For analytics, we need a consistent way of indicating when a value is missing. Inheriting from anomaly detection, analysis sent `""` when a field is missing. This works fine with numbers, but the underlying analytics process actually treats `""` as a category in categorical values. Consequently, you end up with this situation in the resulting model ``` { "frequency_encoding" : { "field" : "RainToday", "feature_name" : "RainToday_frequency", "frequency_map" : { "" : 0.009844409027270245, "No" : 0.6472019970785184, "Yes" : 0.6472019970785184 } } } ``` For inference this is a problem, because inference will treat missing values as `null`. And thus not include them on the infer call against the model. This PR takes advantage of our new `missing_field_value` option and supplies `\0` as the value.
This commit is contained in:
parent
48707ec55a
commit
181ee3ae0b
|
@ -52,7 +52,7 @@ public class DataFrameDataExtractor {
|
|||
private static final Logger LOGGER = LogManager.getLogger(DataFrameDataExtractor.class);
|
||||
private static final TimeValue SCROLL_TIMEOUT = new TimeValue(30, TimeUnit.MINUTES);
|
||||
|
||||
private static final String EMPTY_STRING = "";
|
||||
public static final String NULL_VALUE = "\0";
|
||||
|
||||
private final Client client;
|
||||
private final DataFrameDataExtractorContext context;
|
||||
|
@ -189,7 +189,7 @@ public class DataFrameDataExtractor {
|
|||
} else {
|
||||
if (values.length == 0 && context.includeRowsWithMissingValues) {
|
||||
// if values is empty then it means it's a missing value
|
||||
extractedValues[i] = EMPTY_STRING;
|
||||
extractedValues[i] = NULL_VALUE;
|
||||
} else {
|
||||
// we are here if we have a missing value but the analysis does not support those
|
||||
// or the value type is not supported (e.g. arrays, etc.)
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
package org.elasticsearch.xpack.ml.dataframe.process.customprocessing;
|
||||
|
||||
import org.elasticsearch.xpack.core.ml.utils.ExceptionsHelper;
|
||||
import org.elasticsearch.xpack.ml.dataframe.extractor.DataFrameDataExtractor;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
@ -18,8 +19,6 @@ import java.util.Random;
|
|||
*/
|
||||
class DatasetSplittingCustomProcessor implements CustomProcessor {
|
||||
|
||||
private static final String EMPTY = "";
|
||||
|
||||
private final int dependentVariableIndex;
|
||||
private final double trainingPercent;
|
||||
private final Random random;
|
||||
|
@ -47,7 +46,7 @@ class DatasetSplittingCustomProcessor implements CustomProcessor {
|
|||
// Let's make sure we have at least one training row
|
||||
isFirstRow = false;
|
||||
} else if (isRandomlyExcludedFromTraining()) {
|
||||
row[dependentVariableIndex] = EMPTY;
|
||||
row[dependentVariableIndex] = DataFrameDataExtractor.NULL_VALUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -377,7 +377,8 @@ public class DataFrameDataExtractorTests extends ESTestCase {
|
|||
assertThat(rows.get().size(), equalTo(3));
|
||||
|
||||
assertThat(rows.get().get(0).getValues(), equalTo(new String[] {"11", "21"}));
|
||||
assertThat(rows.get().get(1).getValues(), equalTo(new String[] {"", "22"}));
|
||||
assertThat(rows.get().get(1).getValues()[0], equalTo(DataFrameDataExtractor.NULL_VALUE));
|
||||
assertThat(rows.get().get(1).getValues()[1], equalTo("22"));
|
||||
assertThat(rows.get().get(2).getValues(), equalTo(new String[] {"13", "23"}));
|
||||
|
||||
assertThat(rows.get().get(0).shouldSkip(), is(false));
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
package org.elasticsearch.xpack.ml.dataframe.process.customprocessing;
|
||||
|
||||
import org.elasticsearch.test.ESTestCase;
|
||||
import org.elasticsearch.xpack.ml.dataframe.extractor.DataFrameDataExtractor;
|
||||
import org.junit.Before;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
@ -98,7 +99,7 @@ public class DatasetSplittingCustomProcessorTests extends ESTestCase {
|
|||
assertThat(processedRow[fieldIndex], equalTo(row[fieldIndex]));
|
||||
}
|
||||
}
|
||||
if (processedRow[dependentVariableIndex].length() > 0) {
|
||||
if (DataFrameDataExtractor.NULL_VALUE.equals(processedRow[dependentVariableIndex]) == false) {
|
||||
assertThat(processedRow[dependentVariableIndex], equalTo(row[dependentVariableIndex]));
|
||||
trainingRows++;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue