[PURIFY] Remove docs directory (#3)

This commit removes the doc directory

Signed-off-by: Peter Nied <petern@amazon.com>
This commit is contained in:
Nick Knize 2021-01-29 23:12:59 -06:00 committed by Peter Nied
parent b7138c88e8
commit 0d1e9a7b64
1829 changed files with 0 additions and 252148 deletions

View File

@ -1,133 +0,0 @@
The Elasticsearch docs are in AsciiDoc format and can be built using the
Elasticsearch documentation build process.
See: https://github.com/elastic/docs
=== Backporting doc fixes
* Doc changes should generally be made against master and backported through to the current version
(as applicable).
* Changes can also be backported to the maintenance version of the previous major version.
This is typically reserved for technical corrections, as it can require resolving more complex
merge conflicts, fixing test failures, and figuring out where to apply the change.
* Avoid backporting to out-of-maintenance versions.
Docs follow the same policy as code and fixes are not ordinarily merged to
versions that are out of maintenance.
* Do not backport doc changes to https://www.elastic.co/support/eol[EOL versions].
=== Snippet testing
Snippets marked with `[source,console]` are automatically annotated with
"VIEW IN CONSOLE" and "COPY AS CURL" in the documentation and are automatically
tested by the command `./gradlew -pdocs check`. To test just the docs from a
single page, use e.g. `./gradlew -pdocs integTest --tests "\*rollover*"`.
By default each `[source,console]` snippet runs as its own isolated test. You
can manipulate the test execution in the following ways:
* `// TEST`: Explicitly marks a snippet as a test. Snippets marked this way
are tests even if they don't have `[source,console]` but usually `// TEST` is
used for its modifiers:
* `// TEST[s/foo/bar/]`: Replace `foo` with `bar` in the generated test. This
should be used sparingly because it makes the snippet "lie". Sometimes,
though, you can use it to make the snippet more clear. Keep in mind that
if there are multiple substitutions then they are applied in the order that
they are defined.
* `// TEST[catch:foo]`: Used to expect errors in the requests. Replace `foo`
with `request` to expect a 400 error, for example. If the snippet contains
multiple requests then only the last request will expect the error.
* `// TEST[continued]`: Continue the test started in the last snippet. Between
tests the nodes are cleaned: indexes are removed, etc. This prevents that
from happening between snippets because the two snippets are a single test.
This is most useful when you have text and snippets that work together to
tell the story of some use case because it merges the snippets (and thus the
use case) into one big test.
* You can't use `// TEST[continued]` immediately after `// TESTSETUP` or
`// TEARDOWN`.
* `// TEST[skip:reason]`: Skip this test. Replace `reason` with the actual
reason to skip the test. Snippets without `// TEST` or `// CONSOLE` aren't
considered tests anyway but this is useful for explicitly documenting the
reason why the test shouldn't be run.
* `// TEST[setup:name]`: Run some setup code before running the snippet. This
is useful for creating and populating indexes used in the snippet. The setup
code is defined in `docs/build.gradle`. See `// TESTSETUP` below for a
similar feature.
* `// TEST[warning:some warning]`: Expect the response to include a `Warning`
header. If the response doesn't include a `Warning` header with the exact
text then the test fails. If the response includes `Warning` headers that
aren't expected then the test fails.
* `[source,console-result]`: Matches this snippet against the body of the
response of the last test. If the response is JSON then order is ignored. If
you add `// TEST[continued]` to the snippet after `[source,console-result]`
it will continue in the same test, allowing you to interleave requests with
responses to check.
* `// TESTRESPONSE`: Explicitly marks a snippet as a test response even without
`[source,console-result]`. Similarly to `// TEST` this is mostly used for
its modifiers.
* You can't use `[source,console-result]` immediately after `// TESTSETUP`.
Instead, consider using `// TEST[continued]` or rearrange your snippets.
NOTE: Previously we only used `// TESTRESPONSE` instead of
`[source,console-result]` so you'll see that a lot in older branches but we
prefer `[source,console-result]` now.
* `// TESTRESPONSE[s/foo/bar/]`: Substitutions. See `// TEST[s/foo/bar]` for
how it works. These are much more common than `// TEST[s/foo/bar]` because
they are useful for eliding portions of the response that are not pertinent
to the documentation.
* One interesting difference here is that you often want to match against
the response from Elasticsearch. To do that you can reference the "body" of
the response like this: `// TESTRESPONSE[s/"took": 25/"took": $body.took/]`.
Note the `$body` string. This says "I don't expect that 25 number in the
response, just match against what is in the response." Instead of writing
the path into the response after `$body` you can write `$_path` which
"figures out" the path. This is especially useful for making sweeping
assertions like "I made up all the numbers in this example, don't compare
them" which looks like `// TESTRESPONSE[s/\d+/$body.$_path/]`.
* `// TESTRESPONSE[non_json]`: Add substitutions for testing responses in a
format other than JSON. Use this after all other substitutions so it doesn't
make other substitutions difficult.
* `// TESTRESPONSE[skip:reason]`: Skip the assertions specified by this
response.
* `// TESTSETUP`: Marks this snippet as the "setup" for all other snippets in
this file. This is a somewhat natural way of structuring documentation. You
say "this is the data we use to explain this feature" then you add the
snippet that you mark `// TESTSETUP` and then every snippet will turn into
a test that runs the setup snippet first. See the "painless" docs for a file
that puts this to good use. This is fairly similar to `// TEST[setup:name]`
but rather than the setup defined in `docs/build.gradle` the setup is defined
right in the documentation file. In general, we should prefer `// TESTSETUP`
over `// TEST[setup:name]` because it makes it more clear what steps have to
be taken before the examples will work. Tip: `// TESTSETUP` can only be used
on the first snippet of a document.
* `// TEARDOWN`: Ends and cleans up a test series started with `// TESTSETUP` or
`// TEST[setup:name]`. You can use `// TEARDOWN` to set up multiple tests in
the same file.
* `// NOTCONSOLE`: Marks this snippet as neither `// CONSOLE` nor
`// TESTRESPONSE`, excluding it from the list of unconverted snippets. We
should only use this for snippets that *are* JSON but are *not* responses or
requests.
In addition to the standard CONSOLE syntax these snippets can contain blocks
of yaml surrounded by markers like this:
```
startyaml
- compare_analyzers: {index: thai_example, first: thai, second: rebuilt_thai}
endyaml
```
This allows slightly more expressive testing of the snippets. Since that syntax
is not supported by `[source,console]` the usual way to incorporate it is with a
`// TEST[s//]` marker like this:
```
// TEST[s/\n$/\nstartyaml\n - compare_analyzers: {index: thai_example, first: thai, second: rebuilt_thai}\nendyaml\n/]
```
Any place you can use json you can use elements like `$body.path.to.thing`
which is replaced on the fly with the contents of the thing at `path.to.thing`
in the last response.

View File

@ -1,79 +0,0 @@
include::{docs-root}/shared/versions/stack/{source_branch}.asciidoc[]
:lucene_version: 8.7.0
:lucene_version_path: 8_7_0
:jdk: 1.8.0_131
:jdk_major: 8
:build_flavor: default
:build_type: tar
:docker-repo: docker.elastic.co/elasticsearch/elasticsearch
:docker-image: {docker-repo}:{version}
:plugin_url: https://artifacts.elastic.co/downloads/elasticsearch-plugins
///////
Javadoc roots used to generate links from Painless's API reference
///////
:java11-javadoc: https://docs.oracle.com/en/java/javase/11/docs/api
:lucene-core-javadoc: https://lucene.apache.org/core/{lucene_version_path}/core
ifeval::["{release-state}"=="unreleased"]
:elasticsearch-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/elasticsearch/{version}-SNAPSHOT
:transport-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/client/transport/{version}-SNAPSHOT
:rest-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-client/{version}-SNAPSHOT
:rest-client-sniffer-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-client-sniffer/{version}-SNAPSHOT
:rest-high-level-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-high-level-client/{version}-SNAPSHOT
:mapper-extras-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/mapper-extras-client/{version}-SNAPSHOT
:painless-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/painless/lang-painless/{version}-SNAPSHOT
:parent-join-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/parent-join-client/{version}-SNAPSHOT
:percolator-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/percolator-client/{version}-SNAPSHOT
:matrixstats-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/aggs-matrix-stats-client/{version}-SNAPSHOT
:rank-eval-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/rank-eval-client/{version}-SNAPSHOT
:version_qualified: {bare_version}-SNAPSHOT
endif::[]
ifeval::["{release-state}"!="unreleased"]
:elasticsearch-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/elasticsearch/{version}
:transport-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/client/transport/{version}
:rest-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-client/{version}
:rest-client-sniffer-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-client-sniffer/{version}
:rest-high-level-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/client/elasticsearch-rest-high-level-client/{version}
:mapper-extras-client-javadoc: https://snapshots.elastic.co/javadoc/org/elasticsearch/plugin/mapper-extras-client/{version}
:painless-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/painless/lang-painless/{version}
:parent-join-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/plugin/parent-join-client/{version}
:percolator-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/plugin/percolator-client/{version}
:matrixstats-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/plugin/aggs-matrix-stats-client/{version}
:rank-eval-client-javadoc: https://artifacts.elastic.co/javadoc/org/elasticsearch/plugin/rank-eval-client/{version}
:version_qualified: {bare_version}
endif::[]
:javadoc-client: {rest-high-level-client-javadoc}/org/elasticsearch/client
:javadoc-xpack: {rest-high-level-client-javadoc}/org/elasticsearch/protocol/xpack
:javadoc-license: {rest-high-level-client-javadoc}/org/elasticsearch/protocol/xpack/license
:javadoc-watcher: {rest-high-level-client-javadoc}/org/elasticsearch/protocol/xpack/watcher
///////
Permanently unreleased branches (master, n.X)
///////
ifeval::["{source_branch}"=="master"]
:permanently-unreleased-branch:
endif::[]
ifeval::["{source_branch}"=="{major-version}"]
:permanently-unreleased-branch:
endif::[]
///////
Shared attribute values are pulled from elastic/docs
///////
include::{docs-root}/shared/attributes.asciidoc[]
///////
APM does not build n.x documentation. Links from .x branches should point to master instead
///////
ifeval::["{source_branch}"=="7.x"]
:apm-server-ref: {apm-server-ref-m}
:apm-server-ref-v: {apm-server-ref-m}
:apm-overview-ref-v: {apm-overview-ref-m}
endif::[]

File diff suppressed because it is too large Load Diff

View File

@ -1,223 +0,0 @@
= Community Contributed Clients
[preface]
== Preface
:client: https://www.elastic.co/guide/en/elasticsearch/client
[NOTE]
====
This is a list of clients submitted by members of the Elastic community.
Elastic does not support or endorse these clients.
If you'd like to add a new client to this list, please
https://github.com/elastic/elasticsearch/blob/master/CONTRIBUTING.md#contributing-code-and-documentation-changes[open a pull request].
====
Besides the link:/guide[officially supported Elasticsearch clients], there are
a number of clients that have been contributed by the community for various languages:
* <<b4j>>
* <<cpp>>
* <<clojure>>
* <<coldfusion>>
* <<erlang>>
* <<go>>
* <<haskell>>
* <<java>>
* <<javascript>>
* <<kotlin>>
* <<lua>>
* <<dotnet>>
* <<perl>>
* <<php>>
* <<python>>
* <<r>>
* <<ruby>>
* <<rust>>
* <<scala>>
* <<smalltalk>>
* <<vertx>>
[[b4j]]
== B4J
* https://www.b4x.com/android/forum/threads/server-jelasticsearch-search-and-text-analytics.73335/
B4J client based on the official Java REST client.
[[cpp]]
== C++
* https://github.com/seznam/elasticlient[elasticlient]: simple library for simplified work with Elasticsearch in C++
[[clojure]]
== Clojure
* https://github.com/mpenet/spandex[Spandex]:
Clojure client, based on the new official low level rest-client.
* https://github.com/clojurewerkz/elastisch[Elastisch]:
Clojure client.
[[coldfusion]]
== ColdFusion (CFML)
* https://www.forgebox.io/view/cbelasticsearch[cbElasticSearch]
Native ColdFusion (CFML) support for the ColdBox MVC Platform which provides you with a fluent search interface for Elasticsearch, in addition to a CacheBox Cache provider and a Logbox Appender for logging.
[[erlang]]
== Erlang
* https://github.com/tsloughter/erlastic_search[erlastic_search]:
Erlang client using HTTP.
* https://github.com/datahogs/tirexs[Tirexs]:
An https://github.com/elixir-lang/elixir[Elixir] based API/DSL, inspired by
https://github.com/karmi/tire[Tire]. Ready to use in pure Erlang
environment.
* https://github.com/sashman/elasticsearch_elixir_bulk_processor[Elixir Bulk Processor]:
Dynamically configurable Elixir port of the [Bulk Processor](https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-docs-bulk-processor.html). Implemented using GenStages to handle backpressure.
[[go]]
== Go
Also see the {client}/go-api/current/index.html[official Elasticsearch Go client].
* https://github.com/mattbaird/elastigo[elastigo]:
Go client.
* https://github.com/olivere/elastic[elastic]:
Elasticsearch client for Google Go.
* https://github.com/softctrl/elk[elk]
Golang lib for Elasticsearch client.
[[haskell]]
== Haskell
* https://github.com/bitemyapp/bloodhound[bloodhound]:
Haskell client and DSL.
[[java]]
== Java
Also see the {client}/java-api/current/index.html[official Elasticsearch Java client].
* https://github.com/otto-de/flummi[Flummi]:
Java Rest client with comprehensive query DSL API
* https://github.com/searchbox-io/Jest[Jest]:
Java Rest client.
[[javascript]]
== JavaScript
Also see the {client}/javascript-api/current/index.html[official Elasticsearch JavaScript client].
[[kotlin]]
== Kotlin
* https://github.com/mbuhot/eskotlin[ES Kotlin]:
Elasticsearch Query DSL for kotlin based on the {client}/java-api/current/index.html[official Elasticsearch Java client].
* https://github.com/jillesvangurp/es-kotlin-wrapper-client[ES Kotlin Wrapper Client]:
Kotlin extension functions and abstractions for the {client}/java-api/current/index.html[official Elasticsearch Highlevel Client]. Aims to reduce the amount of boilerplate needed to do searches, bulk indexing and other common things users do with the client.
[[lua]]
== Lua
* https://github.com/DhavalKapil/elasticsearch-lua[elasticsearch-lua]:
Lua client for Elasticsearch
[[dotnet]]
== .NET
Also see the {client}/net-api/current/index.html[official Elasticsearch .NET client].
[[perl]]
== Perl
Also see the {client}/perl-api/current/index.html[official Elasticsearch Perl client].
* https://metacpan.org/pod/Elastijk[Elastijk]: A low level minimal HTTP client.
[[php]]
== PHP
Also see the {client}/php-api/current/index.html[official Elasticsearch PHP client].
* https://github.com/ruflin/Elastica[Elastica]:
PHP client.
* https://github.com/nervetattoo/elasticsearch[elasticsearch] PHP client.
* https://github.com/madewithlove/elasticsearcher[elasticsearcher] Agnostic lightweight package on top of the Elasticsearch PHP client. Its main goal is to allow for easier structuring of queries and indices in your application. It does not want to hide or replace functionality of the Elasticsearch PHP client.
[[python]]
== Python
Also see the {client}/python-api/current/index.html[official Elasticsearch Python client].
[[r]]
== R
* https://github.com/ropensci/elastic[elastic]:
A low-level R client for Elasticsearch.
* https://github.com/ropensci/elasticdsl[elasticdsl]:
A high-level R DSL for Elasticsearch, wrapping the elastic R client.
* https://github.com/UptakeOpenSource/uptasticsearch[uptasticsearch]:
An R client tailored to data science workflows.
[[ruby]]
== Ruby
Also see the {client}/ruby-api/current/index.html[official Elasticsearch Ruby client].
* https://github.com/printercu/elastics-rb[elastics]:
Tiny client with built-in zero-downtime migrations and ActiveRecord integration.
* https://github.com/toptal/chewy[chewy]:
Chewy is an ODM and wrapper for the official Elasticsearch client
* https://github.com/ankane/searchkick[Searchkick]:
Intelligent search made easy
* https://github.com/artsy/estella[Estella]:
Make your Ruby models searchable
[[rust]]
== Rust
* https://github.com/benashford/rs-es[rs-es]:
A REST API client with a strongly-typed Query DSL.
* https://github.com/elastic-rs/elastic[elastic]:
A modular REST API client that supports freeform queries.
[[scala]]
== Scala
* https://github.com/sksamuel/elastic4s[elastic4s]:
Scala DSL.
* https://github.com/gphat/wabisabi[wabisabi]:
Asynchronous REST API Scala client.
* https://github.com/workday/escalar[escalar]:
Type-safe Scala wrapper for the REST API.
* https://github.com/SumoLogic/elasticsearch-client[elasticsearch-client]:
Scala DSL that uses the REST API. Akka and AWS helpers included.
[[smalltalk]]
== Smalltalk
* https://github.com/newapplesho/elasticsearch-smalltalk[elasticsearch-smalltalk] -
Pharo Smalltalk client for Elasticsearch
[[vertx]]
== Vert.x
* https://github.com/reactiverse/elasticsearch-client[elasticsearch-client]:
An Elasticsearch client for Eclipse Vert.x

View File

@ -1,102 +0,0 @@
[[anatomy]]
== API Anatomy
Once a <<client,GClient>> has been
obtained, all of Elasticsearch APIs can be executed on it. Each Groovy
API is exposed using three different mechanisms.
[[closure]]
=== Closure Request
The first type is to simply provide the request as a Closure, which
automatically gets resolved into the respective request instance (for
the index API, its the `IndexRequest` class). The API returns a special
future, called `GActionFuture`. This is a groovier version of
Elasticsearch Java `ActionFuture` (in turn a nicer extension to Java own
`Future`) which allows to register listeners (closures) on it for
success and failures, as well as blocking for the response. For example:
[source,groovy]
--------------------------------------------------
def indexR = client.index {
index "test"
type "_doc"
id "1"
source {
test = "value"
complex {
value1 = "value1"
value2 = "value2"
}
}
}
println "Indexed $indexR.response.id into $indexR.response.index/$indexR.response.type"
--------------------------------------------------
In the above example, calling `indexR.response` will simply block for
the response. We can also block for the response for a specific timeout:
[source,groovy]
--------------------------------------------------
IndexResponse response = indexR.response "5s" // block for 5 seconds, same as:
response = indexR.response 5, TimeValue.SECONDS //
--------------------------------------------------
We can also register closures that will be called on success and on
failure:
[source,groovy]
--------------------------------------------------
indexR.success = {IndexResponse response ->
println "Indexed $response.id into $response.index/$response.type"
}
indexR.failure = {Throwable t ->
println "Failed to index: $t.message"
}
--------------------------------------------------
[[request]]
=== Request
This option allows to pass the actual instance of the request (instead
of a closure) as a parameter. The rest is similar to the closure as a
parameter option (the `GActionFuture` handling). For example:
[source,groovy]
--------------------------------------------------
def indexR = client.index (new IndexRequest(
index: "test",
type: "_doc",
id: "1",
source: {
test = "value"
complex {
value1 = "value1"
value2 = "value2"
}
}))
println "Indexed $indexR.response.id into $indexR.response.index/$indexR.response.type"
--------------------------------------------------
[[java-like]]
=== Java Like
The last option is to provide an actual instance of the API request, and
an `ActionListener` for the callback. This is exactly like the Java API
with the added `gexecute` which returns the `GActionFuture`:
[source,groovy]
--------------------------------------------------
def indexR = node.client.prepareIndex("test", "_doc", "1").setSource({
test = "value"
complex {
value1 = "value1"
value2 = "value2"
}
}).gexecute()
--------------------------------------------------

View File

@ -1,59 +0,0 @@
[[client]]
== Client
Obtaining an Elasticsearch Groovy `GClient` (a `GClient` is a simple
wrapper on top of the Java `Client`) is simple. The most common way to
get a client is by starting an embedded `Node` which acts as a node
within the cluster.
[[node-client]]
=== Node Client
A Node based client is the simplest form to get a `GClient` to start
executing operations against Elasticsearch.
[source,groovy]
--------------------------------------------------
import org.elasticsearch.groovy.client.GClient
import org.elasticsearch.groovy.node.GNode
import static org.elasticsearch.groovy.node.GNodeBuilder.nodeBuilder
// on startup
GNode node = nodeBuilder().node();
GClient client = node.client();
// on shutdown
node.close();
--------------------------------------------------
Since Elasticsearch allows to configure it using JSON based settings,
the configuration itself can be done using a closure that represent the
JSON:
[source,groovy]
--------------------------------------------------
import org.elasticsearch.groovy.node.GNode
import org.elasticsearch.groovy.node.GNodeBuilder
import static org.elasticsearch.groovy.node.GNodeBuilder.*
// on startup
GNodeBuilder nodeBuilder = nodeBuilder();
nodeBuilder.settings {
node {
client = true
}
cluster {
name = "test"
}
}
GNode node = nodeBuilder.node()
// on shutdown
node.stop().close()
--------------------------------------------------

View File

@ -1,16 +0,0 @@
[[delete]]
== Delete API
The delete API is very similar to the
// {javaclient}/java-docs-delete.html[]
Java delete API, here is an
example:
[source,groovy]
--------------------------------------------------
def deleteF = node.client.delete {
index "test"
type "_doc"
id "1"
}
--------------------------------------------------

View File

@ -1,19 +0,0 @@
[[get]]
== Get API
The get API is very similar to the
// {javaclient}/java-docs-get.html[]
Java get API. The main benefit
of using groovy is handling the source content. It can be automatically
converted to a `Map` which means using Groovy to navigate it is simple:
[source,groovy]
--------------------------------------------------
def getF = node.client.get {
index "test"
type "_doc"
id "1"
}
println "Result of field2: $getF.response.source.complex.field2"
--------------------------------------------------

View File

@ -1,48 +0,0 @@
= Groovy API
include::../Versions.asciidoc[]
[preface]
== Preface
This section describes the http://groovy-lang.org/[Groovy] API
Elasticsearch provides. All Elasticsearch APIs are executed using a
<<client,GClient>>, and are completely
asynchronous in nature (they either accept a listener, or return a
future).
The Groovy API is a wrapper on top of the
{javaclient}[Java API] exposing it in a groovier
manner. The execution options for each API follow a similar manner and
covered in <<anatomy>>.
[[maven]]
=== Maven Repository
The Groovy API is hosted on
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22elasticsearch-groovy%22[Maven
Central].
For example, you can define the latest version in your `pom.xml` file:
["source","xml",subs="attributes"]
--------------------------------------------------
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-groovy</artifactId>
<version>{version}</version>
</dependency>
--------------------------------------------------
include::anatomy.asciidoc[]
include::client.asciidoc[]
include::index_.asciidoc[]
include::get.asciidoc[]
include::delete.asciidoc[]
include::search.asciidoc[]

View File

@ -1,32 +0,0 @@
[[index_]]
== Index API
The index API is very similar to the
// {javaclient}/java-docs-index.html[]
Java index API. The Groovy
extension to it is the ability to provide the indexed source using a
closure. For example:
[source,groovy]
--------------------------------------------------
def indexR = client.index {
index "test"
type "_doc"
id "1"
source {
test = "value"
complex {
value1 = "value1"
value2 = "value2"
}
}
}
--------------------------------------------------
In the above example, the source closure itself gets transformed into an
XContent (defaults to JSON). In order to change how the source closure
is serialized, a global (static) setting can be set on the `GClient` by
changing the `indexContentType` field.
Note also that the `source` can be set using the typical Java based
APIs, the `Closure` option is a Groovy extension.

View File

@ -1,116 +0,0 @@
[[search]]
== Search API
The search API is very similar to the
// {javaclient}/java-search.html[]
Java search API. The Groovy
extension allows to provide the search source to execute as a `Closure`
including the query itself (similar to GORM criteria builder):
[source,groovy]
--------------------------------------------------
def search = node.client.search {
indices "test"
types "_doc"
source {
query {
term(test: "value")
}
}
}
search.response.hits.each {SearchHit hit ->
println "Got hit $hit.id from $hit.index/$hit.type"
}
--------------------------------------------------
It can also be executed using the "Java API" while still using a closure
for the query:
[source,groovy]
--------------------------------------------------
def search = node.client.prepareSearch("test").setQuery({
term(test: "value")
}).gexecute();
search.response.hits.each {SearchHit hit ->
println "Got hit $hit.id from $hit.index/$hit.type"
}
--------------------------------------------------
The format of the search `Closure` follows the same JSON syntax as the
{ref}/search-search.html[Search API] request.
[[more-examples]]
=== More examples
Term query where multiple values are provided (see
{ref}/query-dsl-terms-query.html[terms]):
[source,groovy]
--------------------------------------------------
def search = node.client.search {
indices "test"
types "_doc"
source {
query {
terms(test: ["value1", "value2"])
}
}
}
--------------------------------------------------
Query string (see
{ref}/query-dsl-query-string-query.html[query string]):
[source,groovy]
--------------------------------------------------
def search = node.client.search {
indices "test"
types "_doc"
source {
query {
query_string(
fields: ["test"],
query: "value1 value2")
}
}
}
--------------------------------------------------
Pagination (see
{ref}/search-request-from-size.html[from/size]):
[source,groovy]
--------------------------------------------------
def search = node.client.search {
indices "test"
types "_doc"
source {
from = 0
size = 10
query {
term(test: "value")
}
}
}
--------------------------------------------------
Sorting (see {ref}/search-request-sort.html[sort]):
[source,groovy]
--------------------------------------------------
def search = node.client.search {
indices "test"
types "_doc"
source {
query {
term(test: "value")
}
sort = [
date : [ order: "desc"]
]
}
}
--------------------------------------------------

