.key; - r = (r == null) ? u : u == null ? r : reducer.apply(r, u); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") ReduceKeysTask - t = (ReduceKeysTask)c, - s = t.rights; - while (s != null) { - K tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class ReduceValuesTask - extends BulkTask { - final BiFun reducer; - V result; - ReduceValuesTask rights, nextRight; - ReduceValuesTask - (BulkTask p, int b, int i, int f, Node[] t, - ReduceValuesTask nextRight, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.reducer = reducer; - } - public final V getRawResult() { return result; } - public final void compute() { - final BiFun reducer; - if ((reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new ReduceValuesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, reducer)).fork(); - } - V r = null; - for (Node p; (p = advance()) != null; ) { - V v = p.val; - r = (r == null) ? v : reducer.apply(r, v); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") ReduceValuesTask - t = (ReduceValuesTask)c, - s = t.rights; - while (s != null) { - V tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class ReduceEntriesTask - extends BulkTask> { - final BiFun, Map.Entry, ? extends Map.Entry> reducer; - Map.Entry result; - ReduceEntriesTask rights, nextRight; - ReduceEntriesTask - (BulkTask p, int b, int i, int f, Node[] t, - ReduceEntriesTask nextRight, - BiFun, Map.Entry, ? extends Map.Entry> reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.reducer = reducer; - } - public final Map.Entry getRawResult() { return result; } - public final void compute() { - final BiFun, Map.Entry, ? extends Map.Entry> reducer; - if ((reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new ReduceEntriesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, reducer)).fork(); - } - Map.Entry r = null; - for (Node p; (p = advance()) != null; ) - r = (r == null) ? p : reducer.apply(r, p); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") ReduceEntriesTask - t = (ReduceEntriesTask)c, - s = t.rights; - while (s != null) { - Map.Entry tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceKeysTask - extends BulkTask { - final Fun transformer; - final BiFun reducer; - U result; - MapReduceKeysTask rights, nextRight; - MapReduceKeysTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceKeysTask nextRight, - Fun transformer, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.reducer = reducer; - } - public final U getRawResult() { return result; } - public final void compute() { - final Fun transformer; - final BiFun reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceKeysTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, reducer)).fork(); - } - U r = null; - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.key)) != null) - r = (r == null) ? u : reducer.apply(r, u); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceKeysTask - t = (MapReduceKeysTask)c, - s = t.rights; - while (s != null) { - U tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceValuesTask - extends BulkTask { - final Fun transformer; - final BiFun reducer; - U result; - MapReduceValuesTask rights, nextRight; - MapReduceValuesTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceValuesTask nextRight, - Fun transformer, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.reducer = reducer; - } - public final U getRawResult() { return result; } - public final void compute() { - final Fun transformer; - final BiFun reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceValuesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, reducer)).fork(); - } - U r = null; - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.val)) != null) - r = (r == null) ? u : reducer.apply(r, u); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceValuesTask - t = (MapReduceValuesTask)c, - s = t.rights; - while (s != null) { - U tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceEntriesTask - extends BulkTask { - final Fun, ? extends U> transformer; - final BiFun reducer; - U result; - MapReduceEntriesTask rights, nextRight; - MapReduceEntriesTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceEntriesTask nextRight, - Fun, ? extends U> transformer, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.reducer = reducer; - } - public final U getRawResult() { return result; } - public final void compute() { - final Fun, ? extends U> transformer; - final BiFun reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceEntriesTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, reducer)).fork(); - } - U r = null; - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p)) != null) - r = (r == null) ? u : reducer.apply(r, u); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceEntriesTask - t = (MapReduceEntriesTask)c, - s = t.rights; - while (s != null) { - U tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceMappingsTask - extends BulkTask { - final BiFun transformer; - final BiFun reducer; - U result; - MapReduceMappingsTask rights, nextRight; - MapReduceMappingsTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceMappingsTask nextRight, - BiFun transformer, - BiFun reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.reducer = reducer; - } - public final U getRawResult() { return result; } - public final void compute() { - final BiFun transformer; - final BiFun reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceMappingsTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, reducer)).fork(); - } - U r = null; - for (Node p; (p = advance()) != null; ) { - U u; - if ((u = transformer.apply(p.key, p.val)) != null) - r = (r == null) ? u : reducer.apply(r, u); - } - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceMappingsTask - t = (MapReduceMappingsTask)c, - s = t.rights; - while (s != null) { - U tr, sr; - if ((sr = s.result) != null) - t.result = (((tr = t.result) == null) ? sr : - reducer.apply(tr, sr)); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceKeysToDoubleTask - extends BulkTask { - final ObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - final double basis; - double result; - MapReduceKeysToDoubleTask rights, nextRight; - MapReduceKeysToDoubleTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceKeysToDoubleTask nextRight, - ObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Double getRawResult() { return result; } - public final void compute() { - final ObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - double r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceKeysToDoubleTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask - t = (MapReduceKeysToDoubleTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceValuesToDoubleTask - extends BulkTask { - final ObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - final double basis; - double result; - MapReduceValuesToDoubleTask rights, nextRight; - MapReduceValuesToDoubleTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceValuesToDoubleTask nextRight, - ObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Double getRawResult() { return result; } - public final void compute() { - final ObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - double r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceValuesToDoubleTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask - t = (MapReduceValuesToDoubleTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceEntriesToDoubleTask - extends BulkTask { - final ObjectToDouble> transformer; - final DoubleByDoubleToDouble reducer; - final double basis; - double result; - MapReduceEntriesToDoubleTask rights, nextRight; - MapReduceEntriesToDoubleTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceEntriesToDoubleTask nextRight, - ObjectToDouble> transformer, - double basis, - DoubleByDoubleToDouble reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Double getRawResult() { return result; } - public final void compute() { - final ObjectToDouble> transformer; - final DoubleByDoubleToDouble reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - double r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceEntriesToDoubleTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask - t = (MapReduceEntriesToDoubleTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceMappingsToDoubleTask - extends BulkTask { - final ObjectByObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - final double basis; - double result; - MapReduceMappingsToDoubleTask rights, nextRight; - MapReduceMappingsToDoubleTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceMappingsToDoubleTask nextRight, - ObjectByObjectToDouble transformer, - double basis, - DoubleByDoubleToDouble reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Double getRawResult() { return result; } - public final void compute() { - final ObjectByObjectToDouble transformer; - final DoubleByDoubleToDouble reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - double r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceMappingsToDoubleTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key, p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask - t = (MapReduceMappingsToDoubleTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceKeysToLongTask - extends BulkTask { - final ObjectToLong transformer; - final LongByLongToLong reducer; - final long basis; - long result; - MapReduceKeysToLongTask rights, nextRight; - MapReduceKeysToLongTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceKeysToLongTask nextRight, - ObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Long getRawResult() { return result; } - public final void compute() { - final ObjectToLong transformer; - final LongByLongToLong reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - long r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceKeysToLongTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceKeysToLongTask - t = (MapReduceKeysToLongTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceValuesToLongTask - extends BulkTask { - final ObjectToLong transformer; - final LongByLongToLong reducer; - final long basis; - long result; - MapReduceValuesToLongTask rights, nextRight; - MapReduceValuesToLongTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceValuesToLongTask nextRight, - ObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Long getRawResult() { return result; } - public final void compute() { - final ObjectToLong transformer; - final LongByLongToLong reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - long r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceValuesToLongTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceValuesToLongTask - t = (MapReduceValuesToLongTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceEntriesToLongTask - extends BulkTask { - final ObjectToLong> transformer; - final LongByLongToLong reducer; - final long basis; - long result; - MapReduceEntriesToLongTask rights, nextRight; - MapReduceEntriesToLongTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceEntriesToLongTask nextRight, - ObjectToLong> transformer, - long basis, - LongByLongToLong reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Long getRawResult() { return result; } - public final void compute() { - final ObjectToLong> transformer; - final LongByLongToLong reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - long r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceEntriesToLongTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceEntriesToLongTask - t = (MapReduceEntriesToLongTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceMappingsToLongTask - extends BulkTask { - final ObjectByObjectToLong transformer; - final LongByLongToLong reducer; - final long basis; - long result; - MapReduceMappingsToLongTask rights, nextRight; - MapReduceMappingsToLongTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceMappingsToLongTask nextRight, - ObjectByObjectToLong transformer, - long basis, - LongByLongToLong reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Long getRawResult() { return result; } - public final void compute() { - final ObjectByObjectToLong transformer; - final LongByLongToLong reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - long r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceMappingsToLongTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key, p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceMappingsToLongTask - t = (MapReduceMappingsToLongTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceKeysToIntTask - extends BulkTask { - final ObjectToInt transformer; - final IntByIntToInt reducer; - final int basis; - int result; - MapReduceKeysToIntTask rights, nextRight; - MapReduceKeysToIntTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceKeysToIntTask nextRight, - ObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Integer getRawResult() { return result; } - public final void compute() { - final ObjectToInt transformer; - final IntByIntToInt reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - int r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceKeysToIntTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceKeysToIntTask - t = (MapReduceKeysToIntTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceValuesToIntTask - extends BulkTask { - final ObjectToInt transformer; - final IntByIntToInt reducer; - final int basis; - int result; - MapReduceValuesToIntTask rights, nextRight; - MapReduceValuesToIntTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceValuesToIntTask nextRight, - ObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Integer getRawResult() { return result; } - public final void compute() { - final ObjectToInt transformer; - final IntByIntToInt reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - int r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceValuesToIntTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceValuesToIntTask - t = (MapReduceValuesToIntTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceEntriesToIntTask - extends BulkTask { - final ObjectToInt> transformer; - final IntByIntToInt reducer; - final int basis; - int result; - MapReduceEntriesToIntTask rights, nextRight; - MapReduceEntriesToIntTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceEntriesToIntTask nextRight, - ObjectToInt> transformer, - int basis, - IntByIntToInt reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Integer getRawResult() { return result; } - public final void compute() { - final ObjectToInt> transformer; - final IntByIntToInt reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - int r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceEntriesToIntTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceEntriesToIntTask - t = (MapReduceEntriesToIntTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - @SuppressWarnings("serial") - static final class MapReduceMappingsToIntTask - extends BulkTask { - final ObjectByObjectToInt transformer; - final IntByIntToInt reducer; - final int basis; - int result; - MapReduceMappingsToIntTask rights, nextRight; - MapReduceMappingsToIntTask - (BulkTask p, int b, int i, int f, Node[] t, - MapReduceMappingsToIntTask nextRight, - ObjectByObjectToInt transformer, - int basis, - IntByIntToInt reducer) { - super(p, b, i, f, t); this.nextRight = nextRight; - this.transformer = transformer; - this.basis = basis; this.reducer = reducer; - } - public final Integer getRawResult() { return result; } - public final void compute() { - final ObjectByObjectToInt transformer; - final IntByIntToInt reducer; - if ((transformer = this.transformer) != null && - (reducer = this.reducer) != null) { - int r = this.basis; - for (int i = baseIndex, f, h; batch > 0 && - (h = ((f = baseLimit) + i) >>> 1) > i;) { - addToPendingCount(1); - (rights = new MapReduceMappingsToIntTask - (this, batch >>>= 1, baseLimit = h, f, tab, - rights, transformer, r, reducer)).fork(); - } - for (Node p; (p = advance()) != null; ) - r = reducer.apply(r, transformer.apply(p.key, p.val)); - result = r; - CountedCompleter c; - for (c = firstComplete(); c != null; c = c.nextComplete()) { - @SuppressWarnings("unchecked") MapReduceMappingsToIntTask - t = (MapReduceMappingsToIntTask)c, - s = t.rights; - while (s != null) { - t.result = reducer.apply(t.result, s.result); - s = t.rights = s.nextRight; - } - } - } - } - } - - /* ---------------- Counters -------------- */ - - // Adapted from LongAdder and Striped64. - // See their internal docs for explanation. - - // A padded cell for distributing counts - static final class CounterCell { - volatile long p0, p1, p2, p3, p4, p5, p6; - volatile long value; - volatile long q0, q1, q2, q3, q4, q5, q6; - CounterCell(long x) { value = x; } - } - - /** - * Holder for the thread-local hash code determining which - * CounterCell to use. The code is initialized via the - * counterHashCodeGenerator, but may be moved upon collisions. - */ - static final class CounterHashCode { - int code; - } - - /** - * Generates initial value for per-thread CounterHashCodes. - */ - static final AtomicInteger counterHashCodeGenerator = new AtomicInteger(); - - /** - * Increment for counterHashCodeGenerator. See class ThreadLocal - * for explanation. - */ - static final int SEED_INCREMENT = 0x61c88647; - - /** - * Per-thread counter hash codes. Shared across all instances. - */ - static final ThreadLocal threadCounterHashCode = - new ThreadLocal(); - - - final long sumCount() { - CounterCell[] as = counterCells; CounterCell a; - long sum = baseCount; - if (as != null) { - for (int i = 0; i < as.length; ++i) { - if ((a = as[i]) != null) - sum += a.value; - } - } - return sum; - } - - // See LongAdder version for explanation - private final void fullAddCount(long x, CounterHashCode hc, - boolean wasUncontended) { - int h; - if (hc == null) { - hc = new CounterHashCode(); - int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT); - h = hc.code = (s == 0) ? 1 : s; // Avoid zero - threadCounterHashCode.set(hc); - } - else - h = hc.code; - boolean collide = false; // True if last slot nonempty - for (;;) { - CounterCell[] as; CounterCell a; int n; long v; - if ((as = counterCells) != null && (n = as.length) > 0) { - if ((a = as[(n - 1) & h]) == null) { - if (cellsBusy == 0) { // Try to attach new Cell - CounterCell r = new CounterCell(x); // Optimistic create - if (cellsBusy == 0 && - U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { - boolean created = false; - try { // Recheck under lock - CounterCell[] rs; int m, j; - if ((rs = counterCells) != null && - (m = rs.length) > 0 && - rs[j = (m - 1) & h] == null) { - rs[j] = r; - created = true; - } - } finally { - cellsBusy = 0; - } - if (created) - break; - continue; // Slot is now non-empty - } - } - collide = false; - } - else if (!wasUncontended) // CAS already known to fail - wasUncontended = true; // Continue after rehash - else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) - break; - else if (counterCells != as || n >= NCPU) - collide = false; // At max size or stale - else if (!collide) - collide = true; - else if (cellsBusy == 0 && - U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { - try { - if (counterCells == as) {// Expand table unless stale - CounterCell[] rs = new CounterCell[n << 1]; - for (int i = 0; i < n; ++i) - rs[i] = as[i]; - counterCells = rs; - } - } finally { - cellsBusy = 0; - } - collide = false; - continue; // Retry with expanded table - } - h ^= h << 13; // Rehash - h ^= h >>> 17; - h ^= h << 5; - } - else if (cellsBusy == 0 && counterCells == as && - U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { - boolean init = false; - try { // Initialize table - if (counterCells == as) { - CounterCell[] rs = new CounterCell[2]; - rs[h & 1] = new CounterCell(x); - counterCells = rs; - init = true; - } - } finally { - cellsBusy = 0; - } - if (init) - break; - } - else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) - break; // Fall back on using base - } - hc.code = h; // Record index for next time - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long SIZECTL; - private static final long TRANSFERINDEX; - private static final long BASECOUNT; - private static final long CELLSBUSY; - private static final long CELLVALUE; - private static final long ABASE; - private static final int ASHIFT; - - static { - try { - U = getUnsafe(); - Class k = ConcurrentHashMapV8.class; - SIZECTL = U.objectFieldOffset - (k.getDeclaredField("sizeCtl")); - TRANSFERINDEX = U.objectFieldOffset - (k.getDeclaredField("transferIndex")); - BASECOUNT = U.objectFieldOffset - (k.getDeclaredField("baseCount")); - CELLSBUSY = U.objectFieldOffset - (k.getDeclaredField("cellsBusy")); - Class ck = CounterCell.class; - CELLVALUE = U.objectFieldOffset - (ck.getDeclaredField("value")); - Class ak = Node[].class; - ABASE = U.arrayBaseOffset(ak); - int scale = U.arrayIndexScale(ak); - if ((scale & (scale - 1)) != 0) - throw new Error("data type scale not a power of two"); - ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); - } catch (Exception e) { - throw new Error(e); - } - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - try { - return sun.misc.Unsafe.getUnsafe(); - } catch (SecurityException tryReflectionInstead) {} - try { - return java.security.AccessController.doPrivileged - (new java.security.PrivilegedExceptionAction() { - public sun.misc.Unsafe run() throws Exception { - Class k = sun.misc.Unsafe.class; - for (java.lang.reflect.Field f : k.getDeclaredFields()) { - f.setAccessible(true); - Object x = f.get(null); - if (k.isInstance(x)) - return k.cast(x); - } - throw new NoSuchFieldError("the Unsafe"); - }}); - } catch (java.security.PrivilegedActionException e) { - throw new RuntimeException("Could not initialize intrinsics", - e.getCause()); - } - } -} - diff --git a/src/main/java/jsr166e/CountedCompleter.java b/src/main/java/jsr166e/CountedCompleter.java deleted file mode 100644 index 817710519a4..00000000000 --- a/src/main/java/jsr166e/CountedCompleter.java +++ /dev/null @@ -1,753 +0,0 @@ -// Rev 1.31 from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/CountedCompleter.java?view=log - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - -/** - * A {@link ForkJoinTask} with a completion action performed when - * triggered and there are no remaining pending actions. - * CountedCompleters are in general more robust in the - * presence of subtask stalls and blockage than are other forms of - * ForkJoinTasks, but are less intuitive to program. Uses of - * CountedCompleter are similar to those of other completion based - * components (such as {@link java.nio.channels.CompletionHandler}) - * except that multiple pending completions may be necessary - * to trigger the completion action {@link #onCompletion(CountedCompleter)}, - * not just one. - * Unless initialized otherwise, the {@linkplain #getPendingCount pending - * count} starts at zero, but may be (atomically) changed using - * methods {@link #setPendingCount}, {@link #addToPendingCount}, and - * {@link #compareAndSetPendingCount}. Upon invocation of {@link - * #tryComplete}, if the pending action count is nonzero, it is - * decremented; otherwise, the completion action is performed, and if - * this completer itself has a completer, the process is continued - * with its completer. As is the case with related synchronization - * components such as {@link java.util.concurrent.Phaser Phaser} and - * {@link java.util.concurrent.Semaphore Semaphore}, these methods - * affect only internal counts; they do not establish any further - * internal bookkeeping. In particular, the identities of pending - * tasks are not maintained. As illustrated below, you can create - * subclasses that do record some or all pending tasks or their - * results when needed. As illustrated below, utility methods - * supporting customization of completion traversals are also - * provided. However, because CountedCompleters provide only basic - * synchronization mechanisms, it may be useful to create further - * abstract subclasses that maintain linkages, fields, and additional - * support methods appropriate for a set of related usages. - * - *

A concrete CountedCompleter class must define method {@link - * #compute}, that should in most cases (as illustrated below), invoke - * {@code tryComplete()} once before returning. The class may also - * optionally override method {@link #onCompletion(CountedCompleter)} - * to perform an action upon normal completion, and method - * {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to - * perform an action upon any exception. - * - *

CountedCompleters most often do not bear results, in which case - * they are normally declared as {@code CountedCompleter}, and - * will always return {@code null} as a result value. In other cases, - * you should override method {@link #getRawResult} to provide a - * result from {@code join(), invoke()}, and related methods. In - * general, this method should return the value of a field (or a - * function of one or more fields) of the CountedCompleter object that - * holds the result upon completion. Method {@link #setRawResult} by - * default plays no role in CountedCompleters. It is possible, but - * rarely applicable, to override this method to maintain other - * objects or fields holding result data. - * - *

A CountedCompleter that does not itself have a completer (i.e., - * one for which {@link #getCompleter} returns {@code null}) can be - * used as a regular ForkJoinTask with this added functionality. - * However, any completer that in turn has another completer serves - * only as an internal helper for other computations, so its own task - * status (as reported in methods such as {@link ForkJoinTask#isDone}) - * is arbitrary; this status changes only upon explicit invocations of - * {@link #complete}, {@link ForkJoinTask#cancel}, - * {@link ForkJoinTask#completeExceptionally(Throwable)} or upon - * exceptional completion of method {@code compute}. Upon any - * exceptional completion, the exception may be relayed to a task's - * completer (and its completer, and so on), if one exists and it has - * not otherwise already completed. Similarly, cancelling an internal - * CountedCompleter has only a local effect on that completer, so is - * not often useful. - * - *

Sample Usages. - * - *

Parallel recursive decomposition. CountedCompleters may - * be arranged in trees similar to those often used with {@link - * RecursiveAction}s, although the constructions involved in setting - * them up typically vary. Here, the completer of each task is its - * parent in the computation tree. Even though they entail a bit more - * bookkeeping, CountedCompleters may be better choices when applying - * a possibly time-consuming operation (that cannot be further - * subdivided) to each element of an array or collection; especially - * when the operation takes a significantly different amount of time - * to complete for some elements than others, either because of - * intrinsic variation (for example I/O) or auxiliary effects such as - * garbage collection. Because CountedCompleters provide their own - * continuations, other threads need not block waiting to perform - * them. - * - *

For example, here is an initial version of a class that uses - * divide-by-two recursive decomposition to divide work into single - * pieces (leaf tasks). Even when work is split into individual calls, - * tree-based techniques are usually preferable to directly forking - * leaf tasks, because they reduce inter-thread communication and - * improve load balancing. In the recursive case, the second of each - * pair of subtasks to finish triggers completion of its parent - * (because no result combination is performed, the default no-op - * implementation of method {@code onCompletion} is not overridden). - * A static utility method sets up the base task and invokes it - * (here, implicitly using the {@link ForkJoinPool#commonPool()}). - * - *

 {@code
- * class MyOperation { void apply(E e) { ... }  }
- *
- * class ForEach extends CountedCompleter {
- *
- *   public static  void forEach(E[] array, MyOperation op) {
- *     new ForEach(null, array, op, 0, array.length).invoke();
- *   }
- *
- *   final E[] array; final MyOperation op; final int lo, hi;
- *   ForEach(CountedCompleter p, E[] array, MyOperation op, int lo, int hi) {
- *     super(p);
- *     this.array = array; this.op = op; this.lo = lo; this.hi = hi;
- *   }
- *
- *   public void compute() { // version 1
- *     if (hi - lo >= 2) {
- *       int mid = (lo + hi) >>> 1;
- *       setPendingCount(2); // must set pending count before fork
- *       new ForEach(this, array, op, mid, hi).fork(); // right child
- *       new ForEach(this, array, op, lo, mid).fork(); // left child
- *     }
- *     else if (hi > lo)
- *       op.apply(array[lo]);
- *     tryComplete();
- *   }
- * }}
- * - * This design can be improved by noticing that in the recursive case, - * the task has nothing to do after forking its right task, so can - * directly invoke its left task before returning. (This is an analog - * of tail recursion removal.) Also, because the task returns upon - * executing its left task (rather than falling through to invoke - * {@code tryComplete}) the pending count is set to one: - * - *
 {@code
- * class ForEach ...
- *   public void compute() { // version 2
- *     if (hi - lo >= 2) {
- *       int mid = (lo + hi) >>> 1;
- *       setPendingCount(1); // only one pending
- *       new ForEach(this, array, op, mid, hi).fork(); // right child
- *       new ForEach(this, array, op, lo, mid).compute(); // direct invoke
- *     }
- *     else {
- *       if (hi > lo)
- *         op.apply(array[lo]);
- *       tryComplete();
- *     }
- *   }
- * }
- * - * As a further improvement, notice that the left task need not even exist. - * Instead of creating a new one, we can iterate using the original task, - * and add a pending count for each fork. Additionally, because no task - * in this tree implements an {@link #onCompletion(CountedCompleter)} method, - * {@code tryComplete()} can be replaced with {@link #propagateCompletion}. - * - *
 {@code
- * class ForEach ...
- *   public void compute() { // version 3
- *     int l = lo,  h = hi;
- *     while (h - l >= 2) {
- *       int mid = (l + h) >>> 1;
- *       addToPendingCount(1);
- *       new ForEach(this, array, op, mid, h).fork(); // right child
- *       h = mid;
- *     }
- *     if (h > l)
- *       op.apply(array[l]);
- *     propagateCompletion();
- *   }
- * }
- * - * Additional improvements of such classes might entail precomputing - * pending counts so that they can be established in constructors, - * specializing classes for leaf steps, subdividing by say, four, - * instead of two per iteration, and using an adaptive threshold - * instead of always subdividing down to single elements. - * - *

Searching. A tree of CountedCompleters can search for a - * value or property in different parts of a data structure, and - * report a result in an {@link - * java.util.concurrent.atomic.AtomicReference AtomicReference} as - * soon as one is found. The others can poll the result to avoid - * unnecessary work. (You could additionally {@linkplain #cancel - * cancel} other tasks, but it is usually simpler and more efficient - * to just let them notice that the result is set and if so skip - * further processing.) Illustrating again with an array using full - * partitioning (again, in practice, leaf tasks will almost always - * process more than one element): - * - *

 {@code
- * class Searcher extends CountedCompleter {
- *   final E[] array; final AtomicReference result; final int lo, hi;
- *   Searcher(CountedCompleter p, E[] array, AtomicReference result, int lo, int hi) {
- *     super(p);
- *     this.array = array; this.result = result; this.lo = lo; this.hi = hi;
- *   }
- *   public E getRawResult() { return result.get(); }
- *   public void compute() { // similar to ForEach version 3
- *     int l = lo,  h = hi;
- *     while (result.get() == null && h >= l) {
- *       if (h - l >= 2) {
- *         int mid = (l + h) >>> 1;
- *         addToPendingCount(1);
- *         new Searcher(this, array, result, mid, h).fork();
- *         h = mid;
- *       }
- *       else {
- *         E x = array[l];
- *         if (matches(x) && result.compareAndSet(null, x))
- *           quietlyCompleteRoot(); // root task is now joinable
- *         break;
- *       }
- *     }
- *     tryComplete(); // normally complete whether or not found
- *   }
- *   boolean matches(E e) { ... } // return true if found
- *
- *   public static  E search(E[] array) {
- *       return new Searcher(null, array, new AtomicReference(), 0, array.length).invoke();
- *   }
- * }}
- * - * In this example, as well as others in which tasks have no other - * effects except to compareAndSet a common result, the trailing - * unconditional invocation of {@code tryComplete} could be made - * conditional ({@code if (result.get() == null) tryComplete();}) - * because no further bookkeeping is required to manage completions - * once the root task completes. - * - *

Recording subtasks. CountedCompleter tasks that combine - * results of multiple subtasks usually need to access these results - * in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following - * class (that performs a simplified form of map-reduce where mappings - * and reductions are all of type {@code E}), one way to do this in - * divide and conquer designs is to have each subtask record its - * sibling, so that it can be accessed in method {@code onCompletion}. - * This technique applies to reductions in which the order of - * combining left and right results does not matter; ordered - * reductions require explicit left/right designations. Variants of - * other streamlinings seen in the above examples may also apply. - * - *

 {@code
- * class MyMapper { E apply(E v) {  ...  } }
- * class MyReducer { E apply(E x, E y) {  ...  } }
- * class MapReducer extends CountedCompleter {
- *   final E[] array; final MyMapper mapper;
- *   final MyReducer reducer; final int lo, hi;
- *   MapReducer sibling;
- *   E result;
- *   MapReducer(CountedCompleter p, E[] array, MyMapper mapper,
- *              MyReducer reducer, int lo, int hi) {
- *     super(p);
- *     this.array = array; this.mapper = mapper;
- *     this.reducer = reducer; this.lo = lo; this.hi = hi;
- *   }
- *   public void compute() {
- *     if (hi - lo >= 2) {
- *       int mid = (lo + hi) >>> 1;
- *       MapReducer left = new MapReducer(this, array, mapper, reducer, lo, mid);
- *       MapReducer right = new MapReducer(this, array, mapper, reducer, mid, hi);
- *       left.sibling = right;
- *       right.sibling = left;
- *       setPendingCount(1); // only right is pending
- *       right.fork();
- *       left.compute();     // directly execute left
- *     }
- *     else {
- *       if (hi > lo)
- *           result = mapper.apply(array[lo]);
- *       tryComplete();
- *     }
- *   }
- *   public void onCompletion(CountedCompleter caller) {
- *     if (caller != this) {
- *       MapReducer child = (MapReducer)caller;
- *       MapReducer sib = child.sibling;
- *       if (sib == null || sib.result == null)
- *         result = child.result;
- *       else
- *         result = reducer.apply(child.result, sib.result);
- *     }
- *   }
- *   public E getRawResult() { return result; }
- *
- *   public static  E mapReduce(E[] array, MyMapper mapper, MyReducer reducer) {
- *     return new MapReducer(null, array, mapper, reducer,
- *                              0, array.length).invoke();
- *   }
- * }}
- * - * Here, method {@code onCompletion} takes a form common to many - * completion designs that combine results. This callback-style method - * is triggered once per task, in either of the two different contexts - * in which the pending count is, or becomes, zero: (1) by a task - * itself, if its pending count is zero upon invocation of {@code - * tryComplete}, or (2) by any of its subtasks when they complete and - * decrement the pending count to zero. The {@code caller} argument - * distinguishes cases. Most often, when the caller is {@code this}, - * no action is necessary. Otherwise the caller argument can be used - * (usually via a cast) to supply a value (and/or links to other - * values) to be combined. Assuming proper use of pending counts, the - * actions inside {@code onCompletion} occur (once) upon completion of - * a task and its subtasks. No additional synchronization is required - * within this method to ensure thread safety of accesses to fields of - * this task or other completed tasks. - * - *

Completion Traversals. If using {@code onCompletion} to - * process completions is inapplicable or inconvenient, you can use - * methods {@link #firstComplete} and {@link #nextComplete} to create - * custom traversals. For example, to define a MapReducer that only - * splits out right-hand tasks in the form of the third ForEach - * example, the completions must cooperatively reduce along - * unexhausted subtask links, which can be done as follows: - * - *

 {@code
- * class MapReducer extends CountedCompleter { // version 2
- *   final E[] array; final MyMapper mapper;
- *   final MyReducer reducer; final int lo, hi;
- *   MapReducer forks, next; // record subtask forks in list
- *   E result;
- *   MapReducer(CountedCompleter p, E[] array, MyMapper mapper,
- *              MyReducer reducer, int lo, int hi, MapReducer next) {
- *     super(p);
- *     this.array = array; this.mapper = mapper;
- *     this.reducer = reducer; this.lo = lo; this.hi = hi;
- *     this.next = next;
- *   }
- *   public void compute() {
- *     int l = lo,  h = hi;
- *     while (h - l >= 2) {
- *       int mid = (l + h) >>> 1;
- *       addToPendingCount(1);
- *       (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork();
- *       h = mid;
- *     }
- *     if (h > l)
- *       result = mapper.apply(array[l]);
- *     // process completions by reducing along and advancing subtask links
- *     for (CountedCompleter c = firstComplete(); c != null; c = c.nextComplete()) {
- *       for (MapReducer t = (MapReducer)c, s = t.forks;  s != null; s = t.forks = s.next)
- *         t.result = reducer.apply(t.result, s.result);
- *     }
- *   }
- *   public E getRawResult() { return result; }
- *
- *   public static  E mapReduce(E[] array, MyMapper mapper, MyReducer reducer) {
- *     return new MapReducer(null, array, mapper, reducer,
- *                              0, array.length, null).invoke();
- *   }
- * }}
- * - *

Triggers. Some CountedCompleters are themselves never - * forked, but instead serve as bits of plumbing in other designs; - * including those in which the completion of one or more async tasks - * triggers another async task. For example: - * - *

 {@code
- * class HeaderBuilder extends CountedCompleter<...> { ... }
- * class BodyBuilder extends CountedCompleter<...> { ... }
- * class PacketSender extends CountedCompleter<...> {
- *   PacketSender(...) { super(null, 1); ... } // trigger on second completion
- *   public void compute() { } // never called
- *   public void onCompletion(CountedCompleter caller) { sendPacket(); }
- * }
- * // sample use:
- * PacketSender p = new PacketSender();
- * new HeaderBuilder(p, ...).fork();
- * new BodyBuilder(p, ...).fork();
- * }
- * - * @since 1.8 - * @author Doug Lea - */ -public abstract class CountedCompleter extends ForkJoinTask { - private static final long serialVersionUID = 5232453752276485070L; - - /** This task's completer, or null if none */ - final CountedCompleter completer; - /** The number of pending tasks until completion */ - volatile int pending; - - /** - * Creates a new CountedCompleter with the given completer - * and initial pending count. - * - * @param completer this task's completer, or {@code null} if none - * @param initialPendingCount the initial pending count - */ - protected CountedCompleter(CountedCompleter completer, - int initialPendingCount) { - this.completer = completer; - this.pending = initialPendingCount; - } - - /** - * Creates a new CountedCompleter with the given completer - * and an initial pending count of zero. - * - * @param completer this task's completer, or {@code null} if none - */ - protected CountedCompleter(CountedCompleter completer) { - this.completer = completer; - } - - /** - * Creates a new CountedCompleter with no completer - * and an initial pending count of zero. - */ - protected CountedCompleter() { - this.completer = null; - } - - /** - * The main computation performed by this task. - */ - public abstract void compute(); - - /** - * Performs an action when method {@link #tryComplete} is invoked - * and the pending count is zero, or when the unconditional - * method {@link #complete} is invoked. By default, this method - * does nothing. You can distinguish cases by checking the - * identity of the given caller argument. If not equal to {@code - * this}, then it is typically a subtask that may contain results - * (and/or links to other results) to combine. - * - * @param caller the task invoking this method (which may - * be this task itself) - */ - public void onCompletion(CountedCompleter caller) { - } - - /** - * Performs an action when method {@link - * #completeExceptionally(Throwable)} is invoked or method {@link - * #compute} throws an exception, and this task has not already - * otherwise completed normally. On entry to this method, this task - * {@link ForkJoinTask#isCompletedAbnormally}. The return value - * of this method controls further propagation: If {@code true} - * and this task has a completer that has not completed, then that - * completer is also completed exceptionally, with the same - * exception as this completer. The default implementation of - * this method does nothing except return {@code true}. - * - * @param ex the exception - * @param caller the task invoking this method (which may - * be this task itself) - * @return {@code true} if this exception should be propagated to this - * task's completer, if one exists - */ - public boolean onExceptionalCompletion(Throwable ex, CountedCompleter caller) { - return true; - } - - /** - * Returns the completer established in this task's constructor, - * or {@code null} if none. - * - * @return the completer - */ - public final CountedCompleter getCompleter() { - return completer; - } - - /** - * Returns the current pending count. - * - * @return the current pending count - */ - public final int getPendingCount() { - return pending; - } - - /** - * Sets the pending count to the given value. - * - * @param count the count - */ - public final void setPendingCount(int count) { - pending = count; - } - - /** - * Adds (atomically) the given value to the pending count. - * - * @param delta the value to add - */ - public final void addToPendingCount(int delta) { - int c; - do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta)); - } - - /** - * Sets (atomically) the pending count to the given count only if - * it currently holds the given expected value. - * - * @param expected the expected value - * @param count the new value - * @return {@code true} if successful - */ - public final boolean compareAndSetPendingCount(int expected, int count) { - return U.compareAndSwapInt(this, PENDING, expected, count); - } - - /** - * If the pending count is nonzero, (atomically) decrements it. - * - * @return the initial (undecremented) pending count holding on entry - * to this method - */ - public final int decrementPendingCountUnlessZero() { - int c; - do {} while ((c = pending) != 0 && - !U.compareAndSwapInt(this, PENDING, c, c - 1)); - return c; - } - - /** - * Returns the root of the current computation; i.e., this - * task if it has no completer, else its completer's root. - * - * @return the root of the current computation - */ - public final CountedCompleter getRoot() { - CountedCompleter a = this, p; - while ((p = a.completer) != null) - a = p; - return a; - } - - /** - * If the pending count is nonzero, decrements the count; - * otherwise invokes {@link #onCompletion(CountedCompleter)} - * and then similarly tries to complete this task's completer, - * if one exists, else marks this task as complete. - */ - public final void tryComplete() { - CountedCompleter a = this, s = a; - for (int c;;) { - if ((c = a.pending) == 0) { - a.onCompletion(s); - if ((a = (s = a).completer) == null) { - s.quietlyComplete(); - return; - } - } - else if (U.compareAndSwapInt(a, PENDING, c, c - 1)) - return; - } - } - - /** - * Equivalent to {@link #tryComplete} but does not invoke {@link - * #onCompletion(CountedCompleter)} along the completion path: - * If the pending count is nonzero, decrements the count; - * otherwise, similarly tries to complete this task's completer, if - * one exists, else marks this task as complete. This method may be - * useful in cases where {@code onCompletion} should not, or need - * not, be invoked for each completer in a computation. - */ - public final void propagateCompletion() { - CountedCompleter a = this, s = a; - for (int c;;) { - if ((c = a.pending) == 0) { - if ((a = (s = a).completer) == null) { - s.quietlyComplete(); - return; - } - } - else if (U.compareAndSwapInt(a, PENDING, c, c - 1)) - return; - } - } - - /** - * Regardless of pending count, invokes - * {@link #onCompletion(CountedCompleter)}, marks this task as - * complete and further triggers {@link #tryComplete} on this - * task's completer, if one exists. The given rawResult is - * used as an argument to {@link #setRawResult} before invoking - * {@link #onCompletion(CountedCompleter)} or marking this task - * as complete; its value is meaningful only for classes - * overriding {@code setRawResult}. This method does not modify - * the pending count. - * - *

This method may be useful when forcing completion as soon as - * any one (versus all) of several subtask results are obtained. - * However, in the common (and recommended) case in which {@code - * setRawResult} is not overridden, this effect can be obtained - * more simply using {@code quietlyCompleteRoot();}. - * - * @param rawResult the raw result - */ - public void complete(T rawResult) { - CountedCompleter p; - setRawResult(rawResult); - onCompletion(this); - quietlyComplete(); - if ((p = completer) != null) - p.tryComplete(); - } - - - /** - * If this task's pending count is zero, returns this task; - * otherwise decrements its pending count and returns {@code - * null}. This method is designed to be used with {@link - * #nextComplete} in completion traversal loops. - * - * @return this task, if pending count was zero, else {@code null} - */ - public final CountedCompleter firstComplete() { - for (int c;;) { - if ((c = pending) == 0) - return this; - else if (U.compareAndSwapInt(this, PENDING, c, c - 1)) - return null; - } - } - - /** - * If this task does not have a completer, invokes {@link - * ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if - * the completer's pending count is non-zero, decrements that - * pending count and returns {@code null}. Otherwise, returns the - * completer. This method can be used as part of a completion - * traversal loop for homogeneous task hierarchies: - * - *

 {@code
-     * for (CountedCompleter c = firstComplete();
-     *      c != null;
-     *      c = c.nextComplete()) {
-     *   // ... process c ...
-     * }}
- * - * @return the completer, or {@code null} if none - */ - public final CountedCompleter nextComplete() { - CountedCompleter p; - if ((p = completer) != null) - return p.firstComplete(); - else { - quietlyComplete(); - return null; - } - } - - /** - * Equivalent to {@code getRoot().quietlyComplete()}. - */ - public final void quietlyCompleteRoot() { - for (CountedCompleter a = this, p;;) { - if ((p = a.completer) == null) { - a.quietlyComplete(); - return; - } - a = p; - } - } - - /** - * Supports ForkJoinTask exception propagation. - */ - void internalPropagateException(Throwable ex) { - CountedCompleter a = this, s = a; - while (a.onExceptionalCompletion(ex, s) && - (a = (s = a).completer) != null && a.status >= 0 && - a.recordExceptionalCompletion(ex) == EXCEPTIONAL) - ; - } - - /** - * Implements execution conventions for CountedCompleters. - */ - protected final boolean exec() { - compute(); - return false; - } - - /** - * Returns the result of the computation. By default, - * returns {@code null}, which is appropriate for {@code Void} - * actions, but in other cases should be overridden, almost - * always to return a field or function of a field that - * holds the result upon completion. - * - * @return the result of the computation - */ - public T getRawResult() { return null; } - - /** - * A method that result-bearing CountedCompleters may optionally - * use to help maintain result data. By default, does nothing. - * Overrides are not recommended. However, if this method is - * overridden to update existing objects or fields, then it must - * in general be defined to be thread-safe. - */ - protected void setRawResult(T t) { } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long PENDING; - static { - try { - U = getUnsafe(); - PENDING = U.objectFieldOffset - (CountedCompleter.class.getDeclaredField("pending")); - } catch (Exception e) { - throw new Error(e); - } - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - try { - return sun.misc.Unsafe.getUnsafe(); - } catch (SecurityException tryReflectionInstead) {} - try { - return java.security.AccessController.doPrivileged - (new java.security.PrivilegedExceptionAction() { - public sun.misc.Unsafe run() throws Exception { - Class k = sun.misc.Unsafe.class; - for (java.lang.reflect.Field f : k.getDeclaredFields()) { - f.setAccessible(true); - Object x = f.get(null); - if (k.isInstance(x)) - return k.cast(x); - } - throw new NoSuchFieldError("the Unsafe"); - }}); - } catch (java.security.PrivilegedActionException e) { - throw new RuntimeException("Could not initialize intrinsics", - e.getCause()); - } - } -} - diff --git a/src/main/java/jsr166e/ForkJoinPool.java b/src/main/java/jsr166e/ForkJoinPool.java deleted file mode 100644 index be1c18cbce6..00000000000 --- a/src/main/java/jsr166e/ForkJoinPool.java +++ /dev/null @@ -1,3345 +0,0 @@ -// Rev 1.64 from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ForkJoinPool.java?view=co - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - -import java.lang.Thread.UncaughtExceptionHandler; -import java.util.ArrayList; -import java.util.Arrays; -import java.util.Collection; -import java.util.Collections; -import java.util.List; -import java.util.concurrent.AbstractExecutorService; -import java.util.concurrent.Callable; -import java.util.concurrent.ExecutorService; -import java.util.concurrent.Future; -import java.util.concurrent.RejectedExecutionException; -import java.util.concurrent.RunnableFuture; -import java.util.concurrent.TimeUnit; - -/** - * An {@link ExecutorService} for running {@link ForkJoinTask}s. - * A {@code ForkJoinPool} provides the entry point for submissions - * from non-{@code ForkJoinTask} clients, as well as management and - * monitoring operations. - * - *

A {@code ForkJoinPool} differs from other kinds of {@link - * ExecutorService} mainly by virtue of employing - * work-stealing: all threads in the pool attempt to find and - * execute tasks submitted to the pool and/or created by other active - * tasks (eventually blocking waiting for work if none exist). This - * enables efficient processing when most tasks spawn other subtasks - * (as do most {@code ForkJoinTask}s), as well as when many small - * tasks are submitted to the pool from external clients. Especially - * when setting asyncMode to true in constructors, {@code - * ForkJoinPool}s may also be appropriate for use with event-style - * tasks that are never joined. - * - *

A static {@link #commonPool()} is available and appropriate for - * most applications. The common pool is used by any ForkJoinTask that - * is not explicitly submitted to a specified pool. Using the common - * pool normally reduces resource usage (its threads are slowly - * reclaimed during periods of non-use, and reinstated upon subsequent - * use). - * - *

For applications that require separate or custom pools, a {@code - * ForkJoinPool} may be constructed with a given target parallelism - * level; by default, equal to the number of available processors. The - * pool attempts to maintain enough active (or available) threads by - * dynamically adding, suspending, or resuming internal worker - * threads, even if some tasks are stalled waiting to join others. - * However, no such adjustments are guaranteed in the face of blocked - * I/O or other unmanaged synchronization. The nested {@link - * ManagedBlocker} interface enables extension of the kinds of - * synchronization accommodated. - * - *

In addition to execution and lifecycle control methods, this - * class provides status check methods (for example - * {@link #getStealCount}) that are intended to aid in developing, - * tuning, and monitoring fork/join applications. Also, method - * {@link #toString} returns indications of pool state in a - * convenient form for informal monitoring. - * - *

As is the case with other ExecutorServices, there are three - * main task execution methods summarized in the following table. - * These are designed to be used primarily by clients not already - * engaged in fork/join computations in the current pool. The main - * forms of these methods accept instances of {@code ForkJoinTask}, - * but overloaded forms also allow mixed execution of plain {@code - * Runnable}- or {@code Callable}- based activities as well. However, - * tasks that are already executing in a pool should normally instead - * use the within-computation forms listed in the table unless using - * async event-style tasks that are not usually joined, in which case - * there is little difference among choice of methods. - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - *
Summary of task execution methods
Call from non-fork/join clients Call from within fork/join computations
Arrange async execution {@link #execute(ForkJoinTask)} {@link ForkJoinTask#fork}
Await and obtain result {@link #invoke(ForkJoinTask)} {@link ForkJoinTask#invoke}
Arrange exec and obtain Future {@link #submit(ForkJoinTask)} {@link ForkJoinTask#fork} (ForkJoinTasks are Futures)
- * - *

The common pool is by default constructed with default - * parameters, but these may be controlled by setting three - * {@linkplain System#getProperty system properties}: - *

    - *
  • {@code java.util.concurrent.ForkJoinPool.common.parallelism} - * - the parallelism level, a non-negative integer - *
  • {@code java.util.concurrent.ForkJoinPool.common.threadFactory} - * - the class name of a {@link ForkJoinWorkerThreadFactory} - *
  • {@code java.util.concurrent.ForkJoinPool.common.exceptionHandler} - * - the class name of a {@link UncaughtExceptionHandler} - *
- * The system class loader is used to load these classes. - * Upon any error in establishing these settings, default parameters - * are used. It is possible to disable or limit the use of threads in - * the common pool by setting the parallelism property to zero, and/or - * using a factory that may return {@code null}. - * - *

Implementation notes: This implementation restricts the - * maximum number of running threads to 32767. Attempts to create - * pools with greater than the maximum number result in - * {@code IllegalArgumentException}. - * - *

