diff --git a/docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc b/docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc index 01a51894ef5..69d1d7bb629 100644 --- a/docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc +++ b/docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc @@ -152,7 +152,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed] `analysis`.`classification`.`num_top_feature_importance_values`:::: (Optional, integer) -include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values] +Advanced configuration option. Specifies the maximum number of +{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature +importance] values per document to return. By default, it is zero and no feature importance +calculation occurs. `analysis`.`classification`.`training_percent`:::: (Optional, integer) @@ -235,7 +238,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name] `analysis`.`regression`.`num_top_feature_importance_values`:::: (Optional, integer) -include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values] +Advanced configuration option. Specifies the maximum number of +{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance] +values per document to return. By default, it is zero and no feature importance calculation +occurs. `analysis`.`regression`.`training_percent`:::: (Optional, integer) diff --git a/docs/reference/ml/ml-shared.asciidoc b/docs/reference/ml/ml-shared.asciidoc index 0ec04e8087e..e444331a3c5 100644 --- a/docs/reference/ml/ml-shared.asciidoc +++ b/docs/reference/ml/ml-shared.asciidoc @@ -904,13 +904,6 @@ total number of categories (in the {version} version of the {stack}, it's two) to predict then we will report all category probabilities. Defaults to 2. end::num-top-classes[] -tag::num-top-feature-importance-values[] -Advanced configuration option. If set, feature importance for the top -most important features will be computed. Importance is calculated -using the SHAP (SHapley Additive exPlanations) method as described in -https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf[Lundberg, S. M., & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NeurIPS 2017.]. -end::num-top-feature-importance-values[] - tag::over-field-name[] The field used to split the data. In particular, this property is used for analyzing the splits with respect to the history of all splits. It is used for