View File

@ -1,76 +0,0 @@
[[java-admin-cluster-health]]
==== Cluster Health
[[java-admin-cluster-health-health]]
===== Health
The cluster health API allows to get a very simple status on the health of the cluster and also can give you
some technical information about the cluster status per index:
[source,java]
--------------------------------------------------
ClusterHealthResponse healths = client.admin().cluster().prepareHealth().get(); <1>
String clusterName = healths.getClusterName(); <2>
int numberOfDataNodes = healths.getNumberOfDataNodes(); <3>
int numberOfNodes = healths.getNumberOfNodes(); <4>
for (ClusterIndexHealth health : healths.getIndices().values()) { <5>
String index = health.getIndex(); <6>
int numberOfShards = health.getNumberOfShards(); <7>
int numberOfReplicas = health.getNumberOfReplicas(); <8>
ClusterHealthStatus status = health.getStatus(); <9>
}
--------------------------------------------------
<1> Get information for all indices
<2> Access the cluster name
<3> Get the total number of data nodes
<4> Get the total number of nodes
<5> Iterate over all indices
<6> Index name
<7> Number of shards
<8> Number of replicas
<9> Index status
[[java-admin-cluster-health-wait-status]]
===== Wait for status
You can use the cluster health API to wait for a specific status for the whole cluster or for a given index:
[source,java]
--------------------------------------------------
client.admin().cluster().prepareHealth() <1>
.setWaitForYellowStatus() <2>
.get();
client.admin().cluster().prepareHealth("company") <3>
.setWaitForGreenStatus() <4>
.get();
client.admin().cluster().prepareHealth("employee") <5>
.setWaitForGreenStatus() <6>
.setTimeout(TimeValue.timeValueSeconds(2)) <7>
.get();
--------------------------------------------------
<1> Prepare a health request
<2> Wait for the cluster being yellow
<3> Prepare the health request for index `company`
<4> Wait for the index being green
<5> Prepare the health request for index `employee`
<6> Wait for the index being green
<7> Wait at most for 2 seconds
If the index does not have the expected status and you want to fail in that case, you need
to explicitly interpret the result:
[source,java]
--------------------------------------------------
ClusterHealthResponse response = client.admin().cluster().prepareHealth("company")
.setWaitForGreenStatus() <1>
.get();
ClusterHealthStatus status = response.getIndices().get("company").getStatus();
if (!status.equals(ClusterHealthStatus.GREEN)) {
throw new RuntimeException("Index is in " + status + " state"); <2>
}
--------------------------------------------------
<1> Wait for the index being green
<2> Throw an exception if not `GREEN`

View File

@ -1,16 +0,0 @@
[[java-admin-cluster]]
=== Cluster Administration
To access cluster Java API, you need to call `cluster()` method from an <<java-admin,`AdminClient`>>:
[source,java]
--------------------------------------------------
ClusterAdminClient clusterAdminClient = client.admin().cluster();
--------------------------------------------------
[NOTE]
In the rest of this guide, we will use `client.admin().cluster()`.
include::health.asciidoc[]
include::stored-scripts.asciidoc[]

View File

@ -1,29 +0,0 @@
[[stored-scripts]]
==== Stored Scripts API
The stored script API allows one to interact with scripts and templates
stored in Elasticsearch. It can be used to create, update, get,
and delete stored scripts and templates.
[source,java]
--------------------------------------------------
PutStoredScriptResponse response = client.admin().cluster().preparePutStoredScript()
.setId("script1")
.setContent(new BytesArray("{\"script\": {\"lang\": \"painless\", \"source\": \"_score * doc['my_numeric_field'].value\"} }"), XContentType.JSON)
.get();
GetStoredScriptResponse response = client().admin().cluster().prepareGetStoredScript()
.setId("script1")
.get();
DeleteStoredScriptResponse response = client().admin().cluster().prepareDeleteStoredScript()
.setId("script1")
.get();
--------------------------------------------------
To store templates simply use "mustache" for the scriptLang.
===== Script Language
The put stored script API allows one to set the language of the stored script.
If one is not provided the default scripting language will be used.

View File

@ -1,18 +0,0 @@
[[java-admin]]
== Java API Administration
Elasticsearch provides a full Java API to deal with administration tasks.
To access them, you need to call `admin()` method from a client to get an `AdminClient`:
[source,java]
--------------------------------------------------
AdminClient adminClient = client.admin();
--------------------------------------------------
[NOTE]
In the rest of this guide, we will use `client.admin()`.
include::indices/index.asciidoc[]
include::cluster/index.asciidoc[]

View File

@ -1,28 +0,0 @@
[[java-admin-indices-create-index]]
==== Create Index
Using an <<java-admin-indices,`IndicesAdminClient`>>, you can create an index with all default settings and no mapping:
[source,java]
--------------------------------------------------
client.admin().indices().prepareCreate("twitter").get();
--------------------------------------------------
[discrete]
[[java-admin-indices-create-index-settings]]
===== Index Settings
Each index created can have specific settings associated with it.
[source,java]
--------------------------------------------------
client.admin().indices().prepareCreate("twitter")
.setSettings(Settings.builder() <1>
.put("index.number_of_shards", 3)
.put("index.number_of_replicas", 2)
)
.get(); <2>
--------------------------------------------------
<1> Settings for this index
<2> Execute the action and wait for the result

View File

@ -1,22 +0,0 @@
[[java-admin-indices-get-settings]]
==== Get Settings
The get settings API allows to retrieve settings of index/indices:
[source,java]
--------------------------------------------------
GetSettingsResponse response = client.admin().indices()
.prepareGetSettings("company", "employee").get(); <1>
for (ObjectObjectCursor<String, Settings> cursor : response.getIndexToSettings()) { <2>
String index = cursor.key; <3>
Settings settings = cursor.value; <4>
Integer shards = settings.getAsInt("index.number_of_shards", null); <5>
Integer replicas = settings.getAsInt("index.number_of_replicas", null); <6>
}
--------------------------------------------------
<1> Get settings for indices `company` and `employee`
<2> Iterate over results
<3> Index name
<4> Settings for the given index
<5> Number of shards for this index
<6> Number of replicas for this index

View File

@ -1,21 +0,0 @@
[[java-admin-indices]]
=== Indices Administration
To access indices Java API, you need to call `indices()` method from an <<java-admin,`AdminClient`>>:
[source,java]
--------------------------------------------------
IndicesAdminClient indicesAdminClient = client.admin().indices();
--------------------------------------------------
[NOTE]
In the rest of this guide, we will use `client.admin().indices()`.
include::create-index.asciidoc[]
include::put-mapping.asciidoc[]
include::refresh.asciidoc[]
include::get-settings.asciidoc[]
include::update-settings.asciidoc[]

View File

@ -1,30 +0,0 @@
[[java-admin-indices-put-mapping]]
==== Put Mapping
You can add mappings at index creation time:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-tests}/IndicesDocumentationIT.java[index-with-mapping]
--------------------------------------------------
<1> <<java-admin-indices-create-index,Creates an index>> called `twitter`
<2> Add a `_doc` type with a field called `message` that has the data type `text`.
There are several variants of the above `addMapping` method, some taking an
`XContentBuilder` or a `Map` with the mapping definition as arguments. Make sure
to check the javadocs to pick the simplest one for your use case.
The PUT mapping API also allows for updating the mapping after index
creation. In this case you can provide the mapping as a String similar
to the REST API syntax:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-tests}/IndicesDocumentationIT.java[putMapping-request-source]
--------------------------------------------------
<1> Puts a mapping on existing index called `twitter`
<2> Adds a new field `name` to the mapping
<3> The type can be also provided within the source
:base-dir!:

View File

@ -1,19 +0,0 @@
[[java-admin-indices-refresh]]
==== Refresh
The refresh API allows to explicitly refresh one or more index:
[source,java]
--------------------------------------------------
client.admin().indices().prepareRefresh().get(); <1>
client.admin().indices()
.prepareRefresh("twitter") <2>
.get();
client.admin().indices()
.prepareRefresh("twitter", "company") <3>
.get();
--------------------------------------------------
<1> Refresh all indices
<2> Refresh one index
<3> Refresh many indices

View File

@ -1,16 +0,0 @@
[[java-admin-indices-update-settings]]
==== Update Indices Settings
You can change index settings by calling:
[source,java]
--------------------------------------------------
client.admin().indices().prepareUpdateSettings("twitter") <1>
.setSettings(Settings.builder() <2>
.put("index.number_of_replicas", 0)
)
.get();
--------------------------------------------------
<1> Index to update
<2> Settings

View File

@ -1,33 +0,0 @@
[[java-aggregations-bucket]]
include::bucket/global-aggregation.asciidoc[]
include::bucket/filter-aggregation.asciidoc[]
include::bucket/filters-aggregation.asciidoc[]
include::bucket/missing-aggregation.asciidoc[]
include::bucket/nested-aggregation.asciidoc[]
include::bucket/reverse-nested-aggregation.asciidoc[]
include::bucket/children-aggregation.asciidoc[]
include::bucket/terms-aggregation.asciidoc[]
include::bucket/significantterms-aggregation.asciidoc[]
include::bucket/range-aggregation.asciidoc[]
include::bucket/daterange-aggregation.asciidoc[]
include::bucket/iprange-aggregation.asciidoc[]
include::bucket/histogram-aggregation.asciidoc[]
include::bucket/datehistogram-aggregation.asciidoc[]
include::bucket/geodistance-aggregation.asciidoc[]
include::bucket/geohashgrid-aggregation.asciidoc[]

View File

@ -1,35 +0,0 @@
[[java-aggs-bucket-children]]
==== Children Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-children-aggregation.html[Children Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.children("agg", "reseller"); <1>
--------------------------------------------------
1. `"agg"` is the name of the aggregation and `"reseller"` is the child type
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.join.aggregations.Children;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Children agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
--------------------------------------------------

View File

@ -1,73 +0,0 @@
[[java-aggs-bucket-datehistogram]]
==== Date Histogram Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-datehistogram-aggregation.html[Date Histogram Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.dateHistogram("agg")
.field("dateOfBirth")
.calendarInterval(DateHistogramInterval.YEAR);
--------------------------------------------------
Or if you want to set an interval of 10 days:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.dateHistogram("agg")
.field("dateOfBirth")
.fixedInterval(DateHistogramInterval.days(10));
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Histogram agg = sr.getAggregations().get("agg");
// For each entry
for (Histogram.Bucket entry : agg.getBuckets()) {
DateTime key = (DateTime) entry.getKey(); // Key
String keyAsString = entry.getKeyAsString(); // Key as String
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], date [{}], doc_count [{}]", keyAsString, key.getYear(), docCount);
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
key [1942-01-01T00:00:00.000Z], date [1942], doc_count [1]
key [1945-01-01T00:00:00.000Z], date [1945], doc_count [1]
key [1946-01-01T00:00:00.000Z], date [1946], doc_count [1]
...
key [2005-01-01T00:00:00.000Z], date [2005], doc_count [1]
key [2007-01-01T00:00:00.000Z], date [2007], doc_count [2]
key [2008-01-01T00:00:00.000Z], date [2008], doc_count [3]
--------------------------------------------------
===== Order
Supports the same order functionality as the <<java-aggs-bucket-terms,`Terms Aggregation`>>.

View File

@ -1,59 +0,0 @@
[[java-aggs-bucket-daterange]]
==== Date Range Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-daterange-aggregation.html[Date Range Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.dateRange("agg")
.field("dateOfBirth")
.format("yyyy")
.addUnboundedTo("1950") // from -infinity to 1950 (excluded)
.addRange("1950", "1960") // from 1950 to 1960 (excluded)
.addUnboundedFrom("1960"); // from 1960 to +infinity
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.range.Range;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Date range as key
DateTime fromAsDate = (DateTime) entry.getFrom(); // Date bucket from as a Date
DateTime toAsDate = (DateTime) entry.getTo(); // Date bucket to as a Date
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, fromAsDate, toAsDate, docCount);
}
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
key [*-1950], from [null], to [1950-01-01T00:00:00.000Z], doc_count [8]
key [1950-1960], from [1950-01-01T00:00:00.000Z], to [1960-01-01T00:00:00.000Z], doc_count [5]
key [1960-*], from [1960-01-01T00:00:00.000Z], to [null], doc_count [37]
--------------------------------------------------

View File

@ -1,34 +0,0 @@
[[java-aggs-bucket-filter]]
==== Filter Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-filter-aggregation.html[Filter Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilders
.filter("agg", QueryBuilders.termQuery("gender", "male"));
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.filter.Filter;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Filter agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
--------------------------------------------------

View File

@ -1,51 +0,0 @@
[[java-aggs-bucket-filters]]
==== Filters Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-filters-aggregation.html[Filters Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.filters("agg",
new FiltersAggregator.KeyedFilter("men", QueryBuilders.termQuery("gender", "male")),
new FiltersAggregator.KeyedFilter("women", QueryBuilders.termQuery("gender", "female")));
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.filters.Filters;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Filters agg = sr.getAggregations().get("agg");
// For each entry
for (Filters.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // bucket key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
}
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
key [men], doc_count [4982]
key [women], doc_count [5018]
--------------------------------------------------

View File

@ -1,58 +0,0 @@
[[java-aggs-bucket-geodistance]]
==== Geo Distance Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-geodistance-aggregation.html[Geo Distance Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.geoDistance("agg", new GeoPoint(48.84237171118314,2.33320027692004))
.field("address.location")
.unit(DistanceUnit.KILOMETERS)
.addUnboundedTo(3.0)
.addRange(3.0, 10.0)
.addRange(10.0, 500.0);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.range.Range;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // key as String
Number from = (Number) entry.getFrom(); // bucket from value
Number to = (Number) entry.getTo(); // bucket to value
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, from, to, docCount);
}
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
key [*-3.0], from [0.0], to [3.0], doc_count [161]
key [3.0-10.0], from [3.0], to [10.0], doc_count [460]
key [10.0-500.0], from [10.0], to [500.0], doc_count [4925]
--------------------------------------------------

View File

@ -1,57 +0,0 @@
[[java-aggs-bucket-geohashgrid]]
==== Geo Hash Grid Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-geohashgrid-aggregation.html[Geo Hash Grid Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.geohashGrid("agg")
.field("address.location")
.precision(4);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.geogrid.GeoHashGrid;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
GeoHashGrid agg = sr.getAggregations().get("agg");
// For each entry
for (GeoHashGrid.Bucket entry : agg.getBuckets()) {
String keyAsString = entry.getKeyAsString(); // key as String
GeoPoint key = (GeoPoint) entry.getKey(); // key as geo point
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], point {}, doc_count [{}]", keyAsString, key, docCount);
}
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
key [gbqu], point [47.197265625, -1.58203125], doc_count [1282]
key [gbvn], point [50.361328125, -4.04296875], doc_count [1248]
key [u1j0], point [50.712890625, 7.20703125], doc_count [1156]
key [u0j2], point [45.087890625, 7.55859375], doc_count [1138]
...
--------------------------------------------------

View File

@ -1,35 +0,0 @@
[[java-aggs-bucket-global]]
==== Global Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-global-aggregation.html[Global Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilders
.global("agg")
.subAggregation(AggregationBuilders.terms("genders").field("gender"));
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.global.Global;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Global agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
--------------------------------------------------

View File

@ -1,48 +0,0 @@
[[java-aggs-bucket-histogram]]
==== Histogram Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-histogram-aggregation.html[Histogram Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.histogram("agg")
.field("height")
.interval(1);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Histogram agg = sr.getAggregations().get("agg");
// For each entry
for (Histogram.Bucket entry : agg.getBuckets()) {
Number key = (Number) entry.getKey(); // Key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
}
--------------------------------------------------
===== Order
Supports the same order functionality as the <<java-aggs-bucket-terms,`Terms Aggregation`>>.