This implementation rejects submitted tasks (that is, by throwing - * {@link RejectedExecutionException}) only when the pool is shut down - * or internal resources have been exhausted. - * - * @since 1.7 - * @author Doug Lea - */ -public class ForkJoinPool extends AbstractExecutorService { - - /* - * Implementation Overview - * - * This class and its nested classes provide the main - * functionality and control for a set of worker threads: - * Submissions from non-FJ threads enter into submission queues. - * Workers take these tasks and typically split them into subtasks - * that may be stolen by other workers. Preference rules give - * first priority to processing tasks from their own queues (LIFO - * or FIFO, depending on mode), then to randomized FIFO steals of - * tasks in other queues. - * - * WorkQueues - * ========== - * - * Most operations occur within work-stealing queues (in nested - * class WorkQueue). These are special forms of Deques that - * support only three of the four possible end-operations -- push, - * pop, and poll (aka steal), under the further constraints that - * push and pop are called only from the owning thread (or, as - * extended here, under a lock), while poll may be called from - * other threads. (If you are unfamiliar with them, you probably - * want to read Herlihy and Shavit's book "The Art of - * Multiprocessor programming", chapter 16 describing these in - * more detail before proceeding.) The main work-stealing queue - * design is roughly similar to those in the papers "Dynamic - * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005 - * (http://research.sun.com/scalable/pubs/index.html) and - * "Idempotent work stealing" by Michael, Saraswat, and Vechev, - * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). - * See also "Correct and Efficient Work-Stealing for Weak Memory - * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013 - * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an - * analysis of memory ordering (atomic, volatile etc) issues. The - * main differences ultimately stem from GC requirements that we - * null out taken slots as soon as we can, to maintain as small a - * footprint as possible even in programs generating huge numbers - * of tasks. To accomplish this, we shift the CAS arbitrating pop - * vs poll (steal) from being on the indices ("base" and "top") to - * the slots themselves. So, both a successful pop and poll - * mainly entail a CAS of a slot from non-null to null. Because - * we rely on CASes of references, we do not need tag bits on base - * or top. They are simple ints as used in any circular - * array-based queue (see for example ArrayDeque). Updates to the - * indices must still be ordered in a way that guarantees that top - * == base means the queue is empty, but otherwise may err on the - * side of possibly making the queue appear nonempty when a push, - * pop, or poll have not fully committed. Note that this means - * that the poll operation, considered individually, is not - * wait-free. One thief cannot successfully continue until another - * in-progress one (or, if previously empty, a push) completes. - * However, in the aggregate, we ensure at least probabilistic - * non-blockingness. If an attempted steal fails, a thief always - * chooses a different random victim target to try next. So, in - * order for one thief to progress, it suffices for any - * in-progress poll or new push on any empty queue to - * complete. (This is why we normally use method pollAt and its - * variants that try once at the apparent base index, else - * consider alternative actions, rather than method poll.) - * - * This approach also enables support of a user mode in which local - * task processing is in FIFO, not LIFO order, simply by using - * poll rather than pop. This can be useful in message-passing - * frameworks in which tasks are never joined. However neither - * mode considers affinities, loads, cache localities, etc, so - * rarely provide the best possible performance on a given - * machine, but portably provide good throughput by averaging over - * these factors. (Further, even if we did try to use such - * information, we do not usually have a basis for exploiting it. - * For example, some sets of tasks profit from cache affinities, - * but others are harmed by cache pollution effects.) - * - * WorkQueues are also used in a similar way for tasks submitted - * to the pool. We cannot mix these tasks in the same queues used - * for work-stealing (this would contaminate lifo/fifo - * processing). Instead, we randomly associate submission queues - * with submitting threads, using a form of hashing. The - * Submitter probe value serves as a hash code for - * choosing existing queues, and may be randomly repositioned upon - * contention with other submitters. In essence, submitters act - * like workers except that they are restricted to executing local - * tasks that they submitted (or in the case of CountedCompleters, - * others with the same root task). However, because most - * shared/external queue operations are more expensive than - * internal, and because, at steady state, external submitters - * will compete for CPU with workers, ForkJoinTask.join and - * related methods disable them from repeatedly helping to process - * tasks if all workers are active. Insertion of tasks in shared - * mode requires a lock (mainly to protect in the case of - * resizing) but we use only a simple spinlock (using bits in - * field qlock), because submitters encountering a busy queue move - * on to try or create other queues -- they block only when - * creating and registering new queues. - * - * Management - * ========== - * - * The main throughput advantages of work-stealing stem from - * decentralized control -- workers mostly take tasks from - * themselves or each other. We cannot negate this in the - * implementation of other management responsibilities. The main - * tactic for avoiding bottlenecks is packing nearly all - * essentially atomic control state into two volatile variables - * that are by far most often read (not written) as status and - * consistency checks. - * - * Field "ctl" contains 64 bits holding all the information needed - * to atomically decide to add, inactivate, enqueue (on an event - * queue), dequeue, and/or re-activate workers. To enable this - * packing, we restrict maximum parallelism to (1<<15)-1 (which is - * far in excess of normal operating range) to allow ids, counts, - * and their negations (used for thresholding) to fit into 16bit - * fields. - * - * Field "plock" is a form of sequence lock with a saturating - * shutdown bit (similarly for per-queue "qlocks"), mainly - * protecting updates to the workQueues array, as well as to - * enable shutdown. When used as a lock, it is normally only very - * briefly held, so is nearly always available after at most a - * brief spin, but we use a monitor-based backup strategy to - * block when needed. - * - * Recording WorkQueues. WorkQueues are recorded in the - * "workQueues" array that is created upon first use and expanded - * if necessary. Updates to the array while recording new workers - * and unrecording terminated ones are protected from each other - * by a lock but the array is otherwise concurrently readable, and - * accessed directly. To simplify index-based operations, the - * array size is always a power of two, and all readers must - * tolerate null slots. Worker queues are at odd indices. Shared - * (submission) queues are at even indices, up to a maximum of 64 - * slots, to limit growth even if array needs to expand to add - * more workers. Grouping them together in this way simplifies and - * speeds up task scanning. - * - * All worker thread creation is on-demand, triggered by task - * submissions, replacement of terminated workers, and/or - * compensation for blocked workers. However, all other support - * code is set up to work with other policies. To ensure that we - * do not hold on to worker references that would prevent GC, ALL - * accesses to workQueues are via indices into the workQueues - * array (which is one source of some of the messy code - * constructions here). In essence, the workQueues array serves as - * a weak reference mechanism. Thus for example the wait queue - * field of ctl stores indices, not references. Access to the - * workQueues in associated methods (for example signalWork) must - * both index-check and null-check the IDs. All such accesses - * ignore bad IDs by returning out early from what they are doing, - * since this can only be associated with termination, in which - * case it is OK to give up. All uses of the workQueues array - * also check that it is non-null (even if previously - * non-null). This allows nulling during termination, which is - * currently not necessary, but remains an option for - * resource-revocation-based shutdown schemes. It also helps - * reduce JIT issuance of uncommon-trap code, which tends to - * unnecessarily complicate control flow in some methods. - * - * Event Queuing. Unlike HPC work-stealing frameworks, we cannot - * let workers spin indefinitely scanning for tasks when none can - * be found immediately, and we cannot start/resume workers unless - * there appear to be tasks available. On the other hand, we must - * quickly prod them into action when new tasks are submitted or - * generated. In many usages, ramp-up time to activate workers is - * the main limiting factor in overall performance (this is - * compounded at program start-up by JIT compilation and - * allocation). So we try to streamline this as much as possible. - * We park/unpark workers after placing in an event wait queue - * when they cannot find work. This "queue" is actually a simple - * Treiber stack, headed by the "id" field of ctl, plus a 15bit - * counter value (that reflects the number of times a worker has - * been inactivated) to avoid ABA effects (we need only as many - * version numbers as worker threads). Successors are held in - * field WorkQueue.nextWait. Queuing deals with several intrinsic - * races, mainly that a task-producing thread can miss seeing (and - * signalling) another thread that gave up looking for work but - * has not yet entered the wait queue. We solve this by requiring - * a full sweep of all workers (via repeated calls to method - * scan()) both before and after a newly waiting worker is added - * to the wait queue. Because enqueued workers may actually be - * rescanning rather than waiting, we set and clear the "parker" - * field of WorkQueues to reduce unnecessary calls to unpark. - * (This requires a secondary recheck to avoid missed signals.) - * Note the unusual conventions about Thread.interrupts - * surrounding parking and other blocking: Because interrupts are - * used solely to alert threads to check termination, which is - * checked anyway upon blocking, we clear status (using - * Thread.interrupted) before any call to park, so that park does - * not immediately return due to status being set via some other - * unrelated call to interrupt in user code. - * - * Signalling. We create or wake up workers only when there - * appears to be at least one task they might be able to find and - * execute. When a submission is added or another worker adds a - * task to a queue that has fewer than two tasks, they signal - * waiting workers (or trigger creation of new ones if fewer than - * the given parallelism level -- signalWork). These primary - * signals are buttressed by others whenever other threads remove - * a task from a queue and notice that there are other tasks there - * as well. So in general, pools will be over-signalled. On most - * platforms, signalling (unpark) overhead time is noticeably - * long, and the time between signalling a thread and it actually - * making progress can be very noticeably long, so it is worth - * offloading these delays from critical paths as much as - * possible. Additionally, workers spin-down gradually, by staying - * alive so long as they see the ctl state changing. Similar - * stability-sensing techniques are also used before blocking in - * awaitJoin and helpComplete. - * - * Trimming workers. To release resources after periods of lack of - * use, a worker starting to wait when the pool is quiescent will - * time out and terminate if the pool has remained quiescent for a - * given period -- a short period if there are more threads than - * parallelism, longer as the number of threads decreases. This - * will slowly propagate, eventually terminating all workers after - * periods of non-use. - * - * Shutdown and Termination. A call to shutdownNow atomically sets - * a plock bit and then (non-atomically) sets each worker's - * qlock status, cancels all unprocessed tasks, and wakes up - * all waiting workers. Detecting whether termination should - * commence after a non-abrupt shutdown() call requires more work - * and bookkeeping. We need consensus about quiescence (i.e., that - * there is no more work). The active count provides a primary - * indication but non-abrupt shutdown still requires a rechecking - * scan for any workers that are inactive but not queued. - * - * Joining Tasks - * ============= - * - * Any of several actions may be taken when one worker is waiting - * to join a task stolen (or always held) by another. Because we - * are multiplexing many tasks on to a pool of workers, we can't - * just let them block (as in Thread.join). We also cannot just - * reassign the joiner's run-time stack with another and replace - * it later, which would be a form of "continuation", that even if - * possible is not necessarily a good idea since we sometimes need - * both an unblocked task and its continuation to progress. - * Instead we combine two tactics: - * - * Helping: Arranging for the joiner to execute some task that it - * would be running if the steal had not occurred. - * - * Compensating: Unless there are already enough live threads, - * method tryCompensate() may create or re-activate a spare - * thread to compensate for blocked joiners until they unblock. - * - * A third form (implemented in tryRemoveAndExec) amounts to - * helping a hypothetical compensator: If we can readily tell that - * a possible action of a compensator is to steal and execute the - * task being joined, the joining thread can do so directly, - * without the need for a compensation thread (although at the - * expense of larger run-time stacks, but the tradeoff is - * typically worthwhile). - * - * The ManagedBlocker extension API can't use helping so relies - * only on compensation in method awaitBlocker. - * - * The algorithm in tryHelpStealer entails a form of "linear" - * helping: Each worker records (in field currentSteal) the most - * recent task it stole from some other worker. Plus, it records - * (in field currentJoin) the task it is currently actively - * joining. Method tryHelpStealer uses these markers to try to - * find a worker to help (i.e., steal back a task from and execute - * it) that could hasten completion of the actively joined task. - * In essence, the joiner executes a task that would be on its own - * local deque had the to-be-joined task not been stolen. This may - * be seen as a conservative variant of the approach in Wagner & - * Calder "Leapfrogging: a portable technique for implementing - * efficient futures" SIGPLAN Notices, 1993 - * (http://portal.acm.org/citation.cfm?id=155354). It differs in - * that: (1) We only maintain dependency links across workers upon - * steals, rather than use per-task bookkeeping. This sometimes - * requires a linear scan of workQueues array to locate stealers, - * but often doesn't because stealers leave hints (that may become - * stale/wrong) of where to locate them. It is only a hint - * because a worker might have had multiple steals and the hint - * records only one of them (usually the most current). Hinting - * isolates cost to when it is needed, rather than adding to - * per-task overhead. (2) It is "shallow", ignoring nesting and - * potentially cyclic mutual steals. (3) It is intentionally - * racy: field currentJoin is updated only while actively joining, - * which means that we miss links in the chain during long-lived - * tasks, GC stalls etc (which is OK since blocking in such cases - * is usually a good idea). (4) We bound the number of attempts - * to find work (see MAX_HELP) and fall back to suspending the - * worker and if necessary replacing it with another. - * - * Helping actions for CountedCompleters are much simpler: Method - * helpComplete can take and execute any task with the same root - * as the task being waited on. However, this still entails some - * traversal of completer chains, so is less efficient than using - * CountedCompleters without explicit joins. - * - * It is impossible to keep exactly the target parallelism number - * of threads running at any given time. Determining the - * existence of conservatively safe helping targets, the - * availability of already-created spares, and the apparent need - * to create new spares are all racy, so we rely on multiple - * retries of each. Compensation in the apparent absence of - * helping opportunities is challenging to control on JVMs, where - * GC and other activities can stall progress of tasks that in - * turn stall out many other dependent tasks, without us being - * able to determine whether they will ever require compensation. - * Even though work-stealing otherwise encounters little - * degradation in the presence of more threads than cores, - * aggressively adding new threads in such cases entails risk of - * unwanted positive feedback control loops in which more threads - * cause more dependent stalls (as well as delayed progress of - * unblocked threads to the point that we know they are available) - * leading to more situations requiring more threads, and so - * on. This aspect of control can be seen as an (analytically - * intractable) game with an opponent that may choose the worst - * (for us) active thread to stall at any time. We take several - * precautions to bound losses (and thus bound gains), mainly in - * methods tryCompensate and awaitJoin. - * - * Common Pool - * =========== - * - * The static common pool always exists after static - * initialization. Since it (or any other created pool) need - * never be used, we minimize initial construction overhead and - * footprint to the setup of about a dozen fields, with no nested - * allocation. Most bootstrapping occurs within method - * fullExternalPush during the first submission to the pool. - * - * When external threads submit to the common pool, they can - * perform subtask processing (see externalHelpJoin and related - * methods). This caller-helps policy makes it sensible to set - * common pool parallelism level to one (or more) less than the - * total number of available cores, or even zero for pure - * caller-runs. We do not need to record whether external - * submissions are to the common pool -- if not, externalHelpJoin - * returns quickly (at the most helping to signal some common pool - * workers). These submitters would otherwise be blocked waiting - * for completion, so the extra effort (with liberally sprinkled - * task status checks) in inapplicable cases amounts to an odd - * form of limited spin-wait before blocking in ForkJoinTask.join. - * - * Style notes - * =========== - * - * There is a lot of representation-level coupling among classes - * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The - * fields of WorkQueue maintain data structures managed by - * ForkJoinPool, so are directly accessed. There is little point - * trying to reduce this, since any associated future changes in - * representations will need to be accompanied by algorithmic - * changes anyway. Several methods intrinsically sprawl because - * they must accumulate sets of consistent reads of volatiles held - * in local variables. Methods signalWork() and scan() are the - * main bottlenecks, so are especially heavily - * micro-optimized/mangled. There are lots of inline assignments - * (of form "while ((local = field) != 0)") which are usually the - * simplest way to ensure the required read orderings (which are - * sometimes critical). This leads to a "C"-like style of listing - * declarations of these locals at the heads of methods or blocks. - * There are several occurrences of the unusual "do {} while - * (!cas...)" which is the simplest way to force an update of a - * CAS'ed variable. There are also other coding oddities (including - * several unnecessary-looking hoisted null checks) that help - * some methods perform reasonably even when interpreted (not - * compiled). - * - * The order of declarations in this file is: - * (1) Static utility functions - * (2) Nested (static) classes - * (3) Static fields - * (4) Fields, along with constants used when unpacking some of them - * (5) Internal control methods - * (6) Callbacks and other support for ForkJoinTask methods - * (7) Exported methods - * (8) Static block initializing statics in minimally dependent order - */ - - // Static utilities - - /** - * If there is a security manager, makes sure caller has - * permission to modify threads. - */ - private static void checkPermission() { - SecurityManager security = System.getSecurityManager(); - if (security != null) - security.checkPermission(modifyThreadPermission); - } - - // Nested classes - - /** - * Factory for creating new {@link ForkJoinWorkerThread}s. - * A {@code ForkJoinWorkerThreadFactory} must be defined and used - * for {@code ForkJoinWorkerThread} subclasses that extend base - * functionality or initialize threads with different contexts. - */ - public static interface ForkJoinWorkerThreadFactory { - /** - * Returns a new worker thread operating in the given pool. - * - * @param pool the pool this thread works in - * @return the new worker thread - * @throws NullPointerException if the pool is null - */ - public ForkJoinWorkerThread newThread(ForkJoinPool pool); - } - - /** - * Default ForkJoinWorkerThreadFactory implementation; creates a - * new ForkJoinWorkerThread. - */ - static final class DefaultForkJoinWorkerThreadFactory - implements ForkJoinWorkerThreadFactory { - public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { - return new ForkJoinWorkerThread(pool); - } - } - - /** - * Class for artificial tasks that are used to replace the target - * of local joins if they are removed from an interior queue slot - * in WorkQueue.tryRemoveAndExec. We don't need the proxy to - * actually do anything beyond having a unique identity. - */ - static final class EmptyTask extends ForkJoinTask { - private static final long serialVersionUID = -7721805057305804111L; - EmptyTask() { status = ForkJoinTask.NORMAL; } // force done - public final Void getRawResult() { return null; } - public final void setRawResult(Void x) {} - public final boolean exec() { return true; } - } - - /** - * Queues supporting work-stealing as well as external task - * submission. See above for main rationale and algorithms. - * Implementation relies heavily on "Unsafe" intrinsics - * and selective use of "volatile": - * - * Field "base" is the index (mod array.length) of the least valid - * queue slot, which is always the next position to steal (poll) - * from if nonempty. Reads and writes require volatile orderings - * but not CAS, because updates are only performed after slot - * CASes. - * - * Field "top" is the index (mod array.length) of the next queue - * slot to push to or pop from. It is written only by owner thread - * for push, or under lock for external/shared push, and accessed - * by other threads only after reading (volatile) base. Both top - * and base are allowed to wrap around on overflow, but (top - - * base) (or more commonly -(base - top) to force volatile read of - * base before top) still estimates size. The lock ("qlock") is - * forced to -1 on termination, causing all further lock attempts - * to fail. (Note: we don't need CAS for termination state because - * upon pool shutdown, all shared-queues will stop being used - * anyway.) Nearly all lock bodies are set up so that exceptions - * within lock bodies are "impossible" (modulo JVM errors that - * would cause failure anyway.) - * - * The array slots are read and written using the emulation of - * volatiles/atomics provided by Unsafe. Insertions must in - * general use putOrderedObject as a form of releasing store to - * ensure that all writes to the task object are ordered before - * its publication in the queue. All removals entail a CAS to - * null. The array is always a power of two. To ensure safety of - * Unsafe array operations, all accesses perform explicit null - * checks and implicit bounds checks via power-of-two masking. - * - * In addition to basic queuing support, this class contains - * fields described elsewhere to control execution. It turns out - * to work better memory-layout-wise to include them in this class - * rather than a separate class. - * - * Performance on most platforms is very sensitive to placement of - * instances of both WorkQueues and their arrays -- we absolutely - * do not want multiple WorkQueue instances or multiple queue - * arrays sharing cache lines. (It would be best for queue objects - * and their arrays to share, but there is nothing available to - * help arrange that). The @Contended annotation alerts JVMs to - * try to keep instances apart. - */ - static final class WorkQueue { - /** - * Capacity of work-stealing queue array upon initialization. - * Must be a power of two; at least 4, but should be larger to - * reduce or eliminate cacheline sharing among queues. - * Currently, it is much larger, as a partial workaround for - * the fact that JVMs often place arrays in locations that - * share GC bookkeeping (especially cardmarks) such that - * per-write accesses encounter serious memory contention. - */ - static final int INITIAL_QUEUE_CAPACITY = 1 << 13; - - /** - * Maximum size for queue arrays. Must be a power of two less - * than or equal to 1 << (31 - width of array entry) to ensure - * lack of wraparound of index calculations, but defined to a - * value a bit less than this to help users trap runaway - * programs before saturating systems. - */ - static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M - - // Heuristic padding to ameliorate unfortunate memory placements - volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; - - volatile int eventCount; // encoded inactivation count; < 0 if inactive - int nextWait; // encoded record of next event waiter - int nsteals; // number of steals - int hint; // steal index hint - short poolIndex; // index of this queue in pool - final short mode; // 0: lifo, > 0: fifo, < 0: shared - volatile int qlock; // 1: locked, -1: terminate; else 0 - volatile int base; // index of next slot for poll - int top; // index of next slot for push - ForkJoinTask[] array; // the elements (initially unallocated) - final ForkJoinPool pool; // the containing pool (may be null) - final ForkJoinWorkerThread owner; // owning thread or null if shared - volatile Thread parker; // == owner during call to park; else null - volatile ForkJoinTask currentJoin; // task being joined in awaitJoin - ForkJoinTask currentSteal; // current non-local task being executed - - volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17; - volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d; - - WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode, - int seed) { - this.pool = pool; - this.owner = owner; - this.mode = (short)mode; - this.hint = seed; // store initial seed for runWorker - // Place indices in the center of array (that is not yet allocated) - base = top = INITIAL_QUEUE_CAPACITY >>> 1; - } - - /** - * Returns the approximate number of tasks in the queue. - */ - final int queueSize() { - int n = base - top; // non-owner callers must read base first - return (n >= 0) ? 0 : -n; // ignore transient negative - } - - /** - * Provides a more accurate estimate of whether this queue has - * any tasks than does queueSize, by checking whether a - * near-empty queue has at least one unclaimed task. - */ - final boolean isEmpty() { - ForkJoinTask[] a; int m, s; - int n = base - (s = top); - return (n >= 0 || - (n == -1 && - ((a = array) == null || - (m = a.length - 1) < 0 || - U.getObject - (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null))); - } - - /** - * Pushes a task. Call only by owner in unshared queues. (The - * shared-queue version is embedded in method externalPush.) - * - * @param task the task. Caller must ensure non-null. - * @throws RejectedExecutionException if array cannot be resized - */ - final void push(ForkJoinTask task) { - ForkJoinTask[] a; ForkJoinPool p; - int s = top, n; - if ((a = array) != null) { // ignore if queue removed - int m = a.length - 1; - U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task); - if ((n = (top = s + 1) - base) <= 2) - (p = pool).signalWork(p.workQueues, this); - else if (n >= m) - growArray(); - } - } - - /** - * Initializes or doubles the capacity of array. Call either - * by owner or with lock held -- it is OK for base, but not - * top, to move while resizings are in progress. - */ - final ForkJoinTask[] growArray() { - ForkJoinTask[] oldA = array; - int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY; - if (size > MAXIMUM_QUEUE_CAPACITY) - throw new RejectedExecutionException("Queue capacity exceeded"); - int oldMask, t, b; - ForkJoinTask[] a = array = new ForkJoinTask[size]; - if (oldA != null && (oldMask = oldA.length - 1) >= 0 && - (t = top) - (b = base) > 0) { - int mask = size - 1; - do { - ForkJoinTask x; - int oldj = ((b & oldMask) << ASHIFT) + ABASE; - int j = ((b & mask) << ASHIFT) + ABASE; - x = (ForkJoinTask)U.getObjectVolatile(oldA, oldj); - if (x != null && - U.compareAndSwapObject(oldA, oldj, x, null)) - U.putObjectVolatile(a, j, x); - } while (++b != t); - } - return a; - } - - /** - * Takes next task, if one exists, in LIFO order. Call only - * by owner in unshared queues. - */ - final ForkJoinTask pop() { - ForkJoinTask[] a; ForkJoinTask t; int m; - if ((a = array) != null && (m = a.length - 1) >= 0) { - for (int s; (s = top - 1) - base >= 0;) { - long j = ((m & s) << ASHIFT) + ABASE; - if ((t = (ForkJoinTask)U.getObject(a, j)) == null) - break; - if (U.compareAndSwapObject(a, j, t, null)) { - top = s; - return t; - } - } - } - return null; - } - - /** - * Takes a task in FIFO order if b is base of queue and a task - * can be claimed without contention. Specialized versions - * appear in ForkJoinPool methods scan and tryHelpStealer. - */ - final ForkJoinTask pollAt(int b) { - ForkJoinTask t; ForkJoinTask[] a; - if ((a = array) != null) { - int j = (((a.length - 1) & b) << ASHIFT) + ABASE; - if ((t = (ForkJoinTask)U.getObjectVolatile(a, j)) != null && - base == b && U.compareAndSwapObject(a, j, t, null)) { - U.putOrderedInt(this, QBASE, b + 1); - return t; - } - } - return null; - } - - /** - * Takes next task, if one exists, in FIFO order. - */ - final ForkJoinTask poll() { - ForkJoinTask[] a; int b; ForkJoinTask t; - while ((b = base) - top < 0 && (a = array) != null) { - int j = (((a.length - 1) & b) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObjectVolatile(a, j); - if (t != null) { - if (U.compareAndSwapObject(a, j, t, null)) { - U.putOrderedInt(this, QBASE, b + 1); - return t; - } - } - else if (base == b) { - if (b + 1 == top) - break; - Thread.yield(); // wait for lagging update (very rare) - } - } - return null; - } - - /** - * Takes next task, if one exists, in order specified by mode. - */ - final ForkJoinTask nextLocalTask() { - return mode == 0 ? pop() : poll(); - } - - /** - * Returns next task, if one exists, in order specified by mode. - */ - final ForkJoinTask peek() { - ForkJoinTask[] a = array; int m; - if (a == null || (m = a.length - 1) < 0) - return null; - int i = mode == 0 ? top - 1 : base; - int j = ((i & m) << ASHIFT) + ABASE; - return (ForkJoinTask)U.getObjectVolatile(a, j); - } - - /** - * Pops the given task only if it is at the current top. - * (A shared version is available only via FJP.tryExternalUnpush) - */ - final boolean tryUnpush(ForkJoinTask t) { - ForkJoinTask[] a; int s; - if ((a = array) != null && (s = top) != base && - U.compareAndSwapObject - (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) { - top = s; - return true; - } - return false; - } - - /** - * Removes and cancels all known tasks, ignoring any exceptions. - */ - final void cancelAll() { - ForkJoinTask.cancelIgnoringExceptions(currentJoin); - ForkJoinTask.cancelIgnoringExceptions(currentSteal); - for (ForkJoinTask t; (t = poll()) != null; ) - ForkJoinTask.cancelIgnoringExceptions(t); - } - - // Specialized execution methods - - /** - * Polls and runs tasks until empty. - */ - final void pollAndExecAll() { - for (ForkJoinTask t; (t = poll()) != null;) - t.doExec(); - } - - /** - * Executes a top-level task and any local tasks remaining - * after execution. - */ - final void runTask(ForkJoinTask task) { - if ((currentSteal = task) != null) { - task.doExec(); - ForkJoinTask[] a = array; - int md = mode; - ++nsteals; - currentSteal = null; - if (md != 0) - pollAndExecAll(); - else if (a != null) { - int s, m = a.length - 1; - while ((s = top - 1) - base >= 0) { - long i = ((m & s) << ASHIFT) + ABASE; - ForkJoinTask t = (ForkJoinTask)U.getObject(a, i); - if (t == null) - break; - if (U.compareAndSwapObject(a, i, t, null)) { - top = s; - t.doExec(); - } - } - } - } - } - - /** - * If present, removes from queue and executes the given task, - * or any other cancelled task. Returns (true) on any CAS - * or consistency check failure so caller can retry. - * - * @return false if no progress can be made, else true - */ - final boolean tryRemoveAndExec(ForkJoinTask task) { - boolean stat; - ForkJoinTask[] a; int m, s, b, n; - if (task != null && (a = array) != null && (m = a.length - 1) >= 0 && - (n = (s = top) - (b = base)) > 0) { - boolean removed = false, empty = true; - stat = true; - for (ForkJoinTask t;;) { // traverse from s to b - long j = ((--s & m) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObject(a, j); - if (t == null) // inconsistent length - break; - else if (t == task) { - if (s + 1 == top) { // pop - if (!U.compareAndSwapObject(a, j, task, null)) - break; - top = s; - removed = true; - } - else if (base == b) // replace with proxy - removed = U.compareAndSwapObject(a, j, task, - new EmptyTask()); - break; - } - else if (t.status >= 0) - empty = false; - else if (s + 1 == top) { // pop and throw away - if (U.compareAndSwapObject(a, j, t, null)) - top = s; - break; - } - if (--n == 0) { - if (!empty && base == b) - stat = false; - break; - } - } - if (removed) - task.doExec(); - } - else - stat = false; - return stat; - } - - /** - * Tries to poll for and execute the given task or any other - * task in its CountedCompleter computation. - */ - final boolean pollAndExecCC(CountedCompleter root) { - ForkJoinTask[] a; int b; Object o; CountedCompleter t, r; - if ((b = base) - top < 0 && (a = array) != null) { - long j = (((a.length - 1) & b) << ASHIFT) + ABASE; - if ((o = U.getObjectVolatile(a, j)) == null) - return true; // retry - if (o instanceof CountedCompleter) { - for (t = (CountedCompleter)o, r = t;;) { - if (r == root) { - if (base == b && - U.compareAndSwapObject(a, j, t, null)) { - U.putOrderedInt(this, QBASE, b + 1); - t.doExec(); - } - return true; - } - else if ((r = r.completer) == null) - break; // not part of root computation - } - } - } - return false; - } - - /** - * Tries to pop and execute the given task or any other task - * in its CountedCompleter computation. - */ - final boolean externalPopAndExecCC(CountedCompleter root) { - ForkJoinTask[] a; int s; Object o; CountedCompleter t, r; - if (base - (s = top) < 0 && (a = array) != null) { - long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; - if ((o = U.getObject(a, j)) instanceof CountedCompleter) { - for (t = (CountedCompleter)o, r = t;;) { - if (r == root) { - if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { - if (top == s && array == a && - U.compareAndSwapObject(a, j, t, null)) { - top = s - 1; - qlock = 0; - t.doExec(); - } - else - qlock = 0; - } - return true; - } - else if ((r = r.completer) == null) - break; - } - } - } - return false; - } - - /** - * Internal version - */ - final boolean internalPopAndExecCC(CountedCompleter root) { - ForkJoinTask[] a; int s; Object o; CountedCompleter t, r; - if (base - (s = top) < 0 && (a = array) != null) { - long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; - if ((o = U.getObject(a, j)) instanceof CountedCompleter) { - for (t = (CountedCompleter)o, r = t;;) { - if (r == root) { - if (U.compareAndSwapObject(a, j, t, null)) { - top = s - 1; - t.doExec(); - } - return true; - } - else if ((r = r.completer) == null) - break; - } - } - } - return false; - } - - /** - * Returns true if owned and not known to be blocked. - */ - final boolean isApparentlyUnblocked() { - Thread wt; Thread.State s; - return (eventCount >= 0 && - (wt = owner) != null && - (s = wt.getState()) != Thread.State.BLOCKED && - s != Thread.State.WAITING && - s != Thread.State.TIMED_WAITING); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long QBASE; - private static final long QLOCK; - private static final int ABASE; - private static final int ASHIFT; - static { - try { - U = getUnsafe(); - Class k = WorkQueue.class; - Class ak = ForkJoinTask[].class; - QBASE = U.objectFieldOffset - (k.getDeclaredField("base")); - QLOCK = U.objectFieldOffset - (k.getDeclaredField("qlock")); - ABASE = U.arrayBaseOffset(ak); - int scale = U.arrayIndexScale(ak); - if ((scale & (scale - 1)) != 0) - throw new Error("data type scale not a power of two"); - ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); - } catch (Exception e) { - throw new Error(e); - } - } - } - - // static fields (initialized in static initializer below) - - /** - * Per-thread submission bookkeeping. Shared across all pools - * to reduce ThreadLocal pollution and because random motion - * to avoid contention in one pool is likely to hold for others. - * Lazily initialized on first submission (but null-checked - * in other contexts to avoid unnecessary initialization). - */ - static final ThreadLocal submitters; - - /** - * Creates a new ForkJoinWorkerThread. This factory is used unless - * overridden in ForkJoinPool constructors. - */ - public static final ForkJoinWorkerThreadFactory - defaultForkJoinWorkerThreadFactory; - - /** - * Permission required for callers of methods that may start or - * kill threads. - */ - private static final RuntimePermission modifyThreadPermission; - - /** - * Common (static) pool. Non-null for public use unless a static - * construction exception, but internal usages null-check on use - * to paranoically avoid potential initialization circularities - * as well as to simplify generated code. - */ - static final ForkJoinPool common; - - /** - * Common pool parallelism. To allow simpler use and management - * when common pool threads are disabled, we allow the underlying - * common.parallelism field to be zero, but in that case still report - * parallelism as 1 to reflect resulting caller-runs mechanics. - */ - static final int commonParallelism; - - /** - * Sequence number for creating workerNamePrefix. - */ - private static int poolNumberSequence; - - /** - * Returns the next sequence number. We don't expect this to - * ever contend, so use simple builtin sync. - */ - private static final synchronized int nextPoolId() { - return ++poolNumberSequence; - } - - // static constants - - /** - * Initial timeout value (in nanoseconds) for the thread - * triggering quiescence to park waiting for new work. On timeout, - * the thread will instead try to shrink the number of - * workers. The value should be large enough to avoid overly - * aggressive shrinkage during most transient stalls (long GCs - * etc). - */ - private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec - - /** - * Timeout value when there are more threads than parallelism level - */ - private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L; - - /** - * Tolerance for idle timeouts, to cope with timer undershoots - */ - private static final long TIMEOUT_SLOP = 2000000L; - - /** - * The maximum stolen->joining link depth allowed in method - * tryHelpStealer. Must be a power of two. Depths for legitimate - * chains are unbounded, but we use a fixed constant to avoid - * (otherwise unchecked) cycles and to bound staleness of - * traversal parameters at the expense of sometimes blocking when - * we could be helping. - */ - private static final int MAX_HELP = 64; - - /** - * Increment for seed generators. See class ThreadLocal for - * explanation. - */ - private static final int SEED_INCREMENT = 0x61c88647; - - /* - * Bits and masks for control variables - * - * Field ctl is a long packed with: - * AC: Number of active running workers minus target parallelism (16 bits) - * TC: Number of total workers minus target parallelism (16 bits) - * ST: true if pool is terminating (1 bit) - * EC: the wait count of top waiting thread (15 bits) - * ID: poolIndex of top of Treiber stack of waiters (16 bits) - * - * When convenient, we can extract the upper 32 bits of counts and - * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e = - * (int)ctl. The ec field is never accessed alone, but always - * together with id and st. The offsets of counts by the target - * parallelism and the positionings of fields makes it possible to - * perform the most common checks via sign tests of fields: When - * ac is negative, there are not enough active workers, when tc is - * negative, there are not enough total workers, and when e is - * negative, the pool is terminating. To deal with these possibly - * negative fields, we use casts in and out of "short" and/or - * signed shifts to maintain signedness. - * - * When a thread is queued (inactivated), its eventCount field is - * set negative, which is the only way to tell if a worker is - * prevented from executing tasks, even though it must continue to - * scan for them to avoid queuing races. Note however that - * eventCount updates lag releases so usage requires care. - * - * Field plock is an int packed with: - * SHUTDOWN: true if shutdown is enabled (1 bit) - * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits) - * SIGNAL: set when threads may be waiting on the lock (1 bit) - * - * The sequence number enables simple consistency checks: - * Staleness of read-only operations on the workQueues array can - * be checked by comparing plock before vs after the reads. - */ - - // bit positions/shifts for fields - private static final int AC_SHIFT = 48; - private static final int TC_SHIFT = 32; - private static final int ST_SHIFT = 31; - private static final int EC_SHIFT = 16; - - // bounds - private static final int SMASK = 0xffff; // short bits - private static final int MAX_CAP = 0x7fff; // max #workers - 1 - private static final int EVENMASK = 0xfffe; // even short bits - private static final int SQMASK = 0x007e; // max 64 (even) slots - private static final int SHORT_SIGN = 1 << 15; - private static final int INT_SIGN = 1 << 31; - - // masks - private static final long STOP_BIT = 0x0001L << ST_SHIFT; - private static final long AC_MASK = ((long)SMASK) << AC_SHIFT; - private static final long TC_MASK = ((long)SMASK) << TC_SHIFT; - - // units for incrementing and decrementing - private static final long TC_UNIT = 1L << TC_SHIFT; - private static final long AC_UNIT = 1L << AC_SHIFT; - - // masks and units for dealing with u = (int)(ctl >>> 32) - private static final int UAC_SHIFT = AC_SHIFT - 32; - private static final int UTC_SHIFT = TC_SHIFT - 32; - private static final int UAC_MASK = SMASK << UAC_SHIFT; - private static final int UTC_MASK = SMASK << UTC_SHIFT; - private static final int UAC_UNIT = 1 << UAC_SHIFT; - private static final int UTC_UNIT = 1 << UTC_SHIFT; - - // masks and units for dealing with e = (int)ctl - private static final int E_MASK = 0x7fffffff; // no STOP_BIT - private static final int E_SEQ = 1 << EC_SHIFT; - - // plock bits - private static final int SHUTDOWN = 1 << 31; - private static final int PL_LOCK = 2; - private static final int PL_SIGNAL = 1; - private static final int PL_SPINS = 1 << 8; - - // access mode for WorkQueue - static final int LIFO_QUEUE = 0; - static final int FIFO_QUEUE = 1; - static final int SHARED_QUEUE = -1; - - // Heuristic padding to ameliorate unfortunate memory placements - volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; - - // Instance fields - volatile long stealCount; // collects worker counts - volatile long ctl; // main pool control - volatile int plock; // shutdown status and seqLock - volatile int indexSeed; // worker/submitter index seed - final short parallelism; // parallelism level - final short mode; // LIFO/FIFO - WorkQueue[] workQueues; // main registry - final ForkJoinWorkerThreadFactory factory; - final UncaughtExceptionHandler ueh; // per-worker UEH - final String workerNamePrefix; // to create worker name string - - volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17; - volatile Object pad18, pad19, pad1a, pad1b; - - /** - * Acquires the plock lock to protect worker array and related - * updates. This method is called only if an initial CAS on plock - * fails. This acts as a spinlock for normal cases, but falls back - * to builtin monitor to block when (rarely) needed. This would be - * a terrible idea for a highly contended lock, but works fine as - * a more conservative alternative to a pure spinlock. - */ - private int acquirePlock() { - int spins = PL_SPINS, ps, nps; - for (;;) { - if (((ps = plock) & PL_LOCK) == 0 && - U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK)) - return nps; - else if (spins >= 0) { - if (ThreadLocalRandom.current().nextInt() >= 0) - --spins; - } - else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) { - synchronized (this) { - if ((plock & PL_SIGNAL) != 0) { - try { - wait(); - } catch (InterruptedException ie) { - try { - Thread.currentThread().interrupt(); - } catch (SecurityException ignore) { - } - } - } - else - notifyAll(); - } - } - } - } - - /** - * Unlocks and signals any thread waiting for plock. Called only - * when CAS of seq value for unlock fails. - */ - private void releasePlock(int ps) { - plock = ps; - synchronized (this) { notifyAll(); } - } - - /** - * Tries to create and start one worker if fewer than target - * parallelism level exist. Adjusts counts etc on failure. - */ - private void tryAddWorker() { - long c; int u, e; - while ((u = (int)((c = ctl) >>> 32)) < 0 && - (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) { - long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) | - ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e; - if (U.compareAndSwapLong(this, CTL, c, nc)) { - ForkJoinWorkerThreadFactory fac; - Throwable ex = null; - ForkJoinWorkerThread wt = null; - try { - if ((fac = factory) != null && - (wt = fac.newThread(this)) != null) { - wt.start(); - break; - } - } catch (Throwable rex) { - ex = rex; - } - deregisterWorker(wt, ex); - break; - } - } - } - - // Registering and deregistering workers - - /** - * Callback from ForkJoinWorkerThread to establish and record its - * WorkQueue. To avoid scanning bias due to packing entries in - * front of the workQueues array, we treat the array as a simple - * power-of-two hash table using per-thread seed as hash, - * expanding as needed. - * - * @param wt the worker thread - * @return the worker's queue - */ - final WorkQueue registerWorker(ForkJoinWorkerThread wt) { - UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps; - wt.setDaemon(true); - if ((handler = ueh) != null) - wt.setUncaughtExceptionHandler(handler); - do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed, - s += SEED_INCREMENT) || - s == 0); // skip 0 - WorkQueue w = new WorkQueue(this, wt, mode, s); - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); - try { - if ((ws = workQueues) != null) { // skip if shutting down - int n = ws.length, m = n - 1; - int r = (s << 1) | 1; // use odd-numbered indices - if (ws[r &= m] != null) { // collision - int probes = 0; // step by approx half size - int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2; - while (ws[r = (r + step) & m] != null) { - if (++probes >= n) { - workQueues = ws = Arrays.copyOf(ws, n <<= 1); - m = n - 1; - probes = 0; - } - } - } - w.poolIndex = (short)r; - w.eventCount = r; // volatile write orders - ws[r] = w; - } - } finally { - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - } - wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1))); - return w; - } - - /** - * Final callback from terminating worker, as well as upon failure - * to construct or start a worker. Removes record of worker from - * array, and adjusts counts. If pool is shutting down, tries to - * complete termination. - * - * @param wt the worker thread, or null if construction failed - * @param ex the exception causing failure, or null if none - */ - final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { - WorkQueue w = null; - if (wt != null && (w = wt.workQueue) != null) { - int ps; long sc; - w.qlock = -1; // ensure set - do {} while (!U.compareAndSwapLong(this, STEALCOUNT, - sc = stealCount, - sc + w.nsteals)); - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); - try { - int idx = w.poolIndex; - WorkQueue[] ws = workQueues; - if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) - ws[idx] = null; - } finally { - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - } - } - - long c; // adjust ctl counts - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) | - ((c - TC_UNIT) & TC_MASK) | - (c & ~(AC_MASK|TC_MASK))))); - - if (!tryTerminate(false, false) && w != null && w.array != null) { - w.cancelAll(); // cancel remaining tasks - WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e; - while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) { - if (e > 0) { // activate or create replacement - if ((ws = workQueues) == null || - (i = e & SMASK) >= ws.length || - (v = ws[i]) == null) - break; - long nc = (((long)(v.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT) << 32)); - if (v.eventCount != (e | INT_SIGN)) - break; - if (U.compareAndSwapLong(this, CTL, c, nc)) { - v.eventCount = (e + E_SEQ) & E_MASK; - if ((p = v.parker) != null) - U.unpark(p); - break; - } - } - else { - if ((short)u < 0) - tryAddWorker(); - break; - } - } - } - if (ex == null) // help clean refs on way out - ForkJoinTask.helpExpungeStaleExceptions(); - else // rethrow - ForkJoinTask.rethrow(ex); - } - - // Submissions - - /** - * Per-thread records for threads that submit to pools. Currently - * holds only pseudo-random seed / index that is used to choose - * submission queues in method externalPush. In the future, this may - * also incorporate a means to implement different task rejection - * and resubmission policies. - * - * Seeds for submitters and workers/workQueues work in basically - * the same way but are initialized and updated using slightly - * different mechanics. Both are initialized using the same - * approach as in class ThreadLocal, where successive values are - * unlikely to collide with previous values. Seeds are then - * randomly modified upon collisions using xorshifts, which - * requires a non-zero seed. - */ - static final class Submitter { - int seed; - Submitter(int s) { seed = s; } - } - - /** - * Unless shutting down, adds the given task to a submission queue - * at submitter's current queue index (modulo submission - * range). Only the most common path is directly handled in this - * method. All others are relayed to fullExternalPush. - * - * @param task the task. Caller must ensure non-null. - */ - final void externalPush(ForkJoinTask task) { - Submitter z = submitters.get(); - WorkQueue q; int r, m, s, n, am; ForkJoinTask[] a; - int ps = plock; - WorkQueue[] ws = workQueues; - if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 && - (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 && - U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock - if ((a = q.array) != null && - (am = a.length - 1) > (n = (s = q.top) - q.base)) { - int j = ((am & s) << ASHIFT) + ABASE; - U.putOrderedObject(a, j, task); - q.top = s + 1; // push on to deque - q.qlock = 0; - if (n <= 1) - signalWork(ws, q); - return; - } - q.qlock = 0; - } - fullExternalPush(task); - } - - /** - * Full version of externalPush. This method is called, among - * other times, upon the first submission of the first task to the - * pool, so must perform secondary initialization. It also - * detects first submission by an external thread by looking up - * its ThreadLocal, and creates a new shared queue if the one at - * index if empty or contended. The plock lock body must be - * exception-free (so no try/finally) so we optimistically - * allocate new queues outside the lock and throw them away if - * (very rarely) not needed. - * - * Secondary initialization occurs when plock is zero, to create - * workQueue array and set plock to a valid value. This lock body - * must also be exception-free. Because the plock seq value can - * eventually wrap around zero, this method harmlessly fails to - * reinitialize if workQueues exists, while still advancing plock. - */ - private void fullExternalPush(ForkJoinTask task) { - int r = 0; // random index seed - for (Submitter z = submitters.get();;) { - WorkQueue[] ws; WorkQueue q; int ps, m, k; - if (z == null) { - if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed, - r += SEED_INCREMENT) && r != 0) - submitters.set(z = new Submitter(r)); - } - else if (r == 0) { // move to a different index - r = z.seed; - r ^= r << 13; // same xorshift as WorkQueues - r ^= r >>> 17; - z.seed = r ^= (r << 5); - } - if ((ps = plock) < 0) - throw new RejectedExecutionException(); - else if (ps == 0 || (ws = workQueues) == null || - (m = ws.length - 1) < 0) { // initialize workQueues - int p = parallelism; // find power of two table size - int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots - n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; - n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1; - WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ? - new WorkQueue[n] : null); - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - if (((ws = workQueues) == null || ws.length == 0) && nws != null) - workQueues = nws; - int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - } - else if ((q = ws[k = r & m & SQMASK]) != null) { - if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { - ForkJoinTask[] a = q.array; - int s = q.top; - boolean submitted = false; - try { // locked version of push - if ((a != null && a.length > s + 1 - q.base) || - (a = q.growArray()) != null) { // must presize - int j = (((a.length - 1) & s) << ASHIFT) + ABASE; - U.putOrderedObject(a, j, task); - q.top = s + 1; - submitted = true; - } - } finally { - q.qlock = 0; // unlock - } - if (submitted) { - signalWork(ws, q); - return; - } - } - r = 0; // move on failure - } - else if (((ps = plock) & PL_LOCK) == 0) { // create new queue - q = new WorkQueue(this, null, SHARED_QUEUE, r); - q.poolIndex = (short)k; - if (((ps = plock) & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - if ((ws = workQueues) != null && k < ws.length && ws[k] == null) - ws[k] = q; - int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - } - else - r = 0; - } - } - - // Maintaining ctl counts - - /** - * Increments active count; mainly called upon return from blocking. - */ - final void incrementActiveCount() { - long c; - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, ((c & ~AC_MASK) | - ((c & AC_MASK) + AC_UNIT)))); - } - - /** - * Tries to create or activate a worker if too few are active. - * - * @param ws the worker array to use to find signallees - * @param q if non-null, the queue holding tasks to be processed - */ - final void signalWork(WorkQueue[] ws, WorkQueue q) { - for (;;) { - long c; int e, u, i; WorkQueue w; Thread p; - if ((u = (int)((c = ctl) >>> 32)) >= 0) - break; - if ((e = (int)c) <= 0) { - if ((short)u < 0) - tryAddWorker(); - break; - } - if (ws == null || ws.length <= (i = e & SMASK) || - (w = ws[i]) == null) - break; - long nc = (((long)(w.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT)) << 32); - int ne = (e + E_SEQ) & E_MASK; - if (w.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = ne; - if ((p = w.parker) != null) - U.unpark(p); - break; - } - if (q != null && q.base >= q.top) - break; - } - } - - // Scanning for tasks - - /** - * Top-level runloop for workers, called by ForkJoinWorkerThread.run. - */ - final void runWorker(WorkQueue w) { - w.growArray(); // allocate queue - for (int r = w.hint; scan(w, r) == 0; ) { - r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift - } - } - - /** - * Scans for and, if found, runs one task, else possibly - * inactivates the worker. This method operates on single reads of - * volatile state and is designed to be re-invoked continuously, - * in part because it returns upon detecting inconsistencies, - * contention, or state changes that indicate possible success on - * re-invocation. - * - * The scan searches for tasks across queues starting at a random - * index, checking each at least twice. The scan terminates upon - * either finding a non-empty queue, or completing the sweep. If - * the worker is not inactivated, it takes and runs a task from - * this queue. Otherwise, if not activated, it tries to activate - * itself or some other worker by signalling. On failure to find a - * task, returns (for retry) if pool state may have changed during - * an empty scan, or tries to inactivate if active, else possibly - * blocks or terminates via method awaitWork. - * - * @param w the worker (via its WorkQueue) - * @param r a random seed - * @return worker qlock status if would have waited, else 0 - */ - private final int scan(WorkQueue w, int r) { - WorkQueue[] ws; int m; - long c = ctl; // for consistency check - if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) { - for (int j = m + m + 1, ec = w.eventCount;;) { - WorkQueue q; int b, e; ForkJoinTask[] a; ForkJoinTask t; - if ((q = ws[(r - j) & m]) != null && - (b = q.base) - q.top < 0 && (a = q.array) != null) { - long i = (((a.length - 1) & b) << ASHIFT) + ABASE; - if ((t = ((ForkJoinTask) - U.getObjectVolatile(a, i))) != null) { - if (ec < 0) - helpRelease(c, ws, w, q, b); - else if (q.base == b && - U.compareAndSwapObject(a, i, t, null)) { - U.putOrderedInt(q, QBASE, b + 1); - if ((b + 1) - q.top < 0) - signalWork(ws, q); - w.runTask(t); - } - } - break; - } - else if (--j < 0) { - if ((ec | (e = (int)c)) < 0) // inactive or terminating - return awaitWork(w, c, ec); - else if (ctl == c) { // try to inactivate and enqueue - long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)); - w.nextWait = e; - w.eventCount = ec | INT_SIGN; - if (!U.compareAndSwapLong(this, CTL, c, nc)) - w.eventCount = ec; // back out - } - break; - } - } - } - return 0; - } - - /** - * A continuation of scan(), possibly blocking or terminating - * worker w. Returns without blocking if pool state has apparently - * changed since last invocation. Also, if inactivating w has - * caused the pool to become quiescent, checks for pool - * termination, and, so long as this is not the only worker, waits - * for event for up to a given duration. On timeout, if ctl has - * not changed, terminates the worker, which will in turn wake up - * another worker to possibly repeat this process. - * - * @param w the calling worker - * @param c the ctl value on entry to scan - * @param ec the worker's eventCount on entry to scan - */ - private final int awaitWork(WorkQueue w, long c, int ec) { - int stat, ns; long parkTime, deadline; - if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c && - !Thread.interrupted()) { - int e = (int)c; - int u = (int)(c >>> 32); - int d = (u >> UAC_SHIFT) + parallelism; // active count - - if (e < 0 || (d <= 0 && tryTerminate(false, false))) - stat = w.qlock = -1; // pool is terminating - else if ((ns = w.nsteals) != 0) { // collect steals and retry - long sc; - w.nsteals = 0; - do {} while (!U.compareAndSwapLong(this, STEALCOUNT, - sc = stealCount, sc + ns)); - } - else { - long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L : - ((long)(w.nextWait & E_MASK)) | // ctl to restore - ((long)(u + UAC_UNIT)) << 32); - if (pc != 0L) { // timed wait if last waiter - int dc = -(short)(c >>> TC_SHIFT); - parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT: - (dc + 1) * IDLE_TIMEOUT); - deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP; - } - else - parkTime = deadline = 0L; - if (w.eventCount == ec && ctl == c) { - Thread wt = Thread.currentThread(); - U.putObject(wt, PARKBLOCKER, this); - w.parker = wt; // emulate LockSupport.park - if (w.eventCount == ec && ctl == c) - U.park(false, parkTime); // must recheck before park - w.parker = null; - U.putObject(wt, PARKBLOCKER, null); - if (parkTime != 0L && ctl == c && - deadline - System.nanoTime() <= 0L && - U.compareAndSwapLong(this, CTL, c, pc)) - stat = w.qlock = -1; // shrink pool - } - } - } - return stat; - } - - /** - * Possibly releases (signals) a worker. Called only from scan() - * when a worker with apparently inactive status finds a non-empty - * queue. This requires revalidating all of the associated state - * from caller. - */ - private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w, - WorkQueue q, int b) { - WorkQueue v; int e, i; Thread p; - if (w != null && w.eventCount < 0 && (e = (int)c) > 0 && - ws != null && ws.length > (i = e & SMASK) && - (v = ws[i]) != null && ctl == c) { - long nc = (((long)(v.nextWait & E_MASK)) | - ((long)((int)(c >>> 32) + UAC_UNIT)) << 32); - int ne = (e + E_SEQ) & E_MASK; - if (q != null && q.base == b && w.eventCount < 0 && - v.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, c, nc)) { - v.eventCount = ne; - if ((p = v.parker) != null) - U.unpark(p); - } - } - } - - /** - * Tries to locate and execute tasks for a stealer of the given - * task, or in turn one of its stealers, Traces currentSteal -> - * currentJoin links looking for a thread working on a descendant - * of the given task and with a non-empty queue to steal back and - * execute tasks from. The first call to this method upon a - * waiting join will often entail scanning/search, (which is OK - * because the joiner has nothing better to do), but this method - * leaves hints in workers to speed up subsequent calls. The - * implementation is very branchy to cope with potential - * inconsistencies or loops encountering chains that are stale, - * unknown, or so long that they are likely cyclic. - * - * @param joiner the joining worker - * @param task the task to join - * @return 0 if no progress can be made, negative if task - * known complete, else positive - */ - private int tryHelpStealer(WorkQueue joiner, ForkJoinTask task) { - int stat = 0, steps = 0; // bound to avoid cycles - if (task != null && joiner != null && - joiner.base - joiner.top >= 0) { // hoist checks - restart: for (;;) { - ForkJoinTask subtask = task; // current target - for (WorkQueue j = joiner, v;;) { // v is stealer of subtask - WorkQueue[] ws; int m, s, h; - if ((s = task.status) < 0) { - stat = s; - break restart; - } - if ((ws = workQueues) == null || (m = ws.length - 1) <= 0) - break restart; // shutting down - if ((v = ws[h = (j.hint | 1) & m]) == null || - v.currentSteal != subtask) { - for (int origin = h;;) { // find stealer - if (((h = (h + 2) & m) & 15) == 1 && - (subtask.status < 0 || j.currentJoin != subtask)) - continue restart; // occasional staleness check - if ((v = ws[h]) != null && - v.currentSteal == subtask) { - j.hint = h; // save hint - break; - } - if (h == origin) - break restart; // cannot find stealer - } - } - for (;;) { // help stealer or descend to its stealer - ForkJoinTask[] a; int b; - if (subtask.status < 0) // surround probes with - continue restart; // consistency checks - if ((b = v.base) - v.top < 0 && (a = v.array) != null) { - int i = (((a.length - 1) & b) << ASHIFT) + ABASE; - ForkJoinTask t = - (ForkJoinTask)U.getObjectVolatile(a, i); - if (subtask.status < 0 || j.currentJoin != subtask || - v.currentSteal != subtask) - continue restart; // stale - stat = 1; // apparent progress - if (v.base == b) { - if (t == null) - break restart; - if (U.compareAndSwapObject(a, i, t, null)) { - U.putOrderedInt(v, QBASE, b + 1); - ForkJoinTask ps = joiner.currentSteal; - int jt = joiner.top; - do { - joiner.currentSteal = t; - t.doExec(); // clear local tasks too - } while (task.status >= 0 && - joiner.top != jt && - (t = joiner.pop()) != null); - joiner.currentSteal = ps; - break restart; - } - } - } - else { // empty -- try to descend - ForkJoinTask next = v.currentJoin; - if (subtask.status < 0 || j.currentJoin != subtask || - v.currentSteal != subtask) - continue restart; // stale - else if (next == null || ++steps == MAX_HELP) - break restart; // dead-end or maybe cyclic - else { - subtask = next; - j = v; - break; - } - } - } - } - } - } - return stat; - } - - /** - * Analog of tryHelpStealer for CountedCompleters. Tries to steal - * and run tasks within the target's computation. - * - * @param task the task to join - */ - private int helpComplete(WorkQueue joiner, CountedCompleter task) { - WorkQueue[] ws; int m; - int s = 0; - if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && - joiner != null && task != null) { - int j = joiner.poolIndex; - int scans = m + m + 1; - long c = 0L; // for stability check - for (int k = scans; ; j += 2) { - WorkQueue q; - if ((s = task.status) < 0) - break; - else if (joiner.internalPopAndExecCC(task)) - k = scans; - else if ((s = task.status) < 0) - break; - else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) - k = scans; - else if (--k < 0) { - if (c == (c = ctl)) - break; - k = scans; - } - } - } - return s; - } - - /** - * Tries to decrement active count (sometimes implicitly) and - * possibly release or create a compensating worker in preparation - * for blocking. Fails on contention or termination. Otherwise, - * adds a new thread if no idle workers are available and pool - * may become starved. - * - * @param c the assumed ctl value - */ - final boolean tryCompensate(long c) { - WorkQueue[] ws = workQueues; - int pc = parallelism, e = (int)c, m, tc; - if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) { - WorkQueue w = ws[e & m]; - if (e != 0 && w != null) { - Thread p; - long nc = ((long)(w.nextWait & E_MASK) | - (c & (AC_MASK|TC_MASK))); - int ne = (e + E_SEQ) & E_MASK; - if (w.