View File

@ -1,79 +0,0 @@
[[java-aggs-bucket-iprange]]
==== Ip Range Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-iprange-aggregation.html[Ip Range Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder<?> aggregation =
AggregationBuilders
.ipRange("agg")
.field("ip")
.addUnboundedTo("192.168.1.0") // from -infinity to 192.168.1.0 (excluded)
.addRange("192.168.1.0", "192.168.2.0") // from 192.168.1.0 to 192.168.2.0 (excluded)
.addUnboundedFrom("192.168.2.0"); // from 192.168.2.0 to +infinity
--------------------------------------------------
Note that you could also use ip masks as ranges:
[source,java]
--------------------------------------------------
AggregationBuilder<?> aggregation =
AggregationBuilders
.ipRange("agg")
.field("ip")
.addMaskRange("192.168.0.0/32")
.addMaskRange("192.168.0.0/24")
.addMaskRange("192.168.0.0/16");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.range.Range;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Ip range as key
String fromAsString = entry.getFromAsString(); // Ip bucket from as a String
String toAsString = entry.getToAsString(); // Ip bucket to as a String
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, fromAsString, toAsString, docCount);
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
key [*-192.168.1.0], from [null], to [192.168.1.0], doc_count [13]
key [192.168.1.0-192.168.2.0], from [192.168.1.0], to [192.168.2.0], doc_count [14]
key [192.168.2.0-*], from [192.168.2.0], to [null], doc_count [23]
--------------------------------------------------
And for the second one (using Ip masks):
[source,text]
--------------------------------------------------
key [192.168.0.0/32], from [192.168.0.0], to [192.168.0.1], doc_count [0]
key [192.168.0.0/24], from [192.168.0.0], to [192.168.1.0], doc_count [13]
key [192.168.0.0/16], from [192.168.0.0], to [192.169.0.0], doc_count [50]
--------------------------------------------------

View File

@ -1,34 +0,0 @@
[[java-aggs-bucket-missing]]
==== Missing Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-missing-aggregation.html[Missing Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilders.missing("agg").field("gender");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.missing.Missing;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Missing agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
--------------------------------------------------

View File

@ -1,34 +0,0 @@
[[java-aggs-bucket-nested]]
==== Nested Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-nested-aggregation.html[Nested Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilders
.nested("agg", "resellers");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.nested.Nested;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
--------------------------------------------------

View File

@ -1,58 +0,0 @@
[[java-aggs-bucket-range]]
==== Range Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-range-aggregation.html[Range Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.range("agg")
.field("height")
.addUnboundedTo(1.0f) // from -infinity to 1.0 (excluded)
.addRange(1.0f, 1.5f) // from 1.0 to 1.5 (excluded)
.addUnboundedFrom(1.5f); // from 1.5 to +infinity
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.range.Range;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Range as key
Number from = (Number) entry.getFrom(); // Bucket from
Number to = (Number) entry.getTo(); // Bucket to
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, from, to, docCount);
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
key [*-1.0], from [-Infinity], to [1.0], doc_count [9]
key [1.0-1.5], from [1.0], to [1.5], doc_count [21]
key [1.5-*], from [1.5], to [Infinity], doc_count [20]
--------------------------------------------------

View File

@ -1,50 +0,0 @@
[[java-aggs-bucket-reverse-nested]]
==== Reverse Nested Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-reverse-nested-aggregation.html[Reverse Nested Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.nested("agg", "resellers")
.subAggregation(
AggregationBuilders
.terms("name").field("resellers.name")
.subAggregation(
AggregationBuilders
.reverseNested("reseller_to_product")
)
);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.nested.Nested;
import org.elasticsearch.search.aggregations.bucket.nested.ReverseNested;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
Terms name = agg.getAggregations().get("name");
for (Terms.Bucket bucket : name.getBuckets()) {
ReverseNested resellerToProduct = bucket.getAggregations().get("reseller_to_product");
resellerToProduct.getDocCount(); // Doc count
}
--------------------------------------------------

View File

@ -1,47 +0,0 @@
[[java-aggs-bucket-significantterms]]
==== Significant Terms Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-significantterms-aggregation.html[Significant Terms Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.significantTerms("significant_countries")
.field("address.country");
// Let say you search for men only
SearchResponse sr = client.prepareSearch()
.setQuery(QueryBuilders.termQuery("gender", "male"))
.addAggregation(aggregation)
.get();
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.significant.SignificantTerms;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
SignificantTerms agg = sr.getAggregations().get("significant_countries");
// For each entry
for (SignificantTerms.Bucket entry : agg.getBuckets()) {
entry.getKey(); // Term
entry.getDocCount(); // Doc count
}
--------------------------------------------------

View File

@ -1,97 +0,0 @@
[[java-aggs-bucket-terms]]
==== Terms Aggregation
Here is how you can use
{ref}/search-aggregations-bucket-terms-aggregation.html[Terms Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilders
.terms("genders")
.field("gender");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Terms genders = sr.getAggregations().get("genders");
// For each entry
for (Terms.Bucket entry : genders.getBuckets()) {
entry.getKey(); // Term
entry.getDocCount(); // Doc count
}
--------------------------------------------------
===== Order
Import bucket ordering strategy classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.BucketOrder;
--------------------------------------------------
Ordering the buckets by their `doc_count` in an ascending manner:
[source,java]
--------------------------------------------------
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.count(true))
--------------------------------------------------
Ordering the buckets alphabetically by their terms in an ascending manner:
[source,java]
--------------------------------------------------
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.key(true))
--------------------------------------------------
Ordering the buckets by single value metrics sub-aggregation (identified by the aggregation name):
[source,java]
--------------------------------------------------
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.aggregation("avg_height", false))
.subAggregation(
AggregationBuilders.avg("avg_height").field("height")
)
--------------------------------------------------
Ordering the buckets by multiple criteria:
[source,java]
--------------------------------------------------
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.compound( // in order of priority:
BucketOrder.aggregation("avg_height", false), // sort by sub-aggregation first
BucketOrder.count(true))) // then bucket count as a tie-breaker
.subAggregation(
AggregationBuilders.avg("avg_height").field("height")
)
--------------------------------------------------

View File

@ -1,27 +0,0 @@
[[java-aggregations-metrics]]
include::metrics/min-aggregation.asciidoc[]
include::metrics/max-aggregation.asciidoc[]
include::metrics/sum-aggregation.asciidoc[]
include::metrics/avg-aggregation.asciidoc[]
include::metrics/stats-aggregation.asciidoc[]
include::metrics/extendedstats-aggregation.asciidoc[]
include::metrics/valuecount-aggregation.asciidoc[]
include::metrics/percentile-aggregation.asciidoc[]
include::metrics/percentile-rank-aggregation.asciidoc[]
include::metrics/cardinality-aggregation.asciidoc[]
include::metrics/geobounds-aggregation.asciidoc[]
include::metrics/tophits-aggregation.asciidoc[]
include::metrics/scripted-metric-aggregation.asciidoc[]

View File

@ -1,37 +0,0 @@
[[java-aggs-metrics-avg]]
==== Avg Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-avg-aggregation.html[Avg Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AvgAggregationBuilder aggregation =
AggregationBuilders
.avg("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.avg.Avg;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Avg agg = sr.getAggregations().get("agg");
double value = agg.getValue();
--------------------------------------------------

View File

@ -1,38 +0,0 @@
[[java-aggs-metrics-cardinality]]
==== Cardinality Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-cardinality-aggregation.html[Cardinality Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
CardinalityAggregationBuilder aggregation =
AggregationBuilders
.cardinality("agg")
.field("tags");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.cardinality.Cardinality;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Cardinality agg = sr.getAggregations().get("agg");
long value = agg.getValue();
--------------------------------------------------

View File

@ -1,44 +0,0 @@
[[java-aggs-metrics-extendedstats]]
==== Extended Stats Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-extendedstats-aggregation.html[Extended Stats Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
ExtendedStatsAggregationBuilder aggregation =
AggregationBuilders
.extendedStats("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.stats.extended.ExtendedStats;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
ExtendedStats agg = sr.getAggregations().get("agg");
double min = agg.getMin();
double max = agg.getMax();
double avg = agg.getAvg();
double sum = agg.getSum();
long count = agg.getCount();
double stdDeviation = agg.getStdDeviation();
double sumOfSquares = agg.getSumOfSquares();
double variance = agg.getVariance();
--------------------------------------------------

View File

@ -1,46 +0,0 @@
[[java-aggs-metrics-geobounds]]
==== Geo Bounds Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-geobounds-aggregation.html[Geo Bounds Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
GeoBoundsAggregationBuilder aggregation =
GeoBoundsAggregationBuilder
.geoBounds("agg")
.field("address.location")
.wrapLongitude(true);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.geobounds.GeoBounds;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
GeoBounds agg = sr.getAggregations().get("agg");
GeoPoint bottomRight = agg.bottomRight();
GeoPoint topLeft = agg.topLeft();
logger.info("bottomRight {}, topLeft {}", bottomRight, topLeft);
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
bottomRight [40.70500764381921, 13.952946866893775], topLeft [53.49603022435221, -4.190029308156676]
--------------------------------------------------

View File

@ -1,37 +0,0 @@
[[java-aggs-metrics-max]]
==== Max Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-max-aggregation.html[Max Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
MaxAggregationBuilder aggregation =
AggregationBuilders
.max("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.max.Max;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Max agg = sr.getAggregations().get("agg");
double value = agg.getValue();
--------------------------------------------------

View File

@ -1,37 +0,0 @@
[[java-aggs-metrics-min]]
==== Min Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-min-aggregation.html[Min Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
MinAggregationBuilder aggregation =
AggregationBuilders
.min("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.min.Min;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Min agg = sr.getAggregations().get("agg");
double value = agg.getValue();
--------------------------------------------------

View File

@ -1,68 +0,0 @@
[[java-aggs-metrics-percentile]]
==== Percentile Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-percentile-aggregation.html[Percentile Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
PercentilesAggregationBuilder aggregation =
AggregationBuilders
.percentiles("agg")
.field("height");
--------------------------------------------------
You can provide your own percentiles instead of using defaults:
[source,java]
--------------------------------------------------
PercentilesAggregationBuilder aggregation =
AggregationBuilders
.percentiles("agg")
.field("height")
.percentiles(1.0, 5.0, 10.0, 20.0, 30.0, 75.0, 95.0, 99.0);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentile;
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentiles;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Percentiles agg = sr.getAggregations().get("agg");
// For each entry
for (Percentile entry : agg) {
double percent = entry.getPercent(); // Percent
double value = entry.getValue(); // Value
logger.info("percent [{}], value [{}]", percent, value);
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
percent [1.0], value [0.814338896154595]
percent [5.0], value [0.8761912455821302]
percent [25.0], value [1.173346540141847]
percent [50.0], value [1.5432023318692198]
percent [75.0], value [1.923915462033674]
percent [95.0], value [2.2273644908535335]
percent [99.0], value [2.284989339108279]
--------------------------------------------------

View File

@ -1,55 +0,0 @@
[[java-aggs-metrics-percentile-rank]]
==== Percentile Ranks Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-percentile-rank-aggregation.html[Percentile Ranks Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
PercentileRanksAggregationBuilder aggregation =
AggregationBuilders
.percentileRanks("agg")
.field("height")
.values(1.24, 1.91, 2.22);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentile;
import org.elasticsearch.search.aggregations.metrics.percentiles.PercentileRanks;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
PercentileRanks agg = sr.getAggregations().get("agg");
// For each entry
for (Percentile entry : agg) {
double percent = entry.getPercent(); // Percent
double value = entry.getValue(); // Value
logger.info("percent [{}], value [{}]", percent, value);
}
--------------------------------------------------
This will basically produce:
[source,text]
--------------------------------------------------
percent [29.664353095090945], value [1.24]
percent [73.9335313461868], value [1.91]
percent [94.40095147327283], value [2.22]
--------------------------------------------------

View File

@ -1,100 +0,0 @@
[[java-aggs-metrics-scripted-metric]]
==== Scripted Metric Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-scripted-metric-aggregation.html[Scripted Metric Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"));
--------------------------------------------------
You can also specify a `combine` script which will be executed on each shard:
[source,java]
--------------------------------------------------
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"))
.combineScript(new Script("double heights_sum = 0.0; for (t in state.heights) { heights_sum += t } return heights_sum"));
--------------------------------------------------
You can also specify a `reduce` script which will be executed on the node which gets the request:
[source,java]
--------------------------------------------------
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"))
.combineScript(new Script("double heights_sum = 0.0; for (t in state.heights) { heights_sum += t } return heights_sum"))
.reduceScript(new Script("double heights_sum = 0.0; for (a in states) { heights_sum += a } return heights_sum"));
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.tophits.TopHits;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
ScriptedMetric agg = sr.getAggregations().get("agg");
Object scriptedResult = agg.aggregation();
logger.info("scriptedResult [{}]", scriptedResult);
--------------------------------------------------
Note that the result depends on the script you built.
For the first example, this will basically produce:
[source,text]
--------------------------------------------------
scriptedResult object [ArrayList]
scriptedResult [ {
"heights" : [ 1.122218480146643, -1.8148918111233887, -1.7626731575142909, ... ]
}, {
"heights" : [ -0.8046067304119863, -2.0785486707864553, -1.9183567430207953, ... ]
}, {
"heights" : [ 2.092635728868694, 1.5697545960886536, 1.8826954461968808, ... ]
}, {
"heights" : [ -2.1863201099468403, 1.6328549117346856, -1.7078288405893842, ... ]
}, {
"heights" : [ 1.6043904836424177, -2.0736538674414025, 0.9898266674373053, ... ]
} ]
--------------------------------------------------
The second example will produce:
[source,text]
--------------------------------------------------
scriptedResult object [ArrayList]
scriptedResult [-41.279615707402876,
-60.88007362339038,
38.823270659734256,
14.840192739445632,
11.300902755741326]
--------------------------------------------------
The last example will produce:
[source,text]
--------------------------------------------------
scriptedResult object [Double]
scriptedResult [2.171917696507009]
--------------------------------------------------

View File

@ -1,41 +0,0 @@
[[java-aggs-metrics-stats]]
==== Stats Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-stats-aggregation.html[Stats Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
StatsAggregationBuilder aggregation =
AggregationBuilders
.stats("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.stats.Stats;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Stats agg = sr.getAggregations().get("agg");
double min = agg.getMin();
double max = agg.getMax();
double avg = agg.getAvg();
double sum = agg.getSum();
long count = agg.getCount();
--------------------------------------------------

View File

@ -1,37 +0,0 @@
[[java-aggs-metrics-sum]]
==== Sum Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-sum-aggregation.html[Sum Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
SumAggregationBuilder aggregation =
AggregationBuilders
.sum("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.sum.Sum;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Sum agg = sr.getAggregations().get("agg");
double value = agg.getValue();
--------------------------------------------------

View File

@ -1,79 +0,0 @@
[[java-aggs-metrics-tophits]]
==== Top Hits Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-top-hits-aggregation.html[Top Hits Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
);
--------------------------------------------------
You can use most of the options available for standard search such as `from`, `size`, `sort`, `highlight`, `explain`...
[source,java]
--------------------------------------------------
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
.explain(true)
.size(1)
.from(10)
);
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.tophits.TopHits;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
Terms agg = sr.getAggregations().get("agg");
// For each entry
for (Terms.Bucket entry : agg.getBuckets()) {
String key = entry.getKey(); // bucket key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
// We ask for top_hits for each bucket
TopHits topHits = entry.getAggregations().get("top");
for (SearchHit hit : topHits.getHits().getHits()) {
logger.info(" -> id [{}], _source [{}]", hit.getId(), hit.getSourceAsString());
}
}
--------------------------------------------------
This will basically produce for the first example:
[source,text]
--------------------------------------------------
key [male], doc_count [5107]
-> id [AUnzSZze9k7PKXtq04x2], _source [{"gender":"male",...}]
-> id [AUnzSZzj9k7PKXtq04x4], _source [{"gender":"male",...}]
-> id [AUnzSZzl9k7PKXtq04x5], _source [{"gender":"male",...}]
key [female], doc_count [4893]
-> id [AUnzSZzM9k7PKXtq04xy], _source [{"gender":"female",...}]
-> id [AUnzSZzp9k7PKXtq04x8], _source [{"gender":"female",...}]
-> id [AUnzSZ0W9k7PKXtq04yS], _source [{"gender":"female",...}]
--------------------------------------------------

View File

@ -1,37 +0,0 @@
[[java-aggs-metrics-valuecount]]
==== Value Count Aggregation
Here is how you can use
{ref}/search-aggregations-metrics-valuecount-aggregation.html[Value Count Aggregation]
with Java API.
===== Prepare aggregation request
Here is an example on how to create the aggregation request:
[source,java]
--------------------------------------------------
ValueCountAggregationBuilder aggregation =
AggregationBuilders
.count("agg")
.field("height");
--------------------------------------------------
===== Use aggregation response
Import Aggregation definition classes:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.metrics.valuecount.ValueCount;
--------------------------------------------------
[source,java]
--------------------------------------------------
// sr is here your SearchResponse object
ValueCount agg = sr.getAggregations().get("agg");
long value = agg.getValue();
--------------------------------------------------

View File

@ -1,63 +0,0 @@
[[java-aggs]]
== Aggregations
Elasticsearch provides a full Java API to play with aggregations. See the
{ref}/search-aggregations.html[Aggregations guide].
Use the factory for aggregation builders (`AggregationBuilders`) and add each aggregation
you want to compute when querying and add it to your search request:
[source,java]
--------------------------------------------------
SearchResponse sr = node.client().prepareSearch()
.setQuery( /* your query */ )
.addAggregation( /* add an aggregation */ )
.execute().actionGet();
--------------------------------------------------
Note that you can add more than one aggregation. See
{ref}/search-search.html[Search Java API] for details.
To build aggregation requests, use `AggregationBuilders` helpers. Just import them
in your class:
[source,java]
--------------------------------------------------
import org.elasticsearch.search.aggregations.AggregationBuilders;
--------------------------------------------------
=== Structuring aggregations
As explained in the
{ref}/search-aggregations.html[Aggregations guide], you can define
sub aggregations inside an aggregation.
An aggregation could be a metrics aggregation or a bucket aggregation.
For example, here is a 3 levels aggregation composed of:
* Terms aggregation (bucket)
* Date Histogram aggregation (bucket)
* Average aggregation (metric)
[source,java]
--------------------------------------------------
SearchResponse sr = node.client().prepareSearch()
.addAggregation(
AggregationBuilders.terms("by_country").field("country")
.subAggregation(AggregationBuilders.dateHistogram("by_year")
.field("dateOfBirth")
.calendarInterval(DateHistogramInterval.YEAR)
.subAggregation(AggregationBuilders.avg("avg_children").field("children"))
)
)
.execute().actionGet();
--------------------------------------------------
=== Metrics aggregations
include::aggregations/metrics.asciidoc[]
=== Bucket aggregations
include::aggregations/bucket.asciidoc[]

View File

@ -1,110 +0,0 @@
[[client]]
== Client
You can use the *Java client* in multiple ways:
* Perform standard <<java-docs-index,index>>, <<java-docs-get,get>>,
<<java-docs-delete,delete>> and <<java-search,search>> operations on an
existing cluster
* Perform administrative tasks on a running cluster
Obtaining an Elasticsearch `Client` is simple. The most common way to
get a client is by creating a <<transport-client,`TransportClient`>>
that connects to a cluster.
[IMPORTANT]
==============================
The client must have the same major version (e.g. `2.x`, or `5.x`) as the
nodes in the cluster. Clients may connect to clusters which have a different
minor version (e.g. `2.3.x`) but it is possible that new functionality may not
be supported. Ideally, the client should have the same version as the
cluster.
==============================
[[transport-client]]
=== Transport Client
deprecated[7.0.0, The `TransportClient` is deprecated in favour of the {java-rest}/java-rest-high.html[Java High Level REST Client] and will be removed in Elasticsearch 8.0. The {java-rest}/java-rest-high-level-migration.html[migration guide] describes all the steps needed to migrate.]
The `TransportClient` connects remotely to an Elasticsearch cluster
using the transport module. It does not join the cluster, but simply
gets one or more initial transport addresses and communicates with them
in round robin fashion on each action (though most actions will probably
be "two hop" operations).
[source,java]
--------------------------------------------------
// on startup
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new TransportAddress(InetAddress.getByName("host1"), 9300))
.addTransportAddress(new TransportAddress(InetAddress.getByName("host2"), 9300));
// on shutdown
client.close();
--------------------------------------------------
Note that you have to set the cluster name if you use one different than
"elasticsearch":
[source,java]
--------------------------------------------------
Settings settings = Settings.builder()
.put("cluster.name", "myClusterName").build();
TransportClient client = new PreBuiltTransportClient(settings);
//Add transport addresses and do something with the client...
--------------------------------------------------
The Transport client comes with a cluster sniffing feature which
allows it to dynamically add new hosts and remove old ones.
When sniffing is enabled, the transport client will connect to the nodes in its
internal node list, which is built via calls to `addTransportAddress`.
After this, the client will call the internal cluster state API on those nodes
to discover available data nodes. The internal node list of the client will
be replaced with those data nodes only. This list is refreshed every five seconds by default.
Note that the IP addresses the sniffer connects to are the ones declared as the 'publish'
address in those node's Elasticsearch config.
Keep in mind that the list might possibly not include the original node it connected to
if that node is not a data node. If, for instance, you initially connect to a
master node, after sniffing, no further requests will go to that master node,
but rather to any data nodes instead. The reason the transport client excludes non-data
nodes is to avoid sending search traffic to master only nodes.
In order to enable sniffing, set `client.transport.sniff` to `true`:
[source,java]
--------------------------------------------------
Settings settings = Settings.builder()
.put("client.transport.sniff", true).build();
TransportClient client = new PreBuiltTransportClient(settings);
--------------------------------------------------
Other transport client level settings include:
[cols="<,<",options="header",]
|=======================================================================
|Parameter |Description
|`client.transport.ignore_cluster_name` |Set to `true` to ignore cluster
name validation of connected nodes. (since 0.19.4)
|`client.transport.ping_timeout` |The time to wait for a ping response
from a node. Defaults to `5s`.
|`client.transport.nodes_sampler_interval` |How often to sample / ping
the nodes listed and connected. Defaults to `5s`.
|=======================================================================
[[client-connected-to-client-node]]
=== Connecting a Client to a Coordinating Only Node
You can start locally a {ref}/modules-node.html#coordinating-only-node[Coordinating Only Node]
and then simply create a <<transport-client,`TransportClient`>> in your
application which connects to this Coordinating Only Node.
This way, the coordinating only node will be able to load whatever plugin you
need (think about discovery plugins for example).

View File

@ -1,36 +0,0 @@
[[java-docs]]
== Document APIs
This section describes the following CRUD APIs:
.Single document APIs
* <<java-docs-index>>
* <<java-docs-get>>
* <<java-docs-delete>>
* <<java-docs-update>>
.Multi-document APIs
* <<java-docs-multi-get>>
* <<java-docs-bulk>>
* <<java-docs-reindex>>
* <<java-docs-update-by-query>>
* <<java-docs-delete-by-query>>
NOTE: All CRUD APIs are single-index APIs. The `index` parameter accepts a single
index name, or an `alias` which points to a single index.
include::docs/index_.asciidoc[]
include::docs/get.asciidoc[]
include::docs/delete.asciidoc[]
include::docs/update.asciidoc[]
include::docs/multi-get.asciidoc[]
include::docs/bulk.asciidoc[]
include::docs/update-by-query.asciidoc[]
include::docs/reindex.asciidoc[]