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = ne; - if ((p = w.parker) != null) - U.unpark(p); - return true; // replace with idle worker - } - } - else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 && - (int)(c >> AC_SHIFT) + pc > 1) { - long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK); - if (U.compareAndSwapLong(this, CTL, c, nc)) - return true; // no compensation - } - else if (tc + pc < MAX_CAP) { - long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); - if (U.compareAndSwapLong(this, CTL, c, nc)) { - ForkJoinWorkerThreadFactory fac; - Throwable ex = null; - ForkJoinWorkerThread wt = null; - try { - if ((fac = factory) != null && - (wt = fac.newThread(this)) != null) { - wt.start(); - return true; - } - } catch (Throwable rex) { - ex = rex; - } - deregisterWorker(wt, ex); // clean up and return false - } - } - } - return false; - } - - /** - * Helps and/or blocks until the given task is done. - * - * @param joiner the joining worker - * @param task the task - * @return task status on exit - */ - final int awaitJoin(WorkQueue joiner, ForkJoinTask task) { - int s = 0; - if (task != null && (s = task.status) >= 0 && joiner != null) { - ForkJoinTask prevJoin = joiner.currentJoin; - joiner.currentJoin = task; - do {} while (joiner.tryRemoveAndExec(task) && // process local tasks - (s = task.status) >= 0); - if (s >= 0 && (task instanceof CountedCompleter)) - s = helpComplete(joiner, (CountedCompleter)task); - long cc = 0; // for stability checks - while (s >= 0 && (s = task.status) >= 0) { - if ((s = tryHelpStealer(joiner, task)) == 0 && - (s = task.status) >= 0) { - if (!tryCompensate(cc)) - cc = ctl; - else { - if (task.trySetSignal() && (s = task.status) >= 0) { - synchronized (task) { - if (task.status >= 0) { - try { // see ForkJoinTask - task.wait(); // for explanation - } catch (InterruptedException ie) { - } - } - else - task.notifyAll(); - } - } - long c; // reactivate - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, - ((c & ~AC_MASK) | - ((c & AC_MASK) + AC_UNIT)))); - } - } - } - joiner.currentJoin = prevJoin; - } - return s; - } - - /** - * Stripped-down variant of awaitJoin used by timed joins. Tries - * to help join only while there is continuous progress. (Caller - * will then enter a timed wait.) - * - * @param joiner the joining worker - * @param task the task - */ - final void helpJoinOnce(WorkQueue joiner, ForkJoinTask task) { - int s; - if (joiner != null && task != null && (s = task.status) >= 0) { - ForkJoinTask prevJoin = joiner.currentJoin; - joiner.currentJoin = task; - do {} while (joiner.tryRemoveAndExec(task) && // process local tasks - (s = task.status) >= 0); - if (s >= 0) { - if (task instanceof CountedCompleter) - helpComplete(joiner, (CountedCompleter)task); - do {} while (task.status >= 0 && - tryHelpStealer(joiner, task) > 0); - } - joiner.currentJoin = prevJoin; - } - } - - /** - * Returns a (probably) non-empty steal queue, if one is found - * during a scan, else null. This method must be retried by - * caller if, by the time it tries to use the queue, it is empty. - */ - private WorkQueue findNonEmptyStealQueue() { - int r = ThreadLocalRandom.current().nextInt(); - for (;;) { - int ps = plock, m; WorkQueue[] ws; WorkQueue q; - if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) { - for (int j = (m + 1) << 2; j >= 0; --j) { - if ((q = ws[(((r - j) << 1) | 1) & m]) != null && - q.base - q.top < 0) - return q; - } - } - if (plock == ps) - return null; - } - } - - /** - * Runs tasks until {@code isQuiescent()}. We piggyback on - * active count ctl maintenance, but rather than blocking - * when tasks cannot be found, we rescan until all others cannot - * find tasks either. - */ - final void helpQuiescePool(WorkQueue w) { - ForkJoinTask ps = w.currentSteal; - for (boolean active = true;;) { - long c; WorkQueue q; ForkJoinTask t; int b; - while ((t = w.nextLocalTask()) != null) - t.doExec(); - if ((q = findNonEmptyStealQueue()) != null) { - if (!active) { // re-establish active count - active = true; - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, - ((c & ~AC_MASK) | - ((c & AC_MASK) + AC_UNIT)))); - } - if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) { - (w.currentSteal = t).doExec(); - w.currentSteal = ps; - } - } - else if (active) { // decrement active count without queuing - long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT); - if ((int)(nc >> AC_SHIFT) + parallelism == 0) - break; // bypass decrement-then-increment - if (U.compareAndSwapLong(this, CTL, c, nc)) - active = false; - } - else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 && - U.compareAndSwapLong - (this, CTL, c, ((c & ~AC_MASK) | - ((c & AC_MASK) + AC_UNIT)))) - break; - } - } - - /** - * Gets and removes a local or stolen task for the given worker. - * - * @return a task, if available - */ - final ForkJoinTask nextTaskFor(WorkQueue w) { - for (ForkJoinTask t;;) { - WorkQueue q; int b; - if ((t = w.nextLocalTask()) != null) - return t; - if ((q = findNonEmptyStealQueue()) == null) - return null; - if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) - return t; - } - } - - /** - * Returns a cheap heuristic guide for task partitioning when - * programmers, frameworks, tools, or languages have little or no - * idea about task granularity. In essence by offering this - * method, we ask users only about tradeoffs in overhead vs - * expected throughput and its variance, rather than how finely to - * partition tasks. - * - * In a steady state strict (tree-structured) computation, each - * thread makes available for stealing enough tasks for other - * threads to remain active. Inductively, if all threads play by - * the same rules, each thread should make available only a - * constant number of tasks. - * - * The minimum useful constant is just 1. But using a value of 1 - * would require immediate replenishment upon each steal to - * maintain enough tasks, which is infeasible. Further, - * partitionings/granularities of offered tasks should minimize - * steal rates, which in general means that threads nearer the top - * of computation tree should generate more than those nearer the - * bottom. In perfect steady state, each thread is at - * approximately the same level of computation tree. However, - * producing extra tasks amortizes the uncertainty of progress and - * diffusion assumptions. - * - * So, users will want to use values larger (but not much larger) - * than 1 to both smooth over transient shortages and hedge - * against uneven progress; as traded off against the cost of - * extra task overhead. We leave the user to pick a threshold - * value to compare with the results of this call to guide - * decisions, but recommend values such as 3. - * - * When all threads are active, it is on average OK to estimate - * surplus strictly locally. In steady-state, if one thread is - * maintaining say 2 surplus tasks, then so are others. So we can - * just use estimated queue length. However, this strategy alone - * leads to serious mis-estimates in some non-steady-state - * conditions (ramp-up, ramp-down, other stalls). We can detect - * many of these by further considering the number of "idle" - * threads, that are known to have zero queued tasks, so - * compensate by a factor of (#idle/#active) threads. - * - * Note: The approximation of #busy workers as #active workers is - * not very good under current signalling scheme, and should be - * improved. - */ - static int getSurplusQueuedTaskCount() { - Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q; - if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) { - int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism; - int n = (q = wt.workQueue).top - q.base; - int a = (int)(pool.ctl >> AC_SHIFT) + p; - return n - (a > (p >>>= 1) ? 0 : - a > (p >>>= 1) ? 1 : - a > (p >>>= 1) ? 2 : - a > (p >>>= 1) ? 4 : - 8); - } - return 0; - } - - // Termination - - /** - * Possibly initiates and/or completes termination. The caller - * triggering termination runs three passes through workQueues: - * (0) Setting termination status, followed by wakeups of queued - * workers; (1) cancelling all tasks; (2) interrupting lagging - * threads (likely in external tasks, but possibly also blocked in - * joins). Each pass repeats previous steps because of potential - * lagging thread creation. - * - * @param now if true, unconditionally terminate, else only - * if no work and no active workers - * @param enable if true, enable shutdown when next possible - * @return true if now terminating or terminated - */ - private boolean tryTerminate(boolean now, boolean enable) { - int ps; - if (this == common) // cannot shut down - return false; - if ((ps = plock) >= 0) { // enable by setting plock - if (!enable) - return false; - if ((ps & PL_LOCK) != 0 || - !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) - ps = acquirePlock(); - int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN; - if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) - releasePlock(nps); - } - for (long c;;) { - if (((c = ctl) & STOP_BIT) != 0) { // already terminating - if ((short)(c >>> TC_SHIFT) + parallelism <= 0) { - synchronized (this) { - notifyAll(); // signal when 0 workers - } - } - return true; - } - if (!now) { // check if idle & no tasks - WorkQueue[] ws; WorkQueue w; - if ((int)(c >> AC_SHIFT) + parallelism > 0) - return false; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; ++i) { - if ((w = ws[i]) != null && - (!w.isEmpty() || - ((i & 1) != 0 && w.eventCount >= 0))) { - signalWork(ws, w); - return false; - } - } - } - } - if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) { - for (int pass = 0; pass < 3; ++pass) { - WorkQueue[] ws; WorkQueue w; Thread wt; - if ((ws = workQueues) != null) { - int n = ws.length; - for (int i = 0; i < n; ++i) { - if ((w = ws[i]) != null) { - w.qlock = -1; - if (pass > 0) { - w.cancelAll(); - if (pass > 1 && (wt = w.owner) != null) { - if (!wt.isInterrupted()) { - try { - wt.interrupt(); - } catch (Throwable ignore) { - } - } - U.unpark(wt); - } - } - } - } - // Wake up workers parked on event queue - int i, e; long cc; Thread p; - while ((e = (int)(cc = ctl) & E_MASK) != 0 && - (i = e & SMASK) < n && i >= 0 && - (w = ws[i]) != null) { - long nc = ((long)(w.nextWait & E_MASK) | - ((cc + AC_UNIT) & AC_MASK) | - (cc & (TC_MASK|STOP_BIT))); - if (w.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, cc, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; - w.qlock = -1; - if ((p = w.parker) != null) - U.unpark(p); - } - } - } - } - } - } - } - - // external operations on common pool - - /** - * Returns common pool queue for a thread that has submitted at - * least one task. - */ - static WorkQueue commonSubmitterQueue() { - Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r; - return ((z = submitters.get()) != null && - (p = common) != null && - (ws = p.workQueues) != null && - (m = ws.length - 1) >= 0) ? - ws[m & z.seed & SQMASK] : null; - } - - /** - * Tries to pop the given task from submitter's queue in common pool. - */ - final boolean tryExternalUnpush(ForkJoinTask task) { - WorkQueue joiner; ForkJoinTask[] a; int m, s; - Submitter z = submitters.get(); - WorkQueue[] ws = workQueues; - boolean popped = false; - if (z != null && ws != null && (m = ws.length - 1) >= 0 && - (joiner = ws[z.seed & m & SQMASK]) != null && - joiner.base != (s = joiner.top) && - (a = joiner.array) != null) { - long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; - if (U.getObject(a, j) == task && - U.compareAndSwapInt(joiner, QLOCK, 0, 1)) { - if (joiner.top == s && joiner.array == a && - U.compareAndSwapObject(a, j, task, null)) { - joiner.top = s - 1; - popped = true; - } - joiner.qlock = 0; - } - } - return popped; - } - - final int externalHelpComplete(CountedCompleter task) { - WorkQueue joiner; int m, j; - Submitter z = submitters.get(); - WorkQueue[] ws = workQueues; - int s = 0; - if (z != null && ws != null && (m = ws.length - 1) >= 0 && - (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) { - int scans = m + m + 1; - long c = 0L; // for stability check - j |= 1; // poll odd queues - for (int k = scans; ; j += 2) { - WorkQueue q; - if ((s = task.status) < 0) - break; - else if (joiner.externalPopAndExecCC(task)) - k = scans; - else if ((s = task.status) < 0) - break; - else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) - k = scans; - else if (--k < 0) { - if (c == (c = ctl)) - break; - k = scans; - } - } - } - return s; - } - - // Exported methods - - // Constructors - - /** - * Creates a {@code ForkJoinPool} with parallelism equal to {@link - * java.lang.Runtime#availableProcessors}, using the {@linkplain - * #defaultForkJoinWorkerThreadFactory default thread factory}, - * no UncaughtExceptionHandler, and non-async LIFO processing mode. - * - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool() { - this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()), - defaultForkJoinWorkerThreadFactory, null, false); - } - - /** - * Creates a {@code ForkJoinPool} with the indicated parallelism - * level, the {@linkplain - * #defaultForkJoinWorkerThreadFactory default thread factory}, - * no UncaughtExceptionHandler, and non-async LIFO processing mode. - * - * @param parallelism the parallelism level - * @throws IllegalArgumentException if parallelism less than or - * equal to zero, or greater than implementation limit - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool(int parallelism) { - this(parallelism, defaultForkJoinWorkerThreadFactory, null, false); - } - - /** - * Creates a {@code ForkJoinPool} with the given parameters. - * - * @param parallelism the parallelism level. For default value, - * use {@link java.lang.Runtime#availableProcessors}. - * @param factory the factory for creating new threads. For default value, - * use {@link #defaultForkJoinWorkerThreadFactory}. - * @param handler the handler for internal worker threads that - * terminate due to unrecoverable errors encountered while executing - * tasks. For default value, use {@code null}. - * @param asyncMode if true, - * establishes local first-in-first-out scheduling mode for forked - * tasks that are never joined. This mode may be more appropriate - * than default locally stack-based mode in applications in which - * worker threads only process event-style asynchronous tasks. - * For default value, use {@code false}. - * @throws IllegalArgumentException if parallelism less than or - * equal to zero, or greater than implementation limit - * @throws NullPointerException if the factory is null - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool(int parallelism, - ForkJoinWorkerThreadFactory factory, - UncaughtExceptionHandler handler, - boolean asyncMode) { - this(checkParallelism(parallelism), - checkFactory(factory), - handler, - (asyncMode ? FIFO_QUEUE : LIFO_QUEUE), - "ForkJoinPool-" + nextPoolId() + "-worker-"); - checkPermission(); - } - - private static int checkParallelism(int parallelism) { - if (parallelism <= 0 || parallelism > MAX_CAP) - throw new IllegalArgumentException(); - return parallelism; - } - - private static ForkJoinWorkerThreadFactory checkFactory - (ForkJoinWorkerThreadFactory factory) { - if (factory == null) - throw new NullPointerException(); - return factory; - } - - /** - * Creates a {@code ForkJoinPool} with the given parameters, without - * any security checks or parameter validation. Invoked directly by - * makeCommonPool. - */ - private ForkJoinPool(int parallelism, - ForkJoinWorkerThreadFactory factory, - UncaughtExceptionHandler handler, - int mode, - String workerNamePrefix) { - this.workerNamePrefix = workerNamePrefix; - this.factory = factory; - this.ueh = handler; - this.mode = (short)mode; - this.parallelism = (short)parallelism; - long np = (long)(-parallelism); // offset ctl counts - this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); - } - - /** - * Returns the common pool instance. This pool is statically - * constructed; its run state is unaffected by attempts to {@link - * #shutdown} or {@link #shutdownNow}. However this pool and any - * ongoing processing are automatically terminated upon program - * {@link System#exit}. Any program that relies on asynchronous - * task processing to complete before program termination should - * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence}, - * before exit. - * - * @return the common pool instance - * @since 1.8 - */ - public static ForkJoinPool commonPool() { - // assert common != null : "static init error"; - return common; - } - - // Execution methods - - /** - * Performs the given task, returning its result upon completion. - * If the computation encounters an unchecked Exception or Error, - * it is rethrown as the outcome of this invocation. Rethrown - * exceptions behave in the same way as regular exceptions, but, - * when possible, contain stack traces (as displayed for example - * using {@code ex.printStackTrace()}) of both the current thread - * as well as the thread actually encountering the exception; - * minimally only the latter. - * - * @param task the task - * @param the type of the task's result - * @return the task's result - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public T invoke(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - externalPush(task); - return task.join(); - } - - /** - * Arranges for (asynchronous) execution of the given task. - * - * @param task the task - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public void execute(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - externalPush(task); - } - - // AbstractExecutorService methods - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public void execute(Runnable task) { - if (task == null) - throw new NullPointerException(); - ForkJoinTask job; - if (task instanceof ForkJoinTask) // avoid re-wrap - job = (ForkJoinTask) task; - else - job = new ForkJoinTask.RunnableExecuteAction(task); - externalPush(job); - } - - /** - * Submits a ForkJoinTask for execution. - * - * @param task the task to submit - * @param the type of the task's result - * @return the task - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - externalPush(task); - return task; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Callable task) { - ForkJoinTask job = new ForkJoinTask.AdaptedCallable(task); - externalPush(job); - return job; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Runnable task, T result) { - ForkJoinTask job = new ForkJoinTask.AdaptedRunnable(task, result); - externalPush(job); - return job; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Runnable task) { - if (task == null) - throw new NullPointerException(); - ForkJoinTask job; - if (task instanceof ForkJoinTask) // avoid re-wrap - job = (ForkJoinTask) task; - else - job = new ForkJoinTask.AdaptedRunnableAction(task); - externalPush(job); - return job; - } - - /** - * @throws NullPointerException {@inheritDoc} - * @throws RejectedExecutionException {@inheritDoc} - */ - public List> invokeAll(Collection> tasks) { - // In previous versions of this class, this method constructed - // a task to run ForkJoinTask.invokeAll, but now external - // invocation of multiple tasks is at least as efficient. - ArrayList> futures = new ArrayList>(tasks.size()); - - boolean done = false; - try { - for (Callable t : tasks) { - ForkJoinTask f = new ForkJoinTask.AdaptedCallable(t); - futures.add(f); - externalPush(f); - } - for (int i = 0, size = futures.size(); i < size; i++) - ((ForkJoinTask)futures.get(i)).quietlyJoin(); - done = true; - return futures; - } finally { - if (!done) - for (int i = 0, size = futures.size(); i < size; i++) - futures.get(i).cancel(false); - } - } - - /** - * Returns the factory used for constructing new workers. - * - * @return the factory used for constructing new workers - */ - public ForkJoinWorkerThreadFactory getFactory() { - return factory; - } - - /** - * Returns the handler for internal worker threads that terminate - * due to unrecoverable errors encountered while executing tasks. - * - * @return the handler, or {@code null} if none - */ - public UncaughtExceptionHandler getUncaughtExceptionHandler() { - return ueh; - } - - /** - * Returns the targeted parallelism level of this pool. - * - * @return the targeted parallelism level of this pool - */ - public int getParallelism() { - int par; - return ((par = parallelism) > 0) ? par : 1; - } - - /** - * Returns the targeted parallelism level of the common pool. - * - * @return the targeted parallelism level of the common pool - * @since 1.8 - */ - public static int getCommonPoolParallelism() { - return commonParallelism; - } - - /** - * Returns the number of worker threads that have started but not - * yet terminated. The result returned by this method may differ - * from {@link #getParallelism} when threads are created to - * maintain parallelism when others are cooperatively blocked. - * - * @return the number of worker threads - */ - public int getPoolSize() { - return parallelism + (short)(ctl >>> TC_SHIFT); - } - - /** - * Returns {@code true} if this pool uses local first-in-first-out - * scheduling mode for forked tasks that are never joined. - * - * @return {@code true} if this pool uses async mode - */ - public boolean getAsyncMode() { - return mode == FIFO_QUEUE; - } - - /** - * Returns an estimate of the number of worker threads that are - * not blocked waiting to join tasks or for other managed - * synchronization. This method may overestimate the - * number of running threads. - * - * @return the number of worker threads - */ - public int getRunningThreadCount() { - int rc = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null && w.isApparentlyUnblocked()) - ++rc; - } - } - return rc; - } - - /** - * Returns an estimate of the number of threads that are currently - * stealing or executing tasks. This method may overestimate the - * number of active threads. - * - * @return the number of active threads - */ - public int getActiveThreadCount() { - int r = parallelism + (int)(ctl >> AC_SHIFT); - return (r <= 0) ? 0 : r; // suppress momentarily negative values - } - - /** - * Returns {@code true} if all worker threads are currently idle. - * An idle worker is one that cannot obtain a task to execute - * because none are available to steal from other threads, and - * there are no pending submissions to the pool. This method is - * conservative; it might not return {@code true} immediately upon - * idleness of all threads, but will eventually become true if - * threads remain inactive. - * - * @return {@code true} if all threads are currently idle - */ - public boolean isQuiescent() { - return parallelism + (int)(ctl >> AC_SHIFT) <= 0; - } - - /** - * Returns an estimate of the total number of tasks stolen from - * one thread's work queue by another. The reported value - * underestimates the actual total number of steals when the pool - * is not quiescent. This value may be useful for monitoring and - * tuning fork/join programs: in general, steal counts should be - * high enough to keep threads busy, but low enough to avoid - * overhead and contention across threads. - * - * @return the number of steals - */ - public long getStealCount() { - long count = stealCount; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.nsteals; - } - } - return count; - } - - /** - * Returns an estimate of the total number of tasks currently held - * in queues by worker threads (but not including tasks submitted - * to the pool that have not begun executing). This value is only - * an approximation, obtained by iterating across all threads in - * the pool. This method may be useful for tuning task - * granularities. - * - * @return the number of queued tasks - */ - public long getQueuedTaskCount() { - long count = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.queueSize(); - } - } - return count; - } - - /** - * Returns an estimate of the number of tasks submitted to this - * pool that have not yet begun executing. This method may take - * time proportional to the number of submissions. - * - * @return the number of queued submissions - */ - public int getQueuedSubmissionCount() { - int count = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.queueSize(); - } - } - return count; - } - - /** - * Returns {@code true} if there are any tasks submitted to this - * pool that have not yet begun executing. - * - * @return {@code true} if there are any queued submissions - */ - public boolean hasQueuedSubmissions() { - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null && !w.isEmpty()) - return true; - } - } - return false; - } - - /** - * Removes and returns the next unexecuted submission if one is - * available. This method may be useful in extensions to this - * class that re-assign work in systems with multiple pools. - * - * @return the next submission, or {@code null} if none - */ - protected ForkJoinTask pollSubmission() { - WorkQueue[] ws; WorkQueue w; ForkJoinTask t; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null && (t = w.poll()) != null) - return t; - } - } - return null; - } - - /** - * Removes all available unexecuted submitted and forked tasks - * from scheduling queues and adds them to the given collection, - * without altering their execution status. These may include - * artificially generated or wrapped tasks. This method is - * designed to be invoked only when the pool is known to be - * quiescent. Invocations at other times may not remove all - * tasks. A failure encountered while attempting to add elements - * to collection {@code c} may result in elements being in - * neither, either or both collections when the associated - * exception is thrown. The behavior of this operation is - * undefined if the specified collection is modified while the - * operation is in progress. - * - * @param c the collection to transfer elements into - * @return the number of elements transferred - */ - protected int drainTasksTo(Collection> c) { - int count = 0; - WorkQueue[] ws; WorkQueue w; ForkJoinTask t; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; ++i) { - if ((w = ws[i]) != null) { - while ((t = w.poll()) != null) { - c.add(t); - ++count; - } - } - } - } - return count; - } - - /** - * Returns a string identifying this pool, as well as its state, - * including indications of run state, parallelism level, and - * worker and task counts. - * - * @return a string identifying this pool, as well as its state - */ - public String toString() { - // Use a single pass through workQueues to collect counts - long qt = 0L, qs = 0L; int rc = 0; - long st = stealCount; - long c = ctl; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; ++i) { - if ((w = ws[i]) != null) { - int size = w.queueSize(); - if ((i & 1) == 0) - qs += size; - else { - qt += size; - st += w.nsteals; - if (w.isApparentlyUnblocked()) - ++rc; - } - } - } - } - int pc = parallelism; - int tc = pc + (short)(c >>> TC_SHIFT); - int ac = pc + (int)(c >> AC_SHIFT); - if (ac < 0) // ignore transient negative - ac = 0; - String level; - if ((c & STOP_BIT) != 0) - level = (tc == 0) ? "Terminated" : "Terminating"; - else - level = plock < 0 ? "Shutting down" : "Running"; - return super.toString() + - "[" + level + - ", parallelism = " + pc + - ", size = " + tc + - ", active = " + ac + - ", running = " + rc + - ", steals = " + st + - ", tasks = " + qt + - ", submissions = " + qs + - "]"; - } - - /** - * Possibly initiates an orderly shutdown in which previously - * submitted tasks are executed, but no new tasks will be - * accepted. Invocation has no effect on execution state if this - * is the {@link #commonPool()}, and no additional effect if - * already shut down. Tasks that are in the process of being - * submitted concurrently during the course of this method may or - * may not be rejected. - * - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public void shutdown() { - checkPermission(); - tryTerminate(false, true); - } - - /** - * Possibly attempts to cancel and/or stop all tasks, and reject - * all subsequently submitted tasks. Invocation has no effect on - * execution state if this is the {@link #commonPool()}, and no - * additional effect if already shut down. Otherwise, tasks that - * are in the process of being submitted or executed concurrently - * during the course of this method may or may not be - * rejected. This method cancels both existing and unexecuted - * tasks, in order to permit termination in the presence of task - * dependencies. So the method always returns an empty list - * (unlike the case for some other Executors). - * - * @return an empty list - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public List shutdownNow() { - checkPermission(); - tryTerminate(true, true); - return Collections.emptyList(); - } - - /** - * Returns {@code true} if all tasks have completed following shut down. - * - * @return {@code true} if all tasks have completed following shut down - */ - public boolean isTerminated() { - long c = ctl; - return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) + parallelism <= 0); - } - - /** - * Returns {@code true} if the process of termination has - * commenced but not yet completed. This method may be useful for - * debugging. A return of {@code true} reported a sufficient - * period after shutdown may indicate that submitted tasks have - * ignored or suppressed interruption, or are waiting for I/O, - * causing this executor not to properly terminate. (See the - * advisory notes for class {@link ForkJoinTask} stating that - * tasks should not normally entail blocking operations. But if - * they do, they must abort them on interrupt.) - * - * @return {@code true} if terminating but not yet terminated - */ - public boolean isTerminating() { - long c = ctl; - return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) + parallelism > 0); - } - - /** - * Returns {@code true} if this pool has been shut down. - * - * @return {@code true} if this pool has been shut down - */ - public boolean isShutdown() { - return plock < 0; - } - - /** - * Blocks until all tasks have completed execution after a - * shutdown request, or the timeout occurs, or the current thread - * is interrupted, whichever happens first. Because the {@link - * #commonPool()} never terminates until program shutdown, when - * applied to the common pool, this method is equivalent to {@link - * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}. - * - * @param timeout the maximum time to wait - * @param unit the time unit of the timeout argument - * @return {@code true} if this executor terminated and - * {@code false} if the timeout elapsed before termination - * @throws InterruptedException if interrupted while waiting - */ - public boolean awaitTermination(long timeout, TimeUnit unit) - throws InterruptedException { - if (Thread.interrupted()) - throw new InterruptedException(); - if (this == common) { - awaitQuiescence(timeout, unit); - return false; - } - long nanos = unit.toNanos(timeout); - if (isTerminated()) - return true; - if (nanos <= 0L) - return false; - long deadline = System.nanoTime() + nanos; - synchronized (this) { - for (;;) { - if (isTerminated()) - return true; - if (nanos <= 0L) - return false; - long millis = TimeUnit.NANOSECONDS.toMillis(nanos); - wait(millis > 0L ? millis : 1L); - nanos = deadline - System.nanoTime(); - } - } - } - - /** - * If called by a ForkJoinTask operating in this pool, equivalent - * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise, - * waits and/or attempts to assist performing tasks until this - * pool {@link #isQuiescent} or the indicated timeout elapses. - * - * @param timeout the maximum time to wait - * @param unit the time unit of the timeout argument - * @return {@code true} if quiescent; {@code false} if the - * timeout elapsed. - */ - public boolean awaitQuiescence(long timeout, TimeUnit unit) { - long nanos = unit.toNanos(timeout); - ForkJoinWorkerThread wt; - Thread thread = Thread.currentThread(); - if ((thread instanceof ForkJoinWorkerThread) && - (wt = (ForkJoinWorkerThread)thread).pool == this) { - helpQuiescePool(wt.workQueue); - return true; - } - long startTime = System.nanoTime(); - WorkQueue[] ws; - int r = 0, m; - boolean found = true; - while (!isQuiescent() && (ws = workQueues) != null && - (m = ws.length - 1) >= 0) { - if (!found) { - if ((System.nanoTime() - startTime) > nanos) - return false; - Thread.yield(); // cannot block - } - found = false; - for (int j = (m + 1) << 2; j >= 0; --j) { - ForkJoinTask t; WorkQueue q; int b; - if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) { - found = true; - if ((t = q.pollAt(b)) != null) - t.doExec(); - break; - } - } - } - return true; - } - - /** - * Waits and/or attempts to assist performing tasks indefinitely - * until the {@link #commonPool()} {@link #isQuiescent}. - */ - static void quiesceCommonPool() { - common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS); - } - - /** - * Interface for extending managed parallelism for tasks running - * in {@link ForkJoinPool}s. - * - *