View File

@ -1,190 +0,0 @@
[[java-docs-bulk]]
=== Bulk API
The bulk API allows one to index and delete several documents in a
single request. Here is a sample usage:
[source,java]
--------------------------------------------------
import static org.elasticsearch.common.xcontent.XContentFactory.*;
BulkRequestBuilder bulkRequest = client.prepareBulk();
// either use client#prepare, or use Requests# to directly build index/delete requests
bulkRequest.add(client.prepareIndex("twitter", "_doc", "1")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("twitter", "_doc", "2")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "another post")
.endObject()
)
);
BulkResponse bulkResponse = bulkRequest.get();
if (bulkResponse.hasFailures()) {
// process failures by iterating through each bulk response item
}
--------------------------------------------------
[[java-docs-bulk-processor]]
=== Using Bulk Processor
The `BulkProcessor` class offers a simple interface to flush bulk operations automatically based on the number or size
of requests, or after a given period.
To use it, first create a `BulkProcessor` instance:
[source,java]
--------------------------------------------------
import org.elasticsearch.action.bulk.BackoffPolicy;
import org.elasticsearch.action.bulk.BulkProcessor;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.unit.TimeValue;
BulkProcessor bulkProcessor = BulkProcessor.builder(
client, <1>
new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId,
BulkRequest request) { ... } <2>
@Override
public void afterBulk(long executionId,
BulkRequest request,
BulkResponse response) { ... } <3>
@Override
public void afterBulk(long executionId,
BulkRequest request,
Throwable failure) { ... } <4>
})
.setBulkActions(10000) <5>
.setBulkSize(new ByteSizeValue(5, ByteSizeUnit.MB)) <6>
.setFlushInterval(TimeValue.timeValueSeconds(5)) <7>
.setConcurrentRequests(1) <8>
.setBackoffPolicy(
BackoffPolicy.exponentialBackoff(TimeValue.timeValueMillis(100), 3)) <9>
.build();
--------------------------------------------------
<1> Add your Elasticsearch client
<2> This method is called just before bulk is executed. You can for example see the numberOfActions with
`request.numberOfActions()`
<3> This method is called after bulk execution. You can for example check if there was some failing requests
with `response.hasFailures()`
<4> This method is called when the bulk failed and raised a `Throwable`
<5> We want to execute the bulk every 10 000 requests
<6> We want to flush the bulk every 5mb
<7> We want to flush the bulk every 5 seconds whatever the number of requests
<8> Set the number of concurrent requests. A value of 0 means that only a single request will be allowed to be
executed. A value of 1 means 1 concurrent request is allowed to be executed while accumulating new bulk requests.
<9> Set a custom backoff policy which will initially wait for 100ms, increase exponentially and retries up to three
times. A retry is attempted whenever one or more bulk item requests have failed with an `EsRejectedExecutionException`
which indicates that there were too little compute resources available for processing the request. To disable backoff,
pass `BackoffPolicy.noBackoff()`.
By default, `BulkProcessor`:
* sets bulkActions to `1000`
* sets bulkSize to `5mb`
* does not set flushInterval
* sets concurrentRequests to 1, which means an asynchronous execution of the flush operation.
* sets backoffPolicy to an exponential backoff with 8 retries and a start delay of 50ms. The total wait time is roughly 5.1 seconds.
[[java-docs-bulk-processor-requests]]
==== Add requests
Then you can simply add your requests to the `BulkProcessor`:
[source,java]
--------------------------------------------------
bulkProcessor.add(new IndexRequest("twitter", "_doc", "1").source(/* your doc here */));
bulkProcessor.add(new DeleteRequest("twitter", "_doc", "2"));
--------------------------------------------------
[[java-docs-bulk-processor-close]]
==== Closing the Bulk Processor
When all documents are loaded to the `BulkProcessor` it can be closed by using `awaitClose` or `close` methods:
[source,java]
--------------------------------------------------
bulkProcessor.awaitClose(10, TimeUnit.MINUTES);
--------------------------------------------------
or
[source,java]
--------------------------------------------------
bulkProcessor.close();
--------------------------------------------------
Both methods flush any remaining documents and disable all other scheduled flushes, if they were scheduled by setting
`flushInterval`. If concurrent requests were enabled, the `awaitClose` method waits for up to the specified timeout for
all bulk requests to complete then returns `true`; if the specified waiting time elapses before all bulk requests complete,
`false` is returned. The `close` method doesn't wait for any remaining bulk requests to complete and exits immediately.
[[java-docs-bulk-processor-tests]]
==== Using Bulk Processor in tests
If you are running tests with Elasticsearch and are using the `BulkProcessor` to populate your dataset
you should better set the number of concurrent requests to `0` so the flush operation of the bulk will be executed
in a synchronous manner:
[source,java]
--------------------------------------------------
BulkProcessor bulkProcessor = BulkProcessor.builder(client, new BulkProcessor.Listener() { /* Listener methods */ })
.setBulkActions(10000)
.setConcurrentRequests(0)
.build();
// Add your requests
bulkProcessor.add(/* Your requests */);
// Flush any remaining requests
bulkProcessor.flush();
// Or close the bulkProcessor if you don't need it anymore
bulkProcessor.close();
// Refresh your indices
client.admin().indices().prepareRefresh().get();
// Now you can start searching!
client.prepareSearch().get();
--------------------------------------------------
[[java-docs-bulk-global-parameters]]
==== Global Parameters
Global parameters can be specified on the BulkRequest as well as BulkProcessor, similar to the REST API. These global
parameters serve as defaults and can be overridden by local parameters specified on each sub request. Some parameters
have to be set before any sub request is added - index, type - and you have to specify them during BulkRequest or
BulkProcessor creation. Some are optional - pipeline, routing - and can be specified at any point before the bulk is sent.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{hlrc-tests}/BulkProcessorIT.java[bulk-processor-mix-parameters]
--------------------------------------------------
<1> global parameters from the BulkRequest will be applied on a sub request
<2> local pipeline parameter on a sub request will override global parameters from BulkRequest
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{hlrc-tests}/BulkRequestWithGlobalParametersIT.java[bulk-request-mix-pipeline]
--------------------------------------------------
<1> local pipeline parameter on a sub request will override global pipeline from the BulkRequest
<2> global parameter from the BulkRequest will be applied on a sub request

View File

@ -1,42 +0,0 @@
[[java-docs-delete]]
=== Delete API
The delete API allows one to delete a typed JSON document from a specific
index based on its id. The following example deletes the JSON document
from an index called twitter, under a type called `_doc`, with id valued
1:
[source,java]
--------------------------------------------------
DeleteResponse response = client.prepareDelete("twitter", "_doc", "1").get();
--------------------------------------------------
For more information on the delete operation, check out the
{ref}/docs-delete.html[delete API] docs.
[[java-docs-delete-by-query]]
=== Delete By Query API
The delete by query API allows one to delete a given set of documents based on
the result of a query:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[delete-by-query-sync]
--------------------------------------------------
<1> query
<2> index
<3> execute the operation
<4> number of deleted documents
As it can be a long running operation, if you wish to do it asynchronously, you can call `execute` instead of `get`
and provide a listener like:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[delete-by-query-async]
--------------------------------------------------
<1> query
<2> index
<3> listener
<4> number of deleted documents

View File

@ -1,14 +0,0 @@
[[java-docs-get]]
=== Get API
The get API allows to get a typed JSON document from the index based on
its id. The following example gets a JSON document from an index called
twitter, under a type called `_doc`, with id valued 1:
[source,java]
--------------------------------------------------
GetResponse response = client.prepareGet("twitter", "_doc", "1").get();
--------------------------------------------------
For more information on the get operation, check out the REST
{ref}/docs-get.html[get] docs.

View File

@ -1,167 +0,0 @@
[[java-docs-index]]
=== Index API
The index API allows one to index a typed JSON document into a specific
index and make it searchable.
[[java-docs-index-generate]]
==== Generate JSON document
There are several different ways of generating a JSON document:
* Manually (aka do it yourself) using native `byte[]` or as a `String`
* Using a `Map` that will be automatically converted to its JSON
equivalent
* Using a third party library to serialize your beans such as
https://github.com/FasterXML/jackson[Jackson]
* Using built-in helpers XContentFactory.jsonBuilder()
Internally, each type is converted to `byte[]` (so a String is converted
to a `byte[]`). Therefore, if the object is in this form already, then
use it. The `jsonBuilder` is highly optimized JSON generator that
directly constructs a `byte[]`.
[[java-docs-index-generate-diy]]
===== Do It Yourself
Nothing really difficult here but note that you will have to encode
dates according to the
{ref}/mapping-date-format.html[Date Format].
[source,java]
--------------------------------------------------
String json = "{" +
"\"user\":\"kimchy\"," +
"\"postDate\":\"2013-01-30\"," +
"\"message\":\"trying out Elasticsearch\"" +
"}";
--------------------------------------------------
[[java-docs-index-generate-using-map]]
===== Using Map
Map is a key:values pair collection. It represents a JSON structure:
[source,java]
--------------------------------------------------
Map<String, Object> json = new HashMap<String, Object>();
json.put("user","kimchy");
json.put("postDate",new Date());
json.put("message","trying out Elasticsearch");
--------------------------------------------------
[[java-docs-index-generate-beans]]
===== Serialize your beans
You can use https://github.com/FasterXML/jackson[Jackson] to serialize
your beans to JSON. Please add http://search.maven.org/#search%7Cga%7C1%7Cjackson-databind[Jackson Databind]
to your project. Then you can use `ObjectMapper` to serialize your beans:
[source,java]
--------------------------------------------------
import com.fasterxml.jackson.databind.*;
// instance a json mapper
ObjectMapper mapper = new ObjectMapper(); // create once, reuse
// generate json
byte[] json = mapper.writeValueAsBytes(yourbeaninstance);
--------------------------------------------------
[[java-docs-index-generate-helpers]]
===== Use Elasticsearch helpers
Elasticsearch provides built-in helpers to generate JSON content.
[source,java]
--------------------------------------------------
import static org.elasticsearch.common.xcontent.XContentFactory.*;
XContentBuilder builder = jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
--------------------------------------------------
Note that you can also add arrays with `startArray(String)` and
`endArray()` methods. By the way, the `field` method +
accepts many object types. You can directly pass numbers, dates and even
other XContentBuilder objects.
If you need to see the generated JSON content, you can use the
`Strings.toString()` method.
[source,java]
--------------------------------------------------
import org.elasticsearch.common.Strings;
String json = Strings.toString(builder);
--------------------------------------------------
[[java-docs-index-doc]]
==== Index document
The following example indexes a JSON document into an index called
twitter, under a type called `_doc`, with id valued 1:
[source,java]
--------------------------------------------------
import static org.elasticsearch.common.xcontent.XContentFactory.*;
IndexResponse response = client.prepareIndex("twitter", "_doc", "1")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
)
.get();
--------------------------------------------------
Note that you can also index your documents as JSON String and that you
don't have to give an ID:
[source,java]
--------------------------------------------------
String json = "{" +
"\"user\":\"kimchy\"," +
"\"postDate\":\"2013-01-30\"," +
"\"message\":\"trying out Elasticsearch\"" +
"}";
IndexResponse response = client.prepareIndex("twitter", "_doc")
      .setSource(json, XContentType.JSON)
.get();
--------------------------------------------------
`IndexResponse` object will give you a report:
[source,java]
--------------------------------------------------
// Index name
String _index = response.getIndex();
// Type name
String _type = response.getType();
// Document ID (generated or not)
String _id = response.getId();
// Version (if it's the first time you index this document, you will get: 1)
long _version = response.getVersion();
// status has stored current instance statement.
RestStatus status = response.status();
--------------------------------------------------
For more information on the index operation, check out the REST
{ref}/docs-index_.html[index] docs.

View File

@ -1,30 +0,0 @@
[[java-docs-multi-get]]
=== Multi Get API
The multi get API allows to get a list of documents based on their `index` and `id`:
[source,java]
--------------------------------------------------
MultiGetResponse multiGetItemResponses = client.prepareMultiGet()
.add("twitter", "_doc", "1") <1>
.add("twitter", "_doc", "2", "3", "4") <2>
.add("another", "_doc", "foo") <3>
.get();
for (MultiGetItemResponse itemResponse : multiGetItemResponses) { <4>
GetResponse response = itemResponse.getResponse();
if (response.isExists()) { <5>
String json = response.getSourceAsString(); <6>
}
}
--------------------------------------------------
<1> get by a single id
<2> or by a list of ids for the same index
<3> you can also get from another index
<4> iterate over the result set
<5> you can check if the document exists
<6> access to the `_source` field
For more information on the multi get operation, check out the REST
{ref}/docs-multi-get.html[multi get] docs.

View File

@ -1,11 +0,0 @@
[[java-docs-reindex]]
=== Reindex API
See {ref}/docs-reindex.html[reindex API].
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[reindex1]
--------------------------------------------------
<1> Optionally a query can provided to filter what documents should be
re-indexed from the source to the target index.

View File

@ -1,166 +0,0 @@
[[java-docs-update-by-query]]
=== Update By Query API
The simplest usage of `updateByQuery` updates each
document in an index without changing the source. This usage enables
picking up a new property or another online mapping change.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query]
--------------------------------------------------
Calls to the `updateByQuery` API start by getting a snapshot of the index, indexing
any documents found using the `internal` versioning.
NOTE: Version conflicts happen when a document changes between the time of the
snapshot and the time the index request processes.
When the versions match, `updateByQuery` updates the document
and increments the version number.
All update and query failures cause `updateByQuery` to abort. These failures are
available from the `BulkByScrollResponse#getIndexingFailures` method. Any
successful updates remain and are not rolled back. While the first failure
causes the abort, the response contains all of the failures generated by the
failed bulk request.
To prevent version conflicts from causing `updateByQuery` to abort, set
`abortOnVersionConflict(false)`. The first example does this because it is
trying to pick up an online mapping change and a version conflict means that
the conflicting document was updated between the start of the `updateByQuery`
and the time when it attempted to update the document. This is fine because
that update will have picked up the online mapping update.
The `UpdateByQueryRequestBuilder` API supports filtering the updated documents,
limiting the total number of documents to update, and updating documents
with a script:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-filter]
--------------------------------------------------
`UpdateByQueryRequestBuilder` also enables direct access to the query used
to select the documents. You can use this access to change the default scroll size or
otherwise modify the request for matching documents.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-size]
--------------------------------------------------
You can also combine `maxDocs` with sorting to limit the documents updated:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-sort]
--------------------------------------------------
In addition to changing the `_source` field for the document, you can use a
script to change the action, similar to the Update API:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-script]
--------------------------------------------------
As in the <<java-docs-update,Update API>>, you can set the value of `ctx.op` to change the
operation that executes:
`noop`::
Set `ctx.op = "noop"` if your script doesn't make any
changes. The `updateByQuery` operation then omits that document from the updates.
This behavior increments the `noop` counter in the response body.
`delete`::
Set `ctx.op = "delete"` if your script decides that the document must be
deleted. The deletion will be reported in the `deleted` counter in the
response body.
Setting `ctx.op` to any other value generates an error. Setting any
other field in `ctx` generates an error.
This API doesn't allow you to move the documents it touches, just modify their
source. This is intentional! We've made no provisions for removing the document
from its original location.
You can also perform these operations on multiple indices at once, similar to the search API:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-multi-index]
--------------------------------------------------
If you provide a `routing` value then the process copies the routing value to the scroll query,
limiting the process to the shards that match that routing value:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-routing]
--------------------------------------------------
`updateByQuery` can also use the ingest node by
specifying a `pipeline` like this:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-pipeline]
--------------------------------------------------
[discrete]
[[java-docs-update-by-query-task-api]]
=== Works with the Task API
You can fetch the status of all running update-by-query requests with the Task API:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-list-tasks]
--------------------------------------------------
With the `TaskId` shown above you can look up the task directly:
// provide API Example
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-get-task]
--------------------------------------------------
[discrete]
[[java-docs-update-by-query-cancel-task-api]]
=== Works with the Cancel Task API
Any Update By Query can be canceled using the Task Cancel API:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-cancel-task]
--------------------------------------------------
Use the `list tasks` API to find the value of `taskId`.
Cancelling a request is typically a very fast process but can take up to a few seconds.
The task status API continues to list the task until the cancellation is complete.
[discrete]
[[java-docs-update-by-query-rethrottle]]
=== Rethrottling
Use the `_rethrottle` API to change the value of `requests_per_second` on a running update:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{client-reindex-tests}/ReindexDocumentationIT.java[update-by-query-rethrottle]
--------------------------------------------------
Use the `list tasks` API to find the value of `taskId`.
As with the `updateByQuery` API, the value of `requests_per_second`
can be any positive float value to set the level of the throttle, or `Float.POSITIVE_INFINITY` to disable throttling.
A value of `requests_per_second` that speeds up the process takes
effect immediately. `requests_per_second` values that slow the query take effect
after completing the current batch in order to prevent scroll timeouts.

View File

@ -1,118 +0,0 @@
[[java-docs-update]]
=== Update API
You can either create an `UpdateRequest` and send it to the client:
[source,java]
--------------------------------------------------
UpdateRequest updateRequest = new UpdateRequest();
updateRequest.index("index");
updateRequest.type("_doc");
updateRequest.id("1");
updateRequest.doc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject());
client.update(updateRequest).get();
--------------------------------------------------
Or you can use `prepareUpdate()` method:
[source,java]
--------------------------------------------------
client.prepareUpdate("ttl", "doc", "1")
.setScript(new Script(
"ctx._source.gender = \"male\"", <1>
ScriptType.INLINE, null, null))
.get();
client.prepareUpdate("ttl", "doc", "1")
.setDoc(jsonBuilder() <2>
.startObject()
.field("gender", "male")
.endObject())
.get();
--------------------------------------------------
<1> Your script. It could also be a locally stored script name.
In that case, you'll need to use `ScriptType.FILE`.
<2> Document which will be merged to the existing one.
Note that you can't provide both `script` and `doc`.
[[java-docs-update-api-script]]
==== Update by script
The update API allows to update a document based on a script provided:
[source,java]
--------------------------------------------------
UpdateRequest updateRequest = new UpdateRequest("ttl", "doc", "1")
.script(new Script("ctx._source.gender = \"male\""));
client.update(updateRequest).get();
--------------------------------------------------
[[java-docs-update-api-merge-docs]]
==== Update by merging documents
The update API also support passing a partial document, which will be merged into the existing document (simple
recursive merge, inner merging of objects, replacing core "keys/values" and arrays). For example:
[source,java]
--------------------------------------------------
UpdateRequest updateRequest = new UpdateRequest("index", "type", "1")
.doc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject());
client.update(updateRequest).get();
--------------------------------------------------
[[java-docs-update-api-upsert]]
==== Upsert
There is also support for `upsert`. If the document does not exist, the content of the `upsert`
element will be used to index the fresh doc:
[source,java]
--------------------------------------------------
IndexRequest indexRequest = new IndexRequest("index", "type", "1")
.source(jsonBuilder()
.startObject()
.field("name", "Joe Smith")
.field("gender", "male")
.endObject());
UpdateRequest updateRequest = new UpdateRequest("index", "type", "1")
.doc(jsonBuilder()
.startObject()
.field("name", "Joe Dalton")
.endObject())
.upsert(indexRequest); <1>
client.update(updateRequest).get();
--------------------------------------------------
<1> If the document does not exist, the one in `indexRequest` will be added
If the document `index/_doc/1` already exists, we will have after this operation a document like:
[source,js]
--------------------------------------------------
{
"name" : "Joe Dalton", <1>
"gender": "male"
}
--------------------------------------------------
// NOTCONSOLE
<1> This field is updated by the update request
If it does not exist, we will have a new document:
[source,js]
--------------------------------------------------
{
"name" : "Joe Smith",
"gender": "male"
}
--------------------------------------------------
// NOTCONSOLE

View File

@ -1,149 +0,0 @@
= Java API (deprecated)
include::{elasticsearch-root}/docs/Versions.asciidoc[]
[[java-api]]
[preface]
== Preface
deprecated[7.0.0, The `TransportClient` is deprecated in favour of the {java-rest}/java-rest-high.html[Java High Level REST Client] and will be removed in Elasticsearch 8.0. The {java-rest}/java-rest-high-level-migration.html[migration guide] describes all the steps needed to migrate.]
This section describes the Java API that Elasticsearch provides. All
Elasticsearch operations are executed using a
<<client,Client>> object. All
operations are completely asynchronous in nature (either accepts a
listener, or returns a future).
Additionally, operations on a client may be accumulated and executed in
<<java-docs-bulk,Bulk>>.
Note, all the APIs are exposed through the
Java API (actually, the Java API is used internally to execute them).
== Javadoc
The javadoc for the transport client can be found at {transport-client-javadoc}/index.html.
== Maven Repository
Elasticsearch is hosted on
http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.elasticsearch.client%22[Maven
Central].
For example, you can define the latest version in your `pom.xml` file:
["source","xml",subs="attributes"]
--------------------------------------------------
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>{version}</version>
</dependency>
--------------------------------------------------
[[java-transport-usage-maven-lucene]]
=== Lucene Snapshot repository
The very first releases of any major version (like a beta), might have been built on top of a Lucene Snapshot version.
In such a case you will be unable to resolve the Lucene dependencies of the client.
For example, if you want to use the `6.0.0-beta1` version which depends on Lucene `7.0.0-snapshot-00142c9`, you must
define the following repository.
For Maven:
["source","xml",subs="attributes"]
--------------------------------------------------
<repository>
<id>elastic-lucene-snapshots</id>
<name>Elastic Lucene Snapshots</name>
<url>https://s3.amazonaws.com/download.elasticsearch.org/lucenesnapshots/00142c9</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>false</enabled></snapshots>
</repository>
--------------------------------------------------
For Gradle:
["source","groovy",subs="attributes"]
--------------------------------------------------
maven {
name "lucene-snapshots"
url 'https://s3.amazonaws.com/download.elasticsearch.org/lucenesnapshots/00142c9'
}
--------------------------------------------------
=== Log4j 2 Logger
You need to also include Log4j 2 dependencies:
["source","xml",subs="attributes"]
--------------------------------------------------
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.11.1</version>
</dependency>
--------------------------------------------------
And also provide a Log4j 2 configuration file in your classpath.
For example, you can add in your `src/main/resources` project dir a `log4j2.properties` file like:
["source","properties",subs="attributes"]
--------------------------------------------------
appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c] %marker%m%n
rootLogger.level = info
rootLogger.appenderRef.console.ref = console
--------------------------------------------------
=== Using another Logger
If you want to use another logger than Log4j 2, you can use http://www.slf4j.org/[SLF4J] bridge to do that:
["source","xml",subs="attributes"]
--------------------------------------------------
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.11.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.24</version>
</dependency>
--------------------------------------------------
http://www.slf4j.org/manual.html[This page] lists implementations you can use. Pick your favorite logger
and add it as a dependency. As an example, we will use the `slf4j-simple` logger:
["source","xml",subs="attributes"]
--------------------------------------------------
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.21</version>
</dependency>
--------------------------------------------------
:client-tests: {elasticsearch-root}/server/src/internalClusterTest/java/org/elasticsearch/client/documentation
:hlrc-tests: {elasticsearch-root}/client/rest-high-level/src/test/java/org/elasticsearch/client
:client-reindex-tests: {elasticsearch-root}/modules/reindex/src/internalClusterTest/java/org/elasticsearch/client/documentation
include::client.asciidoc[]
include::docs.asciidoc[]
include::search.asciidoc[]
include::aggs.asciidoc[]
include::query-dsl.asciidoc[]
include::admin/index.asciidoc[]

View File

@ -1,40 +0,0 @@
[[java-query-dsl]]
== Query DSL
Elasticsearch provides a full Java query dsl in a similar manner to the
REST {ref}/query-dsl.html[Query DSL]. The factory for query
builders is `QueryBuilders`. Once your query is ready, you can use the
<<java-search,Search API>>.
To use `QueryBuilders` just import them in your class:
[source,java]
--------------------------------------------------
import static org.elasticsearch.index.query.QueryBuilders.*;
--------------------------------------------------
Note that you can easily print (aka debug) JSON generated queries using
`toString()` method on `QueryBuilder` object.
The `QueryBuilder` can then be used with any API that accepts a query,
such as `count` and `search`.
:query-dsl-test: {elasticsearch-root}/client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java
include::query-dsl/match-all-query.asciidoc[]
include::query-dsl/full-text-queries.asciidoc[]
include::query-dsl/term-level-queries.asciidoc[]
include::query-dsl/compound-queries.asciidoc[]
include::query-dsl/joining-queries.asciidoc[]
include::query-dsl/geo-queries.asciidoc[]
include::query-dsl/special-queries.asciidoc[]
include::query-dsl/span-queries.asciidoc[]
:query-dsl-test!:

View File

@ -1,13 +0,0 @@
[[java-query-dsl-bool-query]]
==== Bool Query
See {ref}/query-dsl-bool-query.html[Bool Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[bool]
--------------------------------------------------
<1> must query
<2> must not query
<3> should query
<4> a query that must appear in the matching documents but doesn't contribute to scoring.

View File

@ -1,12 +0,0 @@
[[java-query-dsl-boosting-query]]
==== Boosting Query
See {ref}/query-dsl-boosting-query.html[Boosting Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[boosting]
--------------------------------------------------
<1> query that will promote documents
<2> query that will demote documents
<3> negative boost

View File

@ -1,11 +0,0 @@
[[java-query-dsl-common-terms-query]]
==== Common Terms Query
See {ref}/query-dsl-common-terms-query.html[Common Terms Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[common_terms]
--------------------------------------------------
<1> field
<2> value

View File

@ -1,45 +0,0 @@
[[java-compound-queries]]
=== Compound queries
Compound queries wrap other compound or leaf queries, either to combine their
results and scores, to change their behaviour, or to switch from query to
filter context.
The queries in this group are:
<<java-query-dsl-constant-score-query,`constant_score` query>>::
A query which wraps another query, but executes it in filter context. All
matching documents are given the same ``constant'' `_score`.
<<java-query-dsl-bool-query,`bool` query>>::
The default query for combining multiple leaf or compound query clauses, as
`must`, `should`, `must_not`, or `filter` clauses. The `must` and `should`
clauses have their scores combined -- the more matching clauses, the better --
while the `must_not` and `filter` clauses are executed in filter context.
<<java-query-dsl-dis-max-query,`dis_max` query>>::
A query which accepts multiple queries, and returns any documents which match
any of the query clauses. While the `bool` query combines the scores from all
matching queries, the `dis_max` query uses the score of the single best-
matching query clause.
<<java-query-dsl-function-score-query,`function_score` query>>::
Modify the scores returned by the main query with functions to take into
account factors like popularity, recency, distance, or custom algorithms
implemented with scripting.
<<java-query-dsl-boosting-query,`boosting` query>>::
Return documents which match a `positive` query, but reduce the score of
documents which also match a `negative` query.
include::constant-score-query.asciidoc[]
include::bool-query.asciidoc[]
include::dis-max-query.asciidoc[]
include::function-score-query.asciidoc[]
include::boosting-query.asciidoc[]

View File

@ -1,11 +0,0 @@
[[java-query-dsl-constant-score-query]]
==== Constant Score Query
See {ref}/query-dsl-constant-score-query.html[Constant Score Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[constant_score]
--------------------------------------------------
<1> your query
<2> query score

View File

@ -1,13 +0,0 @@
[[java-query-dsl-dis-max-query]]
==== Dis Max Query
See {ref}/query-dsl-dis-max-query.html[Dis Max Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[dis_max]
--------------------------------------------------
<1> add your queries
<2> add your queries
<3> boost factor
<4> tie breaker

View File

@ -1,10 +0,0 @@
[[java-query-dsl-exists-query]]
==== Exists Query
See {ref}/query-dsl-exists-query.html[Exists Query].
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[exists]
--------------------------------------------------
<1> field

View File

@ -1,44 +0,0 @@
[[java-full-text-queries]]
=== Full text queries
The high-level full text queries are usually used for running full text
queries on full text fields like the body of an email. They understand how the
field being queried is analyzed and will apply each field's
`analyzer` (or `search_analyzer`) to the query string before executing.
The queries in this group are:
<<java-query-dsl-match-query,`match` query>>::
The standard query for performing full text queries, including fuzzy matching
and phrase or proximity queries.
<<java-query-dsl-multi-match-query,`multi_match` query>>::
The multi-field version of the `match` query.
<<java-query-dsl-common-terms-query,`common_terms` query>>::
A more specialized query which gives more preference to uncommon words.
<<java-query-dsl-query-string-query,`query_string` query>>::
Supports the compact Lucene query string syntax,
allowing you to specify AND|OR|NOT conditions and multi-field search
within a single query string. For expert users only.
<<java-query-dsl-simple-query-string-query,`simple_query_string`>>::
A simpler, more robust version of the `query_string` syntax suitable
for exposing directly to users.
include::match-query.asciidoc[]
include::multi-match-query.asciidoc[]
include::common-terms-query.asciidoc[]
include::query-string-query.asciidoc[]
include::simple-query-string-query.asciidoc[]