A {@code ManagedBlocker} provides two methods. Method - * {@code isReleasable} must return {@code true} if blocking is - * not necessary. Method {@code block} blocks the current thread - * if necessary (perhaps internally invoking {@code isReleasable} - * before actually blocking). These actions are performed by any - * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}. - * The unusual methods in this API accommodate synchronizers that - * may, but don't usually, block for long periods. Similarly, they - * allow more efficient internal handling of cases in which - * additional workers may be, but usually are not, needed to - * ensure sufficient parallelism. Toward this end, - * implementations of method {@code isReleasable} must be amenable - * to repeated invocation. - * - *

For example, here is a ManagedBlocker based on a - * ReentrantLock: - *

 {@code
-     * class ManagedLocker implements ManagedBlocker {
-     *   final ReentrantLock lock;
-     *   boolean hasLock = false;
-     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
-     *   public boolean block() {
-     *     if (!hasLock)
-     *       lock.lock();
-     *     return true;
-     *   }
-     *   public boolean isReleasable() {
-     *     return hasLock || (hasLock = lock.tryLock());
-     *   }
-     * }}
- * - *

Here is a class that possibly blocks waiting for an - * item on a given queue: - *

 {@code
-     * class QueueTaker implements ManagedBlocker {
-     *   final BlockingQueue queue;
-     *   volatile E item = null;
-     *   QueueTaker(BlockingQueue q) { this.queue = q; }
-     *   public boolean block() throws InterruptedException {
-     *     if (item == null)
-     *       item = queue.take();
-     *     return true;
-     *   }
-     *   public boolean isReleasable() {
-     *     return item != null || (item = queue.poll()) != null;
-     *   }
-     *   public E getItem() { // call after pool.managedBlock completes
-     *     return item;
-     *   }
-     * }}
- */ - public static interface ManagedBlocker { - /** - * Possibly blocks the current thread, for example waiting for - * a lock or condition. - * - * @return {@code true} if no additional blocking is necessary - * (i.e., if isReleasable would return true) - * @throws InterruptedException if interrupted while waiting - * (the method is not required to do so, but is allowed to) - */ - boolean block() throws InterruptedException; - - /** - * Returns {@code true} if blocking is unnecessary. - * @return {@code true} if blocking is unnecessary - */ - boolean isReleasable(); - } - - /** - * Blocks in accord with the given blocker. If the current thread - * is a {@link ForkJoinWorkerThread}, this method possibly - * arranges for a spare thread to be activated if necessary to - * ensure sufficient parallelism while the current thread is blocked. - * - *

If the caller is not a {@link ForkJoinTask}, this method is - * behaviorally equivalent to - *

 {@code
-     * while (!blocker.isReleasable())
-     *   if (blocker.block())
-     *     return;
-     * }
- * - * If the caller is a {@code ForkJoinTask}, then the pool may - * first be expanded to ensure parallelism, and later adjusted. - * - * @param blocker the blocker - * @throws InterruptedException if blocker.block did so - */ - public static void managedBlock(ManagedBlocker blocker) - throws InterruptedException { - Thread t = Thread.currentThread(); - if (t instanceof ForkJoinWorkerThread) { - ForkJoinPool p = ((ForkJoinWorkerThread)t).pool; - while (!blocker.isReleasable()) { - if (p.tryCompensate(p.ctl)) { - try { - do {} while (!blocker.isReleasable() && - !blocker.block()); - } finally { - p.incrementActiveCount(); - } - break; - } - } - } - else { - do {} while (!blocker.isReleasable() && - !blocker.block()); - } - } - - // AbstractExecutorService overrides. These rely on undocumented - // fact that ForkJoinTask.adapt returns ForkJoinTasks that also - // implement RunnableFuture. - - protected RunnableFuture newTaskFor(Runnable runnable, T value) { - return new ForkJoinTask.AdaptedRunnable(runnable, value); - } - - protected RunnableFuture newTaskFor(Callable callable) { - return new ForkJoinTask.AdaptedCallable(callable); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long CTL; - private static final long PARKBLOCKER; - private static final int ABASE; - private static final int ASHIFT; - private static final long STEALCOUNT; - private static final long PLOCK; - private static final long INDEXSEED; - private static final long QBASE; - private static final long QLOCK; - - static { - // initialize field offsets for CAS etc - try { - U = getUnsafe(); - Class k = ForkJoinPool.class; - CTL = U.objectFieldOffset - (k.getDeclaredField("ctl")); - STEALCOUNT = U.objectFieldOffset - (k.getDeclaredField("stealCount")); - PLOCK = U.objectFieldOffset - (k.getDeclaredField("plock")); - INDEXSEED = U.objectFieldOffset - (k.getDeclaredField("indexSeed")); - Class tk = Thread.class; - PARKBLOCKER = U.objectFieldOffset - (tk.getDeclaredField("parkBlocker")); - Class wk = WorkQueue.class; - QBASE = U.objectFieldOffset - (wk.getDeclaredField("base")); - QLOCK = U.objectFieldOffset - (wk.getDeclaredField("qlock")); - Class ak = ForkJoinTask[].class; - ABASE = U.arrayBaseOffset(ak); - int scale = U.arrayIndexScale(ak); - if ((scale & (scale - 1)) != 0) - throw new Error("data type scale not a power of two"); - ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); - } catch (Exception e) { - throw new Error(e); - } - - submitters = new ThreadLocal(); - defaultForkJoinWorkerThreadFactory = - new DefaultForkJoinWorkerThreadFactory(); - modifyThreadPermission = new RuntimePermission("modifyThread"); - - common = java.security.AccessController.doPrivileged - (new java.security.PrivilegedAction() { - public ForkJoinPool run() { return makeCommonPool(); }}); - int par = common.parallelism; // report 1 even if threads disabled - commonParallelism = par > 0 ? par : 1; - } - - /** - * Creates and returns the common pool, respecting user settings - * specified via system properties. - */ - private static ForkJoinPool makeCommonPool() { - int parallelism = -1; - ForkJoinWorkerThreadFactory factory - = defaultForkJoinWorkerThreadFactory; - UncaughtExceptionHandler handler = null; - try { // ignore exceptions in accessing/parsing properties - String pp = System.getProperty - ("java.util.concurrent.ForkJoinPool.common.parallelism"); - String fp = System.getProperty - ("java.util.concurrent.ForkJoinPool.common.threadFactory"); - String hp = System.getProperty - ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); - if (pp != null) - parallelism = Integer.parseInt(pp); - if (fp != null) - factory = ((ForkJoinWorkerThreadFactory)ClassLoader. - getSystemClassLoader().loadClass(fp).newInstance()); - if (hp != null) - handler = ((UncaughtExceptionHandler)ClassLoader. - getSystemClassLoader().loadClass(hp).newInstance()); - } catch (Exception ignore) { - } - - if (parallelism < 0 && // default 1 less than #cores - (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0) - parallelism = 0; - if (parallelism > MAX_CAP) - parallelism = MAX_CAP; - return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE, - "ForkJoinPool.commonPool-worker-"); - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - try { - return sun.misc.Unsafe.getUnsafe(); - } catch (SecurityException tryReflectionInstead) {} - try { - return java.security.AccessController.doPrivileged - (new java.security.PrivilegedExceptionAction() { - public sun.misc.Unsafe run() throws Exception { - Class k = sun.misc.Unsafe.class; - for (java.lang.reflect.Field f : k.getDeclaredFields()) { - f.setAccessible(true); - Object x = f.get(null); - if (k.isInstance(x)) - return k.cast(x); - } - throw new NoSuchFieldError("the Unsafe"); - }}); - } catch (java.security.PrivilegedActionException e) { - throw new RuntimeException("Could not initialize intrinsics", - e.getCause()); - } - } -} - diff --git a/src/main/java/jsr166e/ForkJoinTask.java b/src/main/java/jsr166e/ForkJoinTask.java deleted file mode 100644 index eb58114c2be..00000000000 --- a/src/main/java/jsr166e/ForkJoinTask.java +++ /dev/null @@ -1,1557 +0,0 @@ -// Rev 1.16 from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ForkJoinTask.java?view=co - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - -import java.io.Serializable; -import java.util.Collection; -import java.util.List; -import java.util.RandomAccess; -import java.lang.ref.WeakReference; -import java.lang.ref.ReferenceQueue; -import java.util.concurrent.Callable; -import java.util.concurrent.CancellationException; -import java.util.concurrent.ExecutionException; -import java.util.concurrent.Future; -import java.util.concurrent.RejectedExecutionException; -import java.util.concurrent.RunnableFuture; -import java.util.concurrent.TimeUnit; -import java.util.concurrent.TimeoutException; -import java.util.concurrent.locks.ReentrantLock; -import java.lang.reflect.Constructor; - -/** - * Abstract base class for tasks that run within a {@link ForkJoinPool}. - * A {@code ForkJoinTask} is a thread-like entity that is much - * lighter weight than a normal thread. Huge numbers of tasks and - * subtasks may be hosted by a small number of actual threads in a - * ForkJoinPool, at the price of some usage limitations. - * - *

A "main" {@code ForkJoinTask} begins execution when it is - * explicitly submitted to a {@link ForkJoinPool}, or, if not already - * engaged in a ForkJoin computation, commenced in the {@link - * ForkJoinPool#commonPool()} via {@link #fork}, {@link #invoke}, or - * related methods. Once started, it will usually in turn start other - * subtasks. As indicated by the name of this class, many programs - * using {@code ForkJoinTask} employ only methods {@link #fork} and - * {@link #join}, or derivatives such as {@link - * #invokeAll(ForkJoinTask...) invokeAll}. However, this class also - * provides a number of other methods that can come into play in - * advanced usages, as well as extension mechanics that allow support - * of new forms of fork/join processing. - * - *

A {@code ForkJoinTask} is a lightweight form of {@link Future}. - * The efficiency of {@code ForkJoinTask}s stems from a set of - * restrictions (that are only partially statically enforceable) - * reflecting their main use as computational tasks calculating pure - * functions or operating on purely isolated objects. The primary - * coordination mechanisms are {@link #fork}, that arranges - * asynchronous execution, and {@link #join}, that doesn't proceed - * until the task's result has been computed. Computations should - * ideally avoid {@code synchronized} methods or blocks, and should - * minimize other blocking synchronization apart from joining other - * tasks or using synchronizers such as Phasers that are advertised to - * cooperate with fork/join scheduling. Subdividable tasks should also - * not perform blocking I/O, and should ideally access variables that - * are completely independent of those accessed by other running - * tasks. These guidelines are loosely enforced by not permitting - * checked exceptions such as {@code IOExceptions} to be - * thrown. However, computations may still encounter unchecked - * exceptions, that are rethrown to callers attempting to join - * them. These exceptions may additionally include {@link - * RejectedExecutionException} stemming from internal resource - * exhaustion, such as failure to allocate internal task - * queues. Rethrown exceptions behave in the same way as regular - * exceptions, but, when possible, contain stack traces (as displayed - * for example using {@code ex.printStackTrace()}) of both the thread - * that initiated the computation as well as the thread actually - * encountering the exception; minimally only the latter. - * - *

It is possible to define and use ForkJoinTasks that may block, - * but doing do requires three further considerations: (1) Completion - * of few if any other tasks should be dependent on a task - * that blocks on external synchronization or I/O. Event-style async - * tasks that are never joined (for example, those subclassing {@link - * CountedCompleter}) often fall into this category. (2) To minimize - * resource impact, tasks should be small; ideally performing only the - * (possibly) blocking action. (3) Unless the {@link - * ForkJoinPool.ManagedBlocker} API is used, or the number of possibly - * blocked tasks is known to be less than the pool's {@link - * ForkJoinPool#getParallelism} level, the pool cannot guarantee that - * enough threads will be available to ensure progress or good - * performance. - * - *

The primary method for awaiting completion and extracting - * results of a task is {@link #join}, but there are several variants: - * The {@link Future#get} methods support interruptible and/or timed - * waits for completion and report results using {@code Future} - * conventions. Method {@link #invoke} is semantically - * equivalent to {@code fork(); join()} but always attempts to begin - * execution in the current thread. The "quiet" forms of - * these methods do not extract results or report exceptions. These - * may be useful when a set of tasks are being executed, and you need - * to delay processing of results or exceptions until all complete. - * Method {@code invokeAll} (available in multiple versions) - * performs the most common form of parallel invocation: forking a set - * of tasks and joining them all. - * - *

In the most typical usages, a fork-join pair act like a call - * (fork) and return (join) from a parallel recursive function. As is - * the case with other forms of recursive calls, returns (joins) - * should be performed innermost-first. For example, {@code a.fork(); - * b.fork(); b.join(); a.join();} is likely to be substantially more - * efficient than joining {@code a} before {@code b}. - * - *

The execution status of tasks may be queried at several levels - * of detail: {@link #isDone} is true if a task completed in any way - * (including the case where a task was cancelled without executing); - * {@link #isCompletedNormally} is true if a task completed without - * cancellation or encountering an exception; {@link #isCancelled} is - * true if the task was cancelled (in which case {@link #getException} - * returns a {@link java.util.concurrent.CancellationException}); and - * {@link #isCompletedAbnormally} is true if a task was either - * cancelled or encountered an exception, in which case {@link - * #getException} will return either the encountered exception or - * {@link java.util.concurrent.CancellationException}. - * - *

The ForkJoinTask class is not usually directly subclassed. - * Instead, you subclass one of the abstract classes that support a - * particular style of fork/join processing, typically {@link - * RecursiveAction} for most computations that do not return results, - * {@link RecursiveTask} for those that do, and {@link - * CountedCompleter} for those in which completed actions trigger - * other actions. Normally, a concrete ForkJoinTask subclass declares - * fields comprising its parameters, established in a constructor, and - * then defines a {@code compute} method that somehow uses the control - * methods supplied by this base class. - * - *

Method {@link #join} and its variants are appropriate for use - * only when completion dependencies are acyclic; that is, the - * parallel computation can be described as a directed acyclic graph - * (DAG). Otherwise, executions may encounter a form of deadlock as - * tasks cyclically wait for each other. However, this framework - * supports other methods and techniques (for example the use of - * {@link java.util.concurrent.Phaser Phaser}, {@link #helpQuiesce}, and {@link #complete}) that - * may be of use in constructing custom subclasses for problems that - * are not statically structured as DAGs. To support such usages, a - * ForkJoinTask may be atomically tagged with a {@code short} - * value using {@link #setForkJoinTaskTag} or {@link - * #compareAndSetForkJoinTaskTag} and checked using {@link - * #getForkJoinTaskTag}. The ForkJoinTask implementation does not use - * these {@code protected} methods or tags for any purpose, but they - * may be of use in the construction of specialized subclasses. For - * example, parallel graph traversals can use the supplied methods to - * avoid revisiting nodes/tasks that have already been processed. - * (Method names for tagging are bulky in part to encourage definition - * of methods that reflect their usage patterns.) - * - *

Most base support methods are {@code final}, to prevent - * overriding of implementations that are intrinsically tied to the - * underlying lightweight task scheduling framework. Developers - * creating new basic styles of fork/join processing should minimally - * implement {@code protected} methods {@link #exec}, {@link - * #setRawResult}, and {@link #getRawResult}, while also introducing - * an abstract computational method that can be implemented in its - * subclasses, possibly relying on other {@code protected} methods - * provided by this class. - * - *