View File

@ -1,19 +0,0 @@
[[java-query-dsl-function-score-query]]
==== Function Score Query
See {ref}/query-dsl-function-score-query.html[Function Score Query].
To use `ScoreFunctionBuilders` just import them in your class:
[source,java]
--------------------------------------------------
import static org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders.*;
--------------------------------------------------
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[function_score]
--------------------------------------------------
<1> Add a first function based on a query
<2> And randomize the score based on a given seed
<3> Add another function based on the age field

View File

@ -1,11 +0,0 @@
[[java-query-dsl-fuzzy-query]]
==== Fuzzy Query
See {ref}/query-dsl-fuzzy-query.html[Fuzzy Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[fuzzy]
--------------------------------------------------
<1> field
<2> text

View File

@ -1,12 +0,0 @@
[[java-query-dsl-geo-bounding-box-query]]
==== Geo Bounding Box Query
See {ref}/query-dsl-geo-bounding-box-query.html[Geo Bounding Box Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[geo_bounding_box]
--------------------------------------------------
<1> field
<2> bounding box top left point
<3> bounding box bottom right point

View File

@ -1,12 +0,0 @@
[[java-query-dsl-geo-distance-query]]
==== Geo Distance Query
See {ref}/query-dsl-geo-distance-query.html[Geo Distance Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[geo_distance]
--------------------------------------------------
<1> field
<2> center point
<3> distance from center point

View File

@ -1,11 +0,0 @@
[[java-query-dsl-geo-polygon-query]]
==== Geo Polygon Query
See {ref}/query-dsl-geo-polygon-query.html[Geo Polygon Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[geo_polygon]
--------------------------------------------------
<1> add your polygon of points a document should fall within
<2> initialise the query with field and points

View File

@ -1,34 +0,0 @@
[[java-geo-queries]]
=== Geo queries
Elasticsearch supports two types of geo data:
`geo_point` fields which support lat/lon pairs, and
`geo_shape` fields, which support points, lines, circles, polygons, multi-polygons etc.
The queries in this group are:
<<java-query-dsl-geo-shape-query,`geo_shape`>> query::
Find document with geo-shapes which either intersect, are contained by, or
do not intersect with the specified geo-shape.
<<java-query-dsl-geo-bounding-box-query,`geo_bounding_box`>> query::
Finds documents with geo-points that fall into the specified rectangle.
<<java-query-dsl-geo-distance-query,`geo_distance`>> query::
Finds document with geo-points within the specified distance of a central
point.
<<java-query-dsl-geo-polygon-query,`geo_polygon`>> query::
Find documents with geo-points within the specified polygon.
include::geo-shape-query.asciidoc[]
include::geo-bounding-box-query.asciidoc[]
include::geo-distance-query.asciidoc[]
include::geo-polygon-query.asciidoc[]

View File

@ -1,56 +0,0 @@
[[java-query-dsl-geo-shape-query]]
==== GeoShape Query
See {ref}/query-dsl-geo-shape-query.html[Geo Shape Query]
Note: the `geo_shape` type uses `Spatial4J` and `JTS`, both of which are
optional dependencies. Consequently you must add `Spatial4J` and `JTS`
to your classpath in order to use this type:
[source,xml]
-----------------------------------------------
<dependency>
<groupId>org.locationtech.spatial4j</groupId>
<artifactId>spatial4j</artifactId>
<version>0.7</version> <1>
</dependency>
<dependency>
<groupId>org.locationtech.jts</groupId>
<artifactId>jts-core</artifactId>
<version>1.15.0</version> <2>
<exclusions>
<exclusion>
<groupId>xerces</groupId>
<artifactId>xercesImpl</artifactId>
</exclusion>
</exclusions>
</dependency>
-----------------------------------------------
<1> check for updates in http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.locationtech.spatial4j%22%20AND%20a%3A%22spatial4j%22[Maven Central]
<2> check for updates in http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.locationtech.jts%22%20AND%20a%3A%22jts-core%22[Maven Central]
[source,java]
--------------------------------------------------
// Import ShapeRelation and ShapeBuilder
import org.elasticsearch.common.geo.ShapeRelation;
import org.elasticsearch.common.geo.builders.ShapeBuilder;
--------------------------------------------------
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[geo_shape]
--------------------------------------------------
<1> field
<2> shape
<3> relation can be `ShapeRelation.CONTAINS`, `ShapeRelation.WITHIN`, `ShapeRelation.INTERSECTS` or `ShapeRelation.DISJOINT`
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[indexed_geo_shape]
--------------------------------------------------
<1> field
<2> The ID of the document that containing the pre-indexed shape.
<3> relation
<4> Name of the index where the pre-indexed shape is. Defaults to 'shapes'.
<5> The field specified as path containing the pre-indexed shape. Defaults to 'shape'.

View File

@ -1,23 +0,0 @@
[[java-query-dsl-has-child-query]]
==== Has Child Query
See {ref}/query-dsl-has-child-query.html[Has Child Query]
When using the `has_child` query it is important to use the `PreBuiltTransportClient` instead of the regular client:
[source,java]
--------------------------------------------------
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
--------------------------------------------------
Otherwise the parent-join module doesn't get loaded and the `has_child` query can't be used from the transport client.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[has_child]
--------------------------------------------------
<1> child type to query against
<2> query
<3> score mode can be `ScoreMode.Avg`, `ScoreMode.Max`, `ScoreMode.Min`, `ScoreMode.None` or `ScoreMode.Total`

View File

@ -1,23 +0,0 @@
[[java-query-dsl-has-parent-query]]
==== Has Parent Query
See {ref}/query-dsl-has-parent-query.html[Has Parent]
When using the `has_parent` query it is important to use the `PreBuiltTransportClient` instead of the regular client:
[source,java]
--------------------------------------------------
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
--------------------------------------------------
Otherwise the parent-join module doesn't get loaded and the `has_parent` query can't be used from the transport client.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[has_parent]
--------------------------------------------------
<1> parent type to query against
<2> query
<3> whether the score from the parent hit should propagate to the child hit

View File

@ -1,10 +0,0 @@
[[java-query-dsl-ids-query]]
==== Ids Query
See {ref}/query-dsl-ids-query.html[Ids Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[ids]
--------------------------------------------------

View File

@ -1,28 +0,0 @@
[[java-joining-queries]]
=== Joining queries
Performing full SQL-style joins in a distributed system like Elasticsearch is
prohibitively expensive. Instead, Elasticsearch offers two forms of join
which are designed to scale horizontally.
<<java-query-dsl-nested-query,`nested` query>>::
Documents may contains fields of type `nested`. These
fields are used to index arrays of objects, where each object can be queried
(with the `nested` query) as an independent document.
<<java-query-dsl-has-child-query,`has_child`>> and <<java-query-dsl-has-parent-query,`has_parent`>> queries::
A parent-child relationship can exist between two
document types within a single index. The `has_child` query returns parent
documents whose child documents match the specified query, while the
`has_parent` query returns child documents whose parent document matches the
specified query.
include::nested-query.asciidoc[]
include::has-child-query.asciidoc[]
include::has-parent-query.asciidoc[]

View File

@ -1,9 +0,0 @@
[[java-query-dsl-match-all-query]]
=== Match All Query
See {ref}/query-dsl-match-all-query.html[Match All Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[match_all]
--------------------------------------------------

View File

@ -1,11 +0,0 @@
[[java-query-dsl-match-query]]
==== Match Query
See {ref}/query-dsl-match-query.html[Match Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[match]
--------------------------------------------------
<1> field
<2> text

View File

@ -1,13 +0,0 @@
[[java-query-dsl-mlt-query]]
==== More Like This Query
See {ref}/query-dsl-mlt-query.html[More Like This Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[more_like_this]
--------------------------------------------------
<1> fields
<2> text
<3> ignore threshold
<4> max num of Terms in generated queries

View File

@ -1,11 +0,0 @@
[[java-query-dsl-multi-match-query]]
==== Multi Match Query
See {ref}/query-dsl-multi-match-query.html[Multi Match Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[multi_match]
--------------------------------------------------
<1> text
<2> fields

View File

@ -1,12 +0,0 @@
[[java-query-dsl-nested-query]]
==== Nested Query
See {ref}/query-dsl-nested-query.html[Nested Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[nested]
--------------------------------------------------
<1> path to nested document
<2> your query. Any fields referenced inside the query must use the complete path (fully qualified).
<3> score mode could be `ScoreMode.Max`, `ScoreMode.Min`, `ScoreMode.Total`, `ScoreMode.Avg` or `ScoreMode.None`

View File

@ -1,61 +0,0 @@
[[java-query-percolate-query]]
==== Percolate Query
See:
* {ref}/query-dsl-percolate-query.html[Percolate Query]
[source,java]
--------------------------------------------------
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
--------------------------------------------------
Before the `percolate` query can be used an `percolator` mapping should be added and
a document containing a percolator query should be indexed:
[source,java]
--------------------------------------------------
// create an index with a percolator field with the name 'query':
client.admin().indices().prepareCreate("myIndexName")
.addMapping("_doc", "query", "type=percolator", "content", "type=text")
.get();
//This is the query we're registering in the percolator
QueryBuilder qb = termQuery("content", "amazing");
//Index the query = register it in the percolator
client.prepareIndex("myIndexName", "_doc", "myDesignatedQueryName")
.setSource(jsonBuilder()
.startObject()
.field("query", qb) // Register the query
.endObject())
.setRefreshPolicy(RefreshPolicy.IMMEDIATE) // Needed when the query shall be available immediately
.get();
--------------------------------------------------
This indexes the above term query under the name
*myDesignatedQueryName*.
In order to check a document against the registered queries, use this
code:
[source,java]
--------------------------------------------------
//Build a document to check against the percolator
XContentBuilder docBuilder = XContentFactory.jsonBuilder().startObject();
docBuilder.field("content", "This is amazing!");
docBuilder.endObject(); //End of the JSON root object
PercolateQueryBuilder percolateQuery = new PercolateQueryBuilder("query", "_doc", BytesReference.bytes(docBuilder));
// Percolate, by executing the percolator query in the query dsl:
SearchResponse response = client().prepareSearch("myIndexName")
.setQuery(percolateQuery))
.get();
//Iterate over the results
for(SearchHit hit : response.getHits()) {
// Percolator queries as hit
}
--------------------------------------------------

View File

@ -1,11 +0,0 @@
[[java-query-dsl-prefix-query]]
==== Prefix Query
See {ref}/query-dsl-prefix-query.html[Prefix Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[prefix]
--------------------------------------------------
<1> field
<2> prefix

View File

@ -1,9 +0,0 @@
[[java-query-dsl-query-string-query]]
==== Query String Query
See {ref}/query-dsl-query-string-query.html[Query String Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[query_string]
--------------------------------------------------

View File

@ -1,22 +0,0 @@
[[java-query-dsl-range-query]]
==== Range Query
See {ref}/query-dsl-range-query.html[Range Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[range]
--------------------------------------------------
<1> field
<2> from
<3> to
<4> include lower value means that `from` is `gt` when `false` or `gte` when `true`
<5> include upper value means that `to` is `lt` when `false` or `lte` when `true`
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[range_simplified]
--------------------------------------------------
<1> field
<2> set `from` to 10 and `includeLower` to `true`
<3> set `to` to 20 and `includeUpper` to `false`

View File

@ -1,11 +0,0 @@
[[java-query-dsl-regexp-query]]
==== Regexp Query
See {ref}/query-dsl-regexp-query.html[Regexp Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[regexp]
--------------------------------------------------
<1> field
<2> regexp

View File

@ -1,29 +0,0 @@
[[java-query-dsl-script-query]]
==== Script Query
See {ref}/query-dsl-script-query.html[Script Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[script_inline]
--------------------------------------------------
<1> inlined script
If you have stored on each data node a script named `myscript.painless` with:
[source,painless]
--------------------------------------------------
doc['num1'].value > params.param1
--------------------------------------------------
You can use it then with:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[script_file]
--------------------------------------------------
<1> Script type: either `ScriptType.FILE`, `ScriptType.INLINE` or `ScriptType.INDEXED`
<2> Scripting engine
<3> Script name
<4> Parameters as a `Map<String, Object>`

View File

@ -1,9 +0,0 @@
[[java-query-dsl-simple-query-string-query]]
==== Simple Query String Query
See {ref}/query-dsl-simple-query-string-query.html[Simple Query String Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[simple_query_string]
--------------------------------------------------

View File

@ -1,11 +0,0 @@
[[java-query-dsl-span-containing-query]]
==== Span Containing Query
See {ref}/query-dsl-span-containing-query.html[Span Containing Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[span_containing]
--------------------------------------------------
<1> `big` part
<2> `little` part

View File

@ -1,11 +0,0 @@
[[java-query-dsl-span-first-query]]
==== Span First Query
See {ref}/query-dsl-span-first-query.html[Span First Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[span_first]
--------------------------------------------------
<1> query
<2> max end position

View File

@ -1,11 +0,0 @@
[[java-query-dsl-span-multi-term-query]]
==== Span Multi Term Query
See {ref}/query-dsl-span-multi-term-query.html[Span Multi Term Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[span_multi]
--------------------------------------------------
<1> Can be any builder extending the `MultiTermQueryBuilder` class. For example: `FuzzyQueryBuilder`,
`PrefixQueryBuilder`, `RangeQueryBuilder`, `RegexpQueryBuilder` or `WildcardQueryBuilder`.

View File

@ -1,12 +0,0 @@
[[java-query-dsl-span-near-query]]
==== Span Near Query
See {ref}/query-dsl-span-near-query.html[Span Near Query]
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{query-dsl-test}[span_near]
--------------------------------------------------
<1> span term queries
<2> slop factor: the maximum number of intervening unmatched positions
<3> whether matches are required to be in-order

Some files were not shown because too many files have changed in this diff Show More