ForkJoinTasks should perform relatively small amounts of - * computation. Large tasks should be split into smaller subtasks, - * usually via recursive decomposition. As a very rough rule of thumb, - * a task should perform more than 100 and less than 10000 basic - * computational steps, and should avoid indefinite looping. If tasks - * are too big, then parallelism cannot improve throughput. If too - * small, then memory and internal task maintenance overhead may - * overwhelm processing. - * - *

This class provides {@code adapt} methods for {@link Runnable} - * and {@link Callable}, that may be of use when mixing execution of - * {@code ForkJoinTasks} with other kinds of tasks. When all tasks are - * of this form, consider using a pool constructed in asyncMode. - * - *

ForkJoinTasks are {@code Serializable}, which enables them to be - * used in extensions such as remote execution frameworks. It is - * sensible to serialize tasks only before or after, but not during, - * execution. Serialization is not relied on during execution itself. - * - * @since 1.7 - * @author Doug Lea - */ -public abstract class ForkJoinTask implements Future, Serializable { - - /* - * See the internal documentation of class ForkJoinPool for a - * general implementation overview. ForkJoinTasks are mainly - * responsible for maintaining their "status" field amidst relays - * to methods in ForkJoinWorkerThread and ForkJoinPool. - * - * The methods of this class are more-or-less layered into - * (1) basic status maintenance - * (2) execution and awaiting completion - * (3) user-level methods that additionally report results. - * This is sometimes hard to see because this file orders exported - * methods in a way that flows well in javadocs. - */ - - /* - * The status field holds run control status bits packed into a - * single int to minimize footprint and to ensure atomicity (via - * CAS). Status is initially zero, and takes on nonnegative - * values until completed, upon which status (anded with - * DONE_MASK) holds value NORMAL, CANCELLED, or EXCEPTIONAL. Tasks - * undergoing blocking waits by other threads have the SIGNAL bit - * set. Completion of a stolen task with SIGNAL set awakens any - * waiters via notifyAll. Even though suboptimal for some - * purposes, we use basic builtin wait/notify to take advantage of - * "monitor inflation" in JVMs that we would otherwise need to - * emulate to avoid adding further per-task bookkeeping overhead. - * We want these monitors to be "fat", i.e., not use biasing or - * thin-lock techniques, so use some odd coding idioms that tend - * to avoid them, mainly by arranging that every synchronized - * block performs a wait, notifyAll or both. - * - * These control bits occupy only (some of) the upper half (16 - * bits) of status field. The lower bits are used for user-defined - * tags. - */ - - /** The run status of this task */ - volatile int status; // accessed directly by pool and workers - static final int DONE_MASK = 0xf0000000; // mask out non-completion bits - static final int NORMAL = 0xf0000000; // must be negative - static final int CANCELLED = 0xc0000000; // must be < NORMAL - static final int EXCEPTIONAL = 0x80000000; // must be < CANCELLED - static final int SIGNAL = 0x00010000; // must be >= 1 << 16 - static final int SMASK = 0x0000ffff; // short bits for tags - - /** - * Marks completion and wakes up threads waiting to join this - * task. - * - * @param completion one of NORMAL, CANCELLED, EXCEPTIONAL - * @return completion status on exit - */ - private int setCompletion(int completion) { - for (int s;;) { - if ((s = status) < 0) - return s; - if (U.compareAndSwapInt(this, STATUS, s, s | completion)) { - if ((s >>> 16) != 0) - synchronized (this) { notifyAll(); } - return completion; - } - } - } - - /** - * Primary execution method for stolen tasks. Unless done, calls - * exec and records status if completed, but doesn't wait for - * completion otherwise. - * - * @return status on exit from this method - */ - final int doExec() { - int s; boolean completed; - if ((s = status) >= 0) { - try { - completed = exec(); - } catch (Throwable rex) { - return setExceptionalCompletion(rex); - } - if (completed) - s = setCompletion(NORMAL); - } - return s; - } - - /** - * Tries to set SIGNAL status unless already completed. Used by - * ForkJoinPool. Other variants are directly incorporated into - * externalAwaitDone etc. - * - * @return true if successful - */ - final boolean trySetSignal() { - int s = status; - return s >= 0 && U.compareAndSwapInt(this, STATUS, s, s | SIGNAL); - } - - /** - * Blocks a non-worker-thread until completion. - * @return status upon completion - */ - private int externalAwaitDone() { - int s; - ForkJoinPool cp = ForkJoinPool.common; - if ((s = status) >= 0) { - if (cp != null) { - if (this instanceof CountedCompleter) - s = cp.externalHelpComplete((CountedCompleter)this); - else if (cp.tryExternalUnpush(this)) - s = doExec(); - } - if (s >= 0 && (s = status) >= 0) { - boolean interrupted = false; - do { - if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) { - try { - wait(); - } catch (InterruptedException ie) { - interrupted = true; - } - } - else - notifyAll(); - } - } - } while ((s = status) >= 0); - if (interrupted) - Thread.currentThread().interrupt(); - } - } - return s; - } - - /** - * Blocks a non-worker-thread until completion or interruption. - */ - private int externalInterruptibleAwaitDone() throws InterruptedException { - int s; - ForkJoinPool cp = ForkJoinPool.common; - if (Thread.interrupted()) - throw new InterruptedException(); - if ((s = status) >= 0 && cp != null) { - if (this instanceof CountedCompleter) - cp.externalHelpComplete((CountedCompleter)this); - else if (cp.tryExternalUnpush(this)) - doExec(); - } - while ((s = status) >= 0) { - if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) - wait(); - else - notifyAll(); - } - } - } - return s; - } - - - /** - * Implementation for join, get, quietlyJoin. Directly handles - * only cases of already-completed, external wait, and - * unfork+exec. Others are relayed to ForkJoinPool.awaitJoin. - * - * @return status upon completion - */ - private int doJoin() { - int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w; - return (s = status) < 0 ? s : - ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? - (w = (wt = (ForkJoinWorkerThread)t).workQueue). - tryUnpush(this) && (s = doExec()) < 0 ? s : - wt.pool.awaitJoin(w, this) : - externalAwaitDone(); - } - - /** - * Implementation for invoke, quietlyInvoke. - * - * @return status upon completion - */ - private int doInvoke() { - int s; Thread t; ForkJoinWorkerThread wt; - return (s = doExec()) < 0 ? s : - ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? - (wt = (ForkJoinWorkerThread)t).pool.awaitJoin(wt.workQueue, this) : - externalAwaitDone(); - } - - // Exception table support - - /** - * Table of exceptions thrown by tasks, to enable reporting by - * callers. Because exceptions are rare, we don't directly keep - * them with task objects, but instead use a weak ref table. Note - * that cancellation exceptions don't appear in the table, but are - * instead recorded as status values. - * - * Note: These statics are initialized below in static block. - */ - private static final ExceptionNode[] exceptionTable; - private static final ReentrantLock exceptionTableLock; - private static final ReferenceQueue exceptionTableRefQueue; - - /** - * Fixed capacity for exceptionTable. - */ - private static final int EXCEPTION_MAP_CAPACITY = 32; - - /** - * Key-value nodes for exception table. The chained hash table - * uses identity comparisons, full locking, and weak references - * for keys. The table has a fixed capacity because it only - * maintains task exceptions long enough for joiners to access - * them, so should never become very large for sustained - * periods. However, since we do not know when the last joiner - * completes, we must use weak references and expunge them. We do - * so on each operation (hence full locking). Also, some thread in - * any ForkJoinPool will call helpExpungeStaleExceptions when its - * pool becomes isQuiescent. - */ - static final class ExceptionNode extends WeakReference> { - final Throwable ex; - ExceptionNode next; - final long thrower; // use id not ref to avoid weak cycles - final int hashCode; // store task hashCode before weak ref disappears - ExceptionNode(ForkJoinTask task, Throwable ex, ExceptionNode next) { - super(task, exceptionTableRefQueue); - this.ex = ex; - this.next = next; - this.thrower = Thread.currentThread().getId(); - this.hashCode = System.identityHashCode(task); - } - } - - /** - * Records exception and sets status. - * - * @return status on exit - */ - final int recordExceptionalCompletion(Throwable ex) { - int s; - if ((s = status) >= 0) { - int h = System.identityHashCode(this); - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - expungeStaleExceptions(); - ExceptionNode[] t = exceptionTable; - int i = h & (t.length - 1); - for (ExceptionNode e = t[i]; ; e = e.next) { - if (e == null) { - t[i] = new ExceptionNode(this, ex, t[i]); - break; - } - if (e.get() == this) // already present - break; - } - } finally { - lock.unlock(); - } - s = setCompletion(EXCEPTIONAL); - } - return s; - } - - /** - * Records exception and possibly propagates. - * - * @return status on exit - */ - private int setExceptionalCompletion(Throwable ex) { - int s = recordExceptionalCompletion(ex); - if ((s & DONE_MASK) == EXCEPTIONAL) - internalPropagateException(ex); - return s; - } - - /** - * Hook for exception propagation support for tasks with completers. - */ - void internalPropagateException(Throwable ex) { - } - - /** - * Cancels, ignoring any exceptions thrown by cancel. Used during - * worker and pool shutdown. Cancel is spec'ed not to throw any - * exceptions, but if it does anyway, we have no recourse during - * shutdown, so guard against this case. - */ - static final void cancelIgnoringExceptions(ForkJoinTask t) { - if (t != null && t.status >= 0) { - try { - t.cancel(false); - } catch (Throwable ignore) { - } - } - } - - /** - * Removes exception node and clears status. - */ - private void clearExceptionalCompletion() { - int h = System.identityHashCode(this); - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - ExceptionNode[] t = exceptionTable; - int i = h & (t.length - 1); - ExceptionNode e = t[i]; - ExceptionNode pred = null; - while (e != null) { - ExceptionNode next = e.next; - if (e.get() == this) { - if (pred == null) - t[i] = next; - else - pred.next = next; - break; - } - pred = e; - e = next; - } - expungeStaleExceptions(); - status = 0; - } finally { - lock.unlock(); - } - } - - /** - * Returns a rethrowable exception for the given task, if - * available. To provide accurate stack traces, if the exception - * was not thrown by the current thread, we try to create a new - * exception of the same type as the one thrown, but with the - * recorded exception as its cause. If there is no such - * constructor, we instead try to use a no-arg constructor, - * followed by initCause, to the same effect. If none of these - * apply, or any fail due to other exceptions, we return the - * recorded exception, which is still correct, although it may - * contain a misleading stack trace. - * - * @return the exception, or null if none - */ - private Throwable getThrowableException() { - if ((status & DONE_MASK) != EXCEPTIONAL) - return null; - int h = System.identityHashCode(this); - ExceptionNode e; - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - expungeStaleExceptions(); - ExceptionNode[] t = exceptionTable; - e = t[h & (t.length - 1)]; - while (e != null && e.get() != this) - e = e.next; - } finally { - lock.unlock(); - } - Throwable ex; - if (e == null || (ex = e.ex) == null) - return null; - if (false && e.thrower != Thread.currentThread().getId()) { - Class ec = ex.getClass(); - try { - Constructor noArgCtor = null; - Constructor[] cs = ec.getConstructors();// public ctors only - for (int i = 0; i < cs.length; ++i) { - Constructor c = cs[i]; - Class[] ps = c.getParameterTypes(); - if (ps.length == 0) - noArgCtor = c; - else if (ps.length == 1 && ps[0] == Throwable.class) - return (Throwable)(c.newInstance(ex)); - } - if (noArgCtor != null) { - Throwable wx = (Throwable)(noArgCtor.newInstance()); - wx.initCause(ex); - return wx; - } - } catch (Exception ignore) { - } - } - return ex; - } - - /** - * Poll stale refs and remove them. Call only while holding lock. - */ - /** - * Poll stale refs and remove them. Call only while holding lock. - */ - private static void expungeStaleExceptions() { - for (Object x; (x = exceptionTableRefQueue.poll()) != null;) { - if (x instanceof ExceptionNode) { - int hashCode = ((ExceptionNode)x).hashCode; - ExceptionNode[] t = exceptionTable; - int i = hashCode & (t.length - 1); - ExceptionNode e = t[i]; - ExceptionNode pred = null; - while (e != null) { - ExceptionNode next = e.next; - if (e == x) { - if (pred == null) - t[i] = next; - else - pred.next = next; - break; - } - pred = e; - e = next; - } - } - } - } - - /** - * If lock is available, poll stale refs and remove them. - * Called from ForkJoinPool when pools become quiescent. - */ - static final void helpExpungeStaleExceptions() { - final ReentrantLock lock = exceptionTableLock; - if (lock.tryLock()) { - try { - expungeStaleExceptions(); - } finally { - lock.unlock(); - } - } - } - - /** - * A version of "sneaky throw" to relay exceptions - */ - static void rethrow(Throwable ex) { - if (ex != null) - ForkJoinTask.uncheckedThrow(ex); - } - - /** - * The sneaky part of sneaky throw, relying on generics - * limitations to evade compiler complaints about rethrowing - * unchecked exceptions - */ - @SuppressWarnings("unchecked") static - void uncheckedThrow(Throwable t) throws T { - throw (T)t; // rely on vacuous cast - } - - /** - * Throws exception, if any, associated with the given status. - */ - private void reportException(int s) { - if (s == CANCELLED) - throw new CancellationException(); - if (s == EXCEPTIONAL) - rethrow(getThrowableException()); - } - - // public methods - - /** - * Arranges to asynchronously execute this task in the pool the - * current task is running in, if applicable, or using the {@link - * ForkJoinPool#commonPool()} if not {@link #inForkJoinPool}. While - * it is not necessarily enforced, it is a usage error to fork a - * task more than once unless it has completed and been - * reinitialized. Subsequent modifications to the state of this - * task or any data it operates on are not necessarily - * consistently observable by any thread other than the one - * executing it unless preceded by a call to {@link #join} or - * related methods, or a call to {@link #isDone} returning {@code - * true}. - * - * @return {@code this}, to simplify usage - */ - public final ForkJoinTask fork() { - Thread t; - if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) - ((ForkJoinWorkerThread)t).workQueue.push(this); - else - ForkJoinPool.common.externalPush(this); - return this; - } - - /** - * Returns the result of the computation when it {@link #isDone is - * done}. This method differs from {@link #get()} in that - * abnormal completion results in {@code RuntimeException} or - * {@code Error}, not {@code ExecutionException}, and that - * interrupts of the calling thread do not cause the - * method to abruptly return by throwing {@code - * InterruptedException}. - * - * @return the computed result - */ - public final V join() { - int s; - if ((s = doJoin() & DONE_MASK) != NORMAL) - reportException(s); - return getRawResult(); - } - - /** - * Commences performing this task, awaits its completion if - * necessary, and returns its result, or throws an (unchecked) - * {@code RuntimeException} or {@code Error} if the underlying - * computation did so. - * - * @return the computed result - */ - public final V invoke() { - int s; - if ((s = doInvoke() & DONE_MASK) != NORMAL) - reportException(s); - return getRawResult(); - } - - /** - * Forks the given tasks, returning when {@code isDone} holds for - * each task or an (unchecked) exception is encountered, in which - * case the exception is rethrown. If more than one task - * encounters an exception, then this method throws any one of - * these exceptions. If any task encounters an exception, the - * other may be cancelled. However, the execution status of - * individual tasks is not guaranteed upon exceptional return. The - * status of each task may be obtained using {@link - * #getException()} and related methods to check if they have been - * cancelled, completed normally or exceptionally, or left - * unprocessed. - * - * @param t1 the first task - * @param t2 the second task - * @throws NullPointerException if any task is null - */ - public static void invokeAll(ForkJoinTask t1, ForkJoinTask t2) { - int s1, s2; - t2.fork(); - if ((s1 = t1.doInvoke() & DONE_MASK) != NORMAL) - t1.reportException(s1); - if ((s2 = t2.doJoin() & DONE_MASK) != NORMAL) - t2.reportException(s2); - } - - /** - * Forks the given tasks, returning when {@code isDone} holds for - * each task or an (unchecked) exception is encountered, in which - * case the exception is rethrown. If more than one task - * encounters an exception, then this method throws any one of - * these exceptions. If any task encounters an exception, others - * may be cancelled. However, the execution status of individual - * tasks is not guaranteed upon exceptional return. The status of - * each task may be obtained using {@link #getException()} and - * related methods to check if they have been cancelled, completed - * normally or exceptionally, or left unprocessed. - * - * @param tasks the tasks - * @throws NullPointerException if any task is null - */ - public static void invokeAll(ForkJoinTask... tasks) { - Throwable ex = null; - int last = tasks.length - 1; - for (int i = last; i >= 0; --i) { - ForkJoinTask t = tasks[i]; - if (t == null) { - if (ex == null) - ex = new NullPointerException(); - } - else if (i != 0) - t.fork(); - else if (t.doInvoke() < NORMAL && ex == null) - ex = t.getException(); - } - for (int i = 1; i <= last; ++i) { - ForkJoinTask t = tasks[i]; - if (t != null) { - if (ex != null) - t.cancel(false); - else if (t.doJoin() < NORMAL) - ex = t.getException(); - } - } - if (ex != null) - rethrow(ex); - } - - /** - * Forks all tasks in the specified collection, returning when - * {@code isDone} holds for each task or an (unchecked) exception - * is encountered, in which case the exception is rethrown. If - * more than one task encounters an exception, then this method - * throws any one of these exceptions. If any task encounters an - * exception, others may be cancelled. However, the execution - * status of individual tasks is not guaranteed upon exceptional - * return. The status of each task may be obtained using {@link - * #getException()} and related methods to check if they have been - * cancelled, completed normally or exceptionally, or left - * unprocessed. - * - * @param tasks the collection of tasks - * @param the type of the values returned from the tasks - * @return the tasks argument, to simplify usage - * @throws NullPointerException if tasks or any element are null - */ - public static > Collection invokeAll(Collection tasks) { - if (!(tasks instanceof RandomAccess) || !(tasks instanceof List)) { - invokeAll(tasks.toArray(new ForkJoinTask[tasks.size()])); - return tasks; - } - @SuppressWarnings("unchecked") - List> ts = - (List>) tasks; - Throwable ex = null; - int last = ts.size() - 1; - for (int i = last; i >= 0; --i) { - ForkJoinTask t = ts.get(i); - if (t == null) { - if (ex == null) - ex = new NullPointerException(); - } - else if (i != 0) - t.fork(); - else if (t.doInvoke() < NORMAL && ex == null) - ex = t.getException(); - } - for (int i = 1; i <= last; ++i) { - ForkJoinTask t = ts.get(i); - if (t != null) { - if (ex != null) - t.cancel(false); - else if (t.doJoin() < NORMAL) - ex = t.getException(); - } - } - if (ex != null) - rethrow(ex); - return tasks; - } - - /** - * Attempts to cancel execution of this task. This attempt will - * fail if the task has already completed or could not be - * cancelled for some other reason. If successful, and this task - * has not started when {@code cancel} is called, execution of - * this task is suppressed. After this method returns - * successfully, unless there is an intervening call to {@link - * #reinitialize}, subsequent calls to {@link #isCancelled}, - * {@link #isDone}, and {@code cancel} will return {@code true} - * and calls to {@link #join} and related methods will result in - * {@code CancellationException}. - * - *

This method may be overridden in subclasses, but if so, must - * still ensure that these properties hold. In particular, the - * {@code cancel} method itself must not throw exceptions. - * - *

This method is designed to be invoked by other - * tasks. To terminate the current task, you can just return or - * throw an unchecked exception from its computation method, or - * invoke {@link #completeExceptionally(Throwable)}. - * - * @param mayInterruptIfRunning this value has no effect in the - * default implementation because interrupts are not used to - * control cancellation. - * - * @return {@code true} if this task is now cancelled - */ - public boolean cancel(boolean mayInterruptIfRunning) { - return (setCompletion(CANCELLED) & DONE_MASK) == CANCELLED; - } - - public final boolean isDone() { - return status < 0; - } - - public final boolean isCancelled() { - return (status & DONE_MASK) == CANCELLED; - } - - /** - * Returns {@code true} if this task threw an exception or was cancelled. - * - * @return {@code true} if this task threw an exception or was cancelled - */ - public final boolean isCompletedAbnormally() { - return status < NORMAL; - } - - /** - * Returns {@code true} if this task completed without throwing an - * exception and was not cancelled. - * - * @return {@code true} if this task completed without throwing an - * exception and was not cancelled - */ - public final boolean isCompletedNormally() { - return (status & DONE_MASK) == NORMAL; - } - - /** - * Returns the exception thrown by the base computation, or a - * {@code CancellationException} if cancelled, or {@code null} if - * none or if the method has not yet completed. - * - * @return the exception, or {@code null} if none - */ - public final Throwable getException() { - int s = status & DONE_MASK; - return ((s >= NORMAL) ? null : - (s == CANCELLED) ? new CancellationException() : - getThrowableException()); - } - - /** - * Completes this task abnormally, and if not already aborted or - * cancelled, causes it to throw the given exception upon - * {@code join} and related operations. This method may be used - * to induce exceptions in asynchronous tasks, or to force - * completion of tasks that would not otherwise complete. Its use - * in other situations is discouraged. This method is - * overridable, but overridden versions must invoke {@code super} - * implementation to maintain guarantees. - * - * @param ex the exception to throw. If this exception is not a - * {@code RuntimeException} or {@code Error}, the actual exception - * thrown will be a {@code RuntimeException} with cause {@code ex}. - */ - public void completeExceptionally(Throwable ex) { - setExceptionalCompletion((ex instanceof RuntimeException) || - (ex instanceof Error) ? ex : - new RuntimeException(ex)); - } - - /** - * Completes this task, and if not already aborted or cancelled, - * returning the given value as the result of subsequent - * invocations of {@code join} and related operations. This method - * may be used to provide results for asynchronous tasks, or to - * provide alternative handling for tasks that would not otherwise - * complete normally. Its use in other situations is - * discouraged. This method is overridable, but overridden - * versions must invoke {@code super} implementation to maintain - * guarantees. - * - * @param value the result value for this task - */ - public void complete(V value) { - try { - setRawResult(value); - } catch (Throwable rex) { - setExceptionalCompletion(rex); - return; - } - setCompletion(NORMAL); - } - - /** - * Completes this task normally without setting a value. The most - * recent value established by {@link #setRawResult} (or {@code - * null} by default) will be returned as the result of subsequent - * invocations of {@code join} and related operations. - * - * @since 1.8 - */ - public final void quietlyComplete() { - setCompletion(NORMAL); - } - - /** - * Waits if necessary for the computation to complete, and then - * retrieves its result. - * - * @return the computed result - * @throws CancellationException if the computation was cancelled - * @throws ExecutionException if the computation threw an - * exception - * @throws InterruptedException if the current thread is not a - * member of a ForkJoinPool and was interrupted while waiting - */ - public final V get() throws InterruptedException, ExecutionException { - int s = (Thread.currentThread() instanceof ForkJoinWorkerThread) ? - doJoin() : externalInterruptibleAwaitDone(); - Throwable ex; - if ((s &= DONE_MASK) == CANCELLED) - throw new CancellationException(); - if (s == EXCEPTIONAL && (ex = getThrowableException()) != null) - throw new ExecutionException(ex); - return getRawResult(); - } - - /** - * Waits if necessary for at most the given time for the computation - * to complete, and then retrieves its result, if available. - * - * @param timeout the maximum time to wait - * @param unit the time unit of the timeout argument - * @return the computed result - * @throws CancellationException if the computation was cancelled - * @throws ExecutionException if the computation threw an - * exception - * @throws InterruptedException if the current thread is not a - * member of a ForkJoinPool and was interrupted while waiting - * @throws TimeoutException if the wait timed out - */ - public final V get(long timeout, TimeUnit unit) - throws InterruptedException, ExecutionException, TimeoutException { - if (Thread.interrupted()) - throw new InterruptedException(); - // Messy in part because we measure in nanosecs, but wait in millisecs - int s; long ms; - long ns = unit.toNanos(timeout); - ForkJoinPool cp; - if ((s = status) >= 0 && ns > 0L) { - long deadline = System.nanoTime() + ns; - ForkJoinPool p = null; - ForkJoinPool.WorkQueue w = null; - Thread t = Thread.currentThread(); - if (t instanceof ForkJoinWorkerThread) { - ForkJoinWorkerThread wt = (ForkJoinWorkerThread)t; - p = wt.pool; - w = wt.workQueue; - p.helpJoinOnce(w, this); // no retries on failure - } - else if ((cp = ForkJoinPool.common) != null) { - if (this instanceof CountedCompleter) - cp.externalHelpComplete((CountedCompleter)this); - else if (cp.tryExternalUnpush(this)) - doExec(); - } - boolean canBlock = false; - boolean interrupted = false; - try { - while ((s = status) >= 0) { - if (w != null && w.qlock < 0) - cancelIgnoringExceptions(this); - else if (!canBlock) { - if (p == null || p.tryCompensate(p.ctl)) - canBlock = true; - } - else { - if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) > 0L && - U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) { - try { - wait(ms); - } catch (InterruptedException ie) { - if (p == null) - interrupted = true; - } - } - else - notifyAll(); - } - } - if ((s = status) < 0 || interrupted || - (ns = deadline - System.nanoTime()) <= 0L) - break; - } - } - } finally { - if (p != null && canBlock) - p.incrementActiveCount(); - } - if (interrupted) - throw new InterruptedException(); - } - if ((s &= DONE_MASK) != NORMAL) { - Throwable ex; - if (s == CANCELLED) - throw new CancellationException(); - if (s != EXCEPTIONAL) - throw new TimeoutException(); - if ((ex = getThrowableException()) != null) - throw new ExecutionException(ex); - } - return getRawResult(); - } - - /** - * Joins this task, without returning its result or throwing its - * exception. This method may be useful when processing - * collections of tasks when some have been cancelled or otherwise - * known to have aborted. - */ - public final void quietlyJoin() { - doJoin(); - } - - /** - * Commences performing this task and awaits its completion if - * necessary, without returning its result or throwing its - * exception. - */ - public final void quietlyInvoke() { - doInvoke(); - } - - /** - * Possibly executes tasks until the pool hosting the current task - * {@link ForkJoinPool#isQuiescent is quiescent}. This method may - * be of use in designs in which many tasks are forked, but none - * are explicitly joined, instead executing them until all are - * processed. - */ - public static void helpQuiesce() { - Thread t; - if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) { - ForkJoinWorkerThread wt = (ForkJoinWorkerThread)t; - wt.pool.helpQuiescePool(wt.workQueue); - } - else - ForkJoinPool.quiesceCommonPool(); - } - - /** - * Resets the internal bookkeeping state of this task, allowing a - * subsequent {@code fork}. This method allows repeated reuse of - * this task, but only if reuse occurs when this task has either - * never been forked, or has been forked, then completed and all - * outstanding joins of this task have also completed. Effects - * under any other usage conditions are not guaranteed. - * This method may be useful when executing - * pre-constructed trees of subtasks in loops. - * - *

Upon completion of this method, {@code isDone()} reports - * {@code false}, and {@code getException()} reports {@code - * null}. However, the value returned by {@code getRawResult} is - * unaffected. To clear this value, you can invoke {@code - * setRawResult(null)}. - */ - public void reinitialize() { - if ((status & DONE_MASK) == EXCEPTIONAL) - clearExceptionalCompletion(); - else - status = 0; - } - - /** - * Returns the pool hosting the current task execution, or null - * if this task is executing outside of any ForkJoinPool. - * - * @see #inForkJoinPool - * @return the pool, or {@code null} if none - */ - public static ForkJoinPool getPool() { - Thread t = Thread.currentThread(); - return (t instanceof ForkJoinWorkerThread) ? - ((ForkJoinWorkerThread) t).pool : null; - } - - /** - * Returns {@code true} if the current thread is a {@link - * ForkJoinWorkerThread} executing as a ForkJoinPool computation. - * - * @return {@code true} if the current thread is a {@link - * ForkJoinWorkerThread} executing as a ForkJoinPool computation, - * or {@code false} otherwise - */ - public static boolean inForkJoinPool() { - return Thread.currentThread() instanceof ForkJoinWorkerThread; - } - - /** - * Tries to unschedule this task for execution. This method will - * typically (but is not guaranteed to) succeed if this task is - * the most recently forked task by the current thread, and has - * not commenced executing in another thread. This method may be - * useful when arranging alternative local processing of tasks - * that could have been, but were not, stolen. - * - * @return {@code true} if unforked - */ - public boolean tryUnfork() { - Thread t; - return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? - ((ForkJoinWorkerThread)t).workQueue.tryUnpush(this) : - ForkJoinPool.common.tryExternalUnpush(this)); - } - - /** - * Returns an estimate of the number of tasks that have been - * forked by the current worker thread but not yet executed. This - * value may be useful for heuristic decisions about whether to - * fork other tasks. - * - * @return the number of tasks - */ - public static int getQueuedTaskCount() { - Thread t; ForkJoinPool.WorkQueue q; - if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) - q = ((ForkJoinWorkerThread)t).workQueue; - else - q = ForkJoinPool.commonSubmitterQueue(); - return (q == null) ? 0 : q.queueSize(); - } - - /** - * Returns an estimate of how many more locally queued tasks are - * held by the current worker thread than there are other worker - * threads that might steal them, or zero if this thread is not - * operating in a ForkJoinPool. This value may be useful for - * heuristic decisions about whether to fork other tasks. In many - * usages of ForkJoinTasks, at steady state, each worker should - * aim to maintain a small constant surplus (for example, 3) of - * tasks, and to process computations locally if this threshold is - * exceeded. - * - * @return the surplus number of tasks, which may be negative - */ - public static int getSurplusQueuedTaskCount() { - return ForkJoinPool.getSurplusQueuedTaskCount(); - } - - // Extension methods - - /** - * Returns the result that would be returned by {@link #join}, even - * if this task completed abnormally, or {@code null} if this task - * is not known to have been completed. This method is designed - * to aid debugging, as well as to support extensions. Its use in - * any other context is discouraged. - * - * @return the result, or {@code null} if not completed - */ - public abstract V getRawResult(); - - /** - * Forces the given value to be returned as a result. This method - * is designed to support extensions, and should not in general be - * called otherwise. - * - * @param value the value - */ - protected abstract void setRawResult(V value); - - /** - * Immediately performs the base action of this task and returns - * true if, upon return from this method, this task is guaranteed - * to have completed normally. This method may return false - * otherwise, to indicate that this task is not necessarily - * complete (or is not known to be complete), for example in - * asynchronous actions that require explicit invocations of - * completion methods. This method may also throw an (unchecked) - * exception to indicate abnormal exit. This method is designed to - * support extensions, and should not in general be called - * otherwise. - * - * @return {@code true} if this task is known to have completed normally - */ - protected abstract boolean exec(); - - /** - * Returns, but does not unschedule or execute, a task queued by - * the current thread but not yet executed, if one is immediately - * available. There is no guarantee that this task will actually - * be polled or executed next. Conversely, this method may return - * null even if a task exists but cannot be accessed without - * contention with other threads. This method is designed - * primarily to support extensions, and is unlikely to be useful - * otherwise. - * - * @return the next task, or {@code null} if none are available - */ - protected static ForkJoinTask peekNextLocalTask() { - Thread t; ForkJoinPool.WorkQueue q; - if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) - q = ((ForkJoinWorkerThread)t).workQueue; - else - q = ForkJoinPool.commonSubmitterQueue(); - return (q == null) ? null : q.peek(); - } - - /** - * Unschedules and returns, without executing, the next task - * queued by the current thread but not yet executed, if the - * current thread is operating in a ForkJoinPool. This method is - * designed primarily to support extensions, and is unlikely to be - * useful otherwise. - * - * @return the next task, or {@code null} if none are available - */ - protected static ForkJoinTask pollNextLocalTask() { - Thread t; - return ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? - ((ForkJoinWorkerThread)t).workQueue.nextLocalTask() : - null; - } - - /** - * If the current thread is operating in a ForkJoinPool, - * unschedules and returns, without executing, the next task - * queued by the current thread but not yet executed, if one is - * available, or if not available, a task that was forked by some - * other thread, if available. Availability may be transient, so a - * {@code null} result does not necessarily imply quiescence of - * the pool this task is operating in. This method is designed - * primarily to support extensions, and is unlikely to be useful - * otherwise. - * - * @return a task, or {@code null} if none are available - */ - protected static ForkJoinTask pollTask() { - Thread t; ForkJoinWorkerThread wt; - return ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? - (wt = (ForkJoinWorkerThread)t).pool.nextTaskFor(wt.workQueue) : - null; - } - - // tag operations - - /** - * Returns the tag for this task. - * - * @return the tag for this task - * @since 1.8 - */ - public final short getForkJoinTaskTag() { - return (short)status; - } - - /** - * Atomically sets the tag value for this task. - * - * @param tag the tag value - * @return the previous value of the tag - * @since 1.8 - */ - public final short setForkJoinTaskTag(short tag) { - for (int s;;) { - if (U.compareAndSwapInt(this, STATUS, s = status, - (s & ~SMASK) | (tag & SMASK))) - return (short)s; - } - } - - /** - * Atomically conditionally sets the tag value for this task. - * Among other applications, tags can be used as visit markers - * in tasks operating on graphs, as in methods that check: {@code - * if (task.compareAndSetForkJoinTaskTag((short)0, (short)1))} - * before processing, otherwise exiting because the node has - * already been visited. - * - * @param e the expected tag value - * @param tag the new tag value - * @return {@code true} if successful; i.e., the current value was - * equal to e and is now tag. - * @since 1.8 - */ - public final boolean compareAndSetForkJoinTaskTag(short e, short tag) { - for (int s;;) { - if ((short)(s = status) != e) - return false; - if (U.compareAndSwapInt(this, STATUS, s, - (s & ~SMASK) | (tag & SMASK))) - return true; - } - } - - /** - * Adaptor for Runnables. This implements RunnableFuture - * to be compliant with AbstractExecutorService constraints - * when used in ForkJoinPool. - */ - static final class AdaptedRunnable extends ForkJoinTask - implements RunnableFuture { - final Runnable runnable; - T result; - AdaptedRunnable(Runnable runnable, T result) { - if (runnable == null) throw new NullPointerException(); - this.runnable = runnable; - this.result = result; // OK to set this even before completion - } - public final T getRawResult() { return result; } - public final void setRawResult(T v) { result = v; } - public final boolean exec() { runnable.run(); return true; } - public final void run() { invoke(); } - private static final long serialVersionUID = 5232453952276885070L; - } - - /** - * Adaptor for Runnables without results - */ - static final class AdaptedRunnableAction extends ForkJoinTask - implements RunnableFuture { - final Runnable runnable; - AdaptedRunnableAction(Runnable runnable) { - if (runnable == null) throw new NullPointerException(); - this.runnable = runnable; - } - public final Void getRawResult() { return null; } - public final void setRawResult(Void v) { } - public final boolean exec() { runnable.run(); return true; } - public final void run() { invoke(); } - private static final long serialVersionUID = 5232453952276885070L; - } - - /** - * Adaptor for Runnables in which failure forces worker exception - */ - static final class RunnableExecuteAction extends ForkJoinTask { - final Runnable runnable; - RunnableExecuteAction(Runnable runnable) { - if (runnable == null) throw new NullPointerException(); - this.runnable = runnable; - } - public final Void getRawResult() { return null; } - public final void setRawResult(Void v) { } - public final boolean exec() { runnable.run(); return true; } - void internalPropagateException(Throwable ex) { - rethrow(ex); // rethrow outside exec() catches. - } - private static final long serialVersionUID = 5232453952276885070L; - } - - /** - * Adaptor for Callables - */ - static final class AdaptedCallable extends ForkJoinTask - implements RunnableFuture { - final Callable callable; - T result; - AdaptedCallable(Callable callable) { - if (callable == null) throw new NullPointerException(); - this.callable = callable; - } - public final T getRawResult() { return result; } - public final void setRawResult(T v) { result = v; } - public final boolean exec() { - try { - result = callable.call(); - return true; - } catch (Error err) { - throw err; - } catch (RuntimeException rex) { - throw rex; - } catch (Exception ex) { - throw new RuntimeException(ex); - } - } - public final void run() { invoke(); } - private static final long serialVersionUID = 2838392045355241008L; - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code run} - * method of the given {@code Runnable} as its action, and returns - * a null result upon {@link #join}. - * - * @param runnable the runnable action - * @return the task - */ - public static ForkJoinTask adapt(Runnable runnable) { - return new AdaptedRunnableAction(runnable); - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code run} - * method of the given {@code Runnable} as its action, and returns - * the given result upon {@link #join}. - * - * @param runnable the runnable action - * @param result the result upon completion - * @param the type of the result - * @return the task - */ - public static ForkJoinTask adapt(Runnable runnable, T result) { - return new AdaptedRunnable(runnable, result); - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code call} - * method of the given {@code Callable} as its action, and returns - * its result upon {@link #join}, translating any checked exceptions - * encountered into {@code RuntimeException}. - * - * @param callable the callable action - * @param the type of the callable's result - * @return the task - */ - public static ForkJoinTask adapt(Callable callable) { - return new AdaptedCallable(callable); - } - - // Serialization support - - private static final long serialVersionUID = -7721805057305804111L; - - /** - * Saves this task to a stream (that is, serializes it). - * - * @param s the stream - * @throws java.io.IOException if an I/O error occurs - * @serialData the current run status and the exception thrown - * during execution, or {@code null} if none - */ - private void writeObject(java.io.ObjectOutputStream s) - throws java.io.IOException { - s.defaultWriteObject(); - s.writeObject(getException()); - } - - /** - * Reconstitutes this task from a stream (that is, deserializes it). - * @param s the stream - * @throws ClassNotFoundException if the class of a serialized object - * could not be found - * @throws java.io.IOException if an I/O error occurs - */ - private void readObject(java.io.ObjectInputStream s) - throws java.io.IOException, ClassNotFoundException { - s.defaultReadObject(); - Object ex = s.readObject(); - if (ex != null) - setExceptionalCompletion((Throwable)ex); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long STATUS; - - static { - exceptionTableLock = new ReentrantLock(); - exceptionTableRefQueue = new ReferenceQueue(); - exceptionTable = new ExceptionNode[EXCEPTION_MAP_CAPACITY]; - try { - U = getUnsafe(); - Class k = ForkJoinTask.class; - STATUS = U.objectFieldOffset - (k.getDeclaredField("status")); - } catch (Exception e) { - throw new Error(e); - } - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - try { - return sun.misc.Unsafe.getUnsafe(); - } catch (SecurityException tryReflectionInstead) {} - try { - return java.security.AccessController.doPrivileged - (new java.security.PrivilegedExceptionAction() { - public sun.misc.Unsafe run() throws Exception { - Class k = sun.misc.Unsafe.class; - for (java.lang.reflect.Field f : k.getDeclaredFields()) { - f.setAccessible(true); - Object x = f.get(null); - if (k.isInstance(x)) - return k.cast(x); - } - throw new NoSuchFieldError("the Unsafe"); - }}); - } catch (java.security.PrivilegedActionException e) { - throw new RuntimeException("Could not initialize intrinsics", - e.getCause()); - } - } -} - diff --git a/src/main/java/jsr166e/ForkJoinWorkerThread.java b/src/main/java/jsr166e/ForkJoinWorkerThread.java deleted file mode 100644 index e247927a263..00000000000 --- a/src/main/java/jsr166e/ForkJoinWorkerThread.java +++ /dev/null @@ -1,125 +0,0 @@ -// Rev 1.5 from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ForkJoinWorkerThread.java?view=co - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - - -/** - * A thread managed by a {@link ForkJoinPool}, which executes - * {@link ForkJoinTask}s. - * This class is subclassable solely for the sake of adding - * functionality -- there are no overridable methods dealing with - * scheduling or execution. However, you can override initialization - * and termination methods surrounding the main task processing loop. - * If you do create such a subclass, you will also need to supply a - * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to - * {@linkplain ForkJoinPool#ForkJoinPool use it} in a {@code ForkJoinPool}. - * - * @since 1.7 - * @author Doug Lea - */ -public class ForkJoinWorkerThread extends Thread { - /* - * ForkJoinWorkerThreads are managed by ForkJoinPools and perform - * ForkJoinTasks. For explanation, see the internal documentation - * of class ForkJoinPool. - * - * This class just maintains links to its pool and WorkQueue. The - * pool field is set immediately upon construction, but the - * workQueue field is not set until a call to registerWorker - * completes. This leads to a visibility race, that is tolerated - * by requiring that the workQueue field is only accessed by the - * owning thread. - */ - - final ForkJoinPool pool; // the pool this thread works in - final ForkJoinPool.WorkQueue workQueue; // work-stealing mechanics - - /** - * Creates a ForkJoinWorkerThread operating in the given pool. - * - * @param pool the pool this thread works in - * @throws NullPointerException if pool is null - */ - protected ForkJoinWorkerThread(ForkJoinPool pool) { - // Use a placeholder until a useful name can be set in registerWorker - super("aForkJoinWorkerThread"); - this.pool = pool; - this.workQueue = pool.registerWorker(this); - } - - /** - * Returns the pool hosting this thread. - * - * @return the pool - */ - public ForkJoinPool getPool() { - return pool; - } - - /** - * Returns the unique index number of this thread in its pool. - * The returned value ranges from zero to the maximum number of - * threads (minus one) that may exist in the pool, and does not - * change during the lifetime of the thread. This method may be - * useful for applications that track status or collect results - * per-worker-thread rather than per-task. - * - * @return the index number - */ - public int getPoolIndex() { - return workQueue.poolIndex >>> 1; // ignore odd/even tag bit - } - - /** - * Initializes internal state after construction but before - * processing any tasks. If you override this method, you must - * invoke {@code super.onStart()} at the beginning of the method. - * Initialization requires care: Most fields must have legal - * default values, to ensure that attempted accesses from other - * threads work correctly even before this thread starts - * processing tasks. - */ - protected void onStart() { - } - - /** - * Performs cleanup associated with termination of this worker - * thread. If you override this method, you must invoke - * {@code super.onTermination} at the end of the overridden method. - * - * @param exception the exception causing this thread to abort due - * to an unrecoverable error, or {@code null} if completed normally - */ - protected void onTermination(Throwable exception) { - } - - /** - * This method is required to be public, but should never be - * called explicitly. It performs the main run loop to execute - * {@link ForkJoinTask}s. - */ - public void run() { - Throwable exception = null; - try { - onStart(); - pool.runWorker(workQueue); - } catch (Throwable ex) { - exception = ex; - } finally { - try { - onTermination(exception); - } catch (Throwable ex) { - if (exception == null) - exception = ex; - } finally { - pool.deregisterWorker(this, exception); - } - } - } -} diff --git a/src/main/java/jsr166e/ThreadLocalRandom.java b/src/main/java/jsr166e/ThreadLocalRandom.java deleted file mode 100644 index 42e6ff16223..00000000000 --- a/src/main/java/jsr166e/ThreadLocalRandom.java +++ /dev/null @@ -1,199 +0,0 @@ -// Rev 1.2 from http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ThreadLocalRandom.java?revision=1.2 - -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package jsr166e; - -import java.util.Random; - -/** - * A random number generator isolated to the current thread. Like the - * global {@link java.util.Random} generator used by the {@link - * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized - * with an internally generated seed that may not otherwise be - * modified. When applicable, use of {@code ThreadLocalRandom} rather - * than shared {@code Random} objects in concurrent programs will - * typically encounter much less overhead and contention. Use of - * {@code ThreadLocalRandom} is particularly appropriate when multiple - * tasks (for example, each a {@link ForkJoinTask}) use random numbers - * in parallel in thread pools. - * - *

Usages of this class should typically be of the form: - * {@code ThreadLocalRandom.current().nextX(...)} (where - * {@code X} is {@code Int}, {@code Long}, etc). - * When all usages are of this form, it is never possible to - * accidently share a {@code ThreadLocalRandom} across multiple threads. - * - *

This class also provides additional commonly used bounded random - * generation methods. - * - * @since 1.7 - * @author Doug Lea - */ -public class ThreadLocalRandom extends Random { - // same constants as Random, but must be redeclared because private - private static final long multiplier = 0x5DEECE66DL; - private static final long addend = 0xBL; - private static final long mask = (1L << 48) - 1; - - /** - * The random seed. We can't use super.seed. - */ - private long rnd; - - /** - * Initialization flag to permit calls to setSeed to succeed only - * while executing the Random constructor. We can't allow others - * since it would cause setting seed in one part of a program to - * unintentionally impact other usages by the thread. - */ - boolean initialized; - - // Padding to help avoid memory contention among seed updates in - // different TLRs in the common case that they are located near - // each other. - private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7; - - /** - * The actual ThreadLocal - */ - private static final ThreadLocal localRandom = - new ThreadLocal() { - protected ThreadLocalRandom initialValue() { - return new ThreadLocalRandom(); - } - }; - - - /** - * Constructor called only by localRandom.initialValue. - */ - ThreadLocalRandom() { - super(); - initialized = true; - } - - /** - * Returns the current thread's {@code ThreadLocalRandom}. - * - * @return the current thread's {@code ThreadLocalRandom} - */ - public static ThreadLocalRandom current() { - return localRandom.get(); - } - - /** - * Throws {@code UnsupportedOperationException}. Setting seeds in - * this generator is not supported. - * - * @throws UnsupportedOperationException always - */ - public void setSeed(long seed) { - if (initialized) - throw new UnsupportedOperationException(); - rnd = (seed ^ multiplier) & mask; - } - - protected int next(int bits) { - rnd = (rnd * multiplier + addend) & mask; - return (int) (rnd >>> (48-bits)); - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @return the next value - * @throws IllegalArgumentException if least greater than or equal - * to bound - */ - public int nextInt(int least, int bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextInt(bound - least) + least; - } - - /** - * Returns a pseudorandom, uniformly distributed value - * between 0 (inclusive) and the specified value (exclusive). - * - * @param n the bound on the random number to be returned. Must be - * positive. - * @return the next value - * @throws IllegalArgumentException if n is not positive - */ - public long nextLong(long n) { - if (n <= 0) - throw new IllegalArgumentException("n must be positive"); - // Divide n by two until small enough for nextInt. On each - // iteration (at most 31 of them but usually much less), - // randomly choose both whether to include high bit in result - // (offset) and whether to continue with the lower vs upper - // half (which makes a difference only if odd). - long offset = 0; - while (n >= Integer.MAX_VALUE) { - int bits = next(2); - long half = n >>> 1; - long nextn = ((bits & 2) == 0) ? half : n - half; - if ((bits & 1) == 0) - offset += n - nextn; - n = nextn; - } - return offset + nextInt((int) n); - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @return the next value - * @throws IllegalArgumentException if least greater than or equal - * to bound - */ - public long nextLong(long least, long bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextLong(bound - least) + least; - } - - /** - * Returns a pseudorandom, uniformly distributed {@code double} value - * between 0 (inclusive) and the specified value (exclusive). - * - * @param n the bound on the random number to be returned. Must be - * positive. - * @return the next value - * @throws IllegalArgumentException if n is not positive - */ - public double nextDouble(double n) { - if (n <= 0) - throw new IllegalArgumentException("n must be positive"); - return nextDouble() * n; - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @return the next value - * @throws IllegalArgumentException if least greater than or equal - * to bound - */ - public double nextDouble(double least, double bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextDouble() * (bound - least) + least; - } - - private static final long serialVersionUID = -5851777807851030925L; -} diff --git a/src/main/java/org/elasticsearch/common/util/concurrent/ConcurrentCollections.java b/src/main/java/org/elasticsearch/common/util/concurrent/ConcurrentCollections.java index fa708adb3bd..791afa3b917 100644 --- a/src/main/java/org/elasticsearch/common/util/concurrent/ConcurrentCollections.java +++ b/src/main/java/org/elasticsearch/common/util/concurrent/ConcurrentCollections.java @@ -19,16 +19,17 @@ package org.elasticsearch.common.util.concurrent; -import com.google.common.collect.Sets; - -import org.apache.lucene.util.Constants; - import java.util.Deque; import java.util.Queue; import java.util.Set; -import java.util.concurrent.*; +import java.util.concurrent.BlockingQueue; +import java.util.concurrent.ConcurrentHashMap; +import java.util.concurrent.ConcurrentLinkedDeque; +import java.util.concurrent.ConcurrentLinkedQueue; +import java.util.concurrent.ConcurrentMap; +import java.util.concurrent.LinkedTransferQueue; -import jsr166e.ConcurrentHashMapV8; +import com.google.common.collect.Sets; /** * @@ -47,21 +48,11 @@ public abstract class ConcurrentCollections { * Creates a new CHM with an aggressive concurrency level, aimed at high concurrent update rate long living maps. */ public static ConcurrentMap newConcurrentMapWithAggressiveConcurrency() { - if (Constants.JRE_IS_MINIMUM_JAVA8) { - // Just use JDK's impl when we are on Java8: - return new ConcurrentHashMap<>(16, 0.75f, aggressiveConcurrencyLevel); - } else { - return new ConcurrentHashMapV8<>(16, 0.75f, aggressiveConcurrencyLevel); - } + return new ConcurrentHashMap<>(16, 0.75f, aggressiveConcurrencyLevel); } public static ConcurrentMap newConcurrentMap() { - if (Constants.JRE_IS_MINIMUM_JAVA8) { - // Just use JDK's impl when we are on Java8: - return new ConcurrentHashMap<>(); - } else { - return new ConcurrentHashMapV8<>(); - } + return new ConcurrentHashMap<>(); } /**