The test had errors around time units that have different length - think leap years or months that aren't 30 days. This fixes those errors. In the proces I've changed a bunch of things to debug the problem: * Replace `currentTimeMillis` with a random time. Now the test fails randomly! Wonderful. Much better than on random days of the month. * Generate buckets "closer together" to test random reduction. Without this we were super frequently getting stuck in the "year of century" rounding because *some* of the of the buckets we built were far apart. This generates a much greater variety of tests. * Implement `toString` on `RoundingInfo` so I can debug without going crazy. * Switch keys in the bucket assertions from epoch millis to `Instant`s so we can read the failures. Closes #54540 Closes #39497
This commit is contained in:
parent
aa697346c4
commit
195345b09e
|
@ -314,5 +314,10 @@ public class AutoDateHistogramAggregationBuilder
|
|||
&& Objects.equals(dateTimeUnit, other.dateTimeUnit)
|
||||
;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "RoundingInfo[" + rounding + " " + Arrays.toString(innerIntervals) + "]";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,6 +21,7 @@ package org.elasticsearch.search.aggregations.bucket.histogram;
|
|||
|
||||
import org.elasticsearch.common.Rounding;
|
||||
import org.elasticsearch.common.io.stream.Writeable;
|
||||
import org.elasticsearch.common.time.DateFormatter;
|
||||
import org.elasticsearch.search.DocValueFormat;
|
||||
import org.elasticsearch.search.aggregations.InternalAggregations;
|
||||
import org.elasticsearch.search.aggregations.ParsedMultiBucketAggregation;
|
||||
|
@ -40,22 +41,24 @@ import java.util.HashMap;
|
|||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.TreeMap;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
import static java.util.Collections.emptyList;
|
||||
import static org.elasticsearch.common.unit.TimeValue.timeValueHours;
|
||||
import static org.elasticsearch.common.unit.TimeValue.timeValueMinutes;
|
||||
import static org.elasticsearch.common.unit.TimeValue.timeValueSeconds;
|
||||
import static org.hamcrest.Matchers.equalTo;
|
||||
|
||||
public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregationTestCase<InternalAutoDateHistogram> {
|
||||
|
||||
private DocValueFormat format;
|
||||
private RoundingInfo[] roundingInfos;
|
||||
private long defaultStart;
|
||||
private int roundingIndex;
|
||||
|
||||
@Override
|
||||
public void setUp() throws Exception {
|
||||
super.setUp();
|
||||
format = randomNumericDocValueFormat();
|
||||
defaultStart = randomLongBetween(0, DateFormatter.forPattern("date_optional_time").parseMillis("2050-01-01"));
|
||||
roundingIndex = between(0, AutoDateHistogramAggregationBuilder.buildRoundings(null, null).length - 1);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -68,17 +71,20 @@ public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregati
|
|||
int targetBuckets = randomIntBetween(1, nbBuckets * 2 + 1);
|
||||
List<InternalAutoDateHistogram.Bucket> buckets = new ArrayList<>(nbBuckets);
|
||||
|
||||
long startingDate = System.currentTimeMillis();
|
||||
long startingDate = defaultStart;
|
||||
if (rarely()) {
|
||||
startingDate += randomFrom(TimeUnit.MINUTES, TimeUnit.HOURS, TimeUnit.DAYS).toMillis(between(1, 10000));
|
||||
}
|
||||
|
||||
long interval = randomIntBetween(1, 3);
|
||||
long intervalMillis = randomFrom(timeValueSeconds(interval), timeValueMinutes(interval), timeValueHours(interval)).getMillis();
|
||||
long intervalMillis = roundingInfos[roundingIndex].roughEstimateDurationMillis * interval;
|
||||
|
||||
for (int i = 0; i < nbBuckets; i++) {
|
||||
long key = startingDate + (intervalMillis * i);
|
||||
buckets.add(i, new InternalAutoDateHistogram.Bucket(key, randomIntBetween(1, 100), format, aggregations));
|
||||
}
|
||||
InternalAggregations subAggregations = new InternalAggregations(Collections.emptyList());
|
||||
BucketInfo bucketInfo = new BucketInfo(roundingInfos, randomIntBetween(0, roundingInfos.length - 1), subAggregations);
|
||||
BucketInfo bucketInfo = new BucketInfo(roundingInfos, roundingIndex, subAggregations);
|
||||
return new InternalAutoDateHistogram(name, buckets, targetBuckets, bucketInfo, format, emptyList(), metadata, 1);
|
||||
}
|
||||
|
||||
|
@ -108,10 +114,6 @@ public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregati
|
|||
assertThat(result, equalTo(2));
|
||||
}
|
||||
|
||||
public void testReduceRandom() {
|
||||
super.testReduceRandom();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void assertReduced(InternalAutoDateHistogram reduced, List<InternalAutoDateHistogram> inputs) {
|
||||
|
||||
|
@ -134,41 +136,49 @@ public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregati
|
|||
RoundingInfo roundingInfo = roundingInfos[roundingIndex];
|
||||
|
||||
long normalizedDuration = (highest - lowest) / roundingInfo.getRoughEstimateDurationMillis();
|
||||
long innerIntervalToUse = roundingInfo.innerIntervals[0];
|
||||
int innerIntervalIndex = 0;
|
||||
|
||||
// First, try to calculate the correct innerInterval using the normalizedDuration.
|
||||
// This handles cases where highest and lowest are further apart than the interval being used.
|
||||
/*
|
||||
* Guess the interval to use based on the roughly estimated
|
||||
* duration. It'll be accurate or it'll produce more buckets
|
||||
* than we need but it is quick.
|
||||
*/
|
||||
if (normalizedDuration != 0) {
|
||||
for (int j = roundingInfo.innerIntervals.length-1; j >= 0; j--) {
|
||||
int interval = roundingInfo.innerIntervals[j];
|
||||
if (normalizedDuration / interval < reduced.getBuckets().size()) {
|
||||
innerIntervalToUse = interval;
|
||||
innerIntervalIndex = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
long intervalInMillis = innerIntervalToUse * roundingInfo.getRoughEstimateDurationMillis();
|
||||
int bucketCount = getBucketCount(lowest, highest, roundingInfo, intervalInMillis);
|
||||
|
||||
//Next, if our bucketCount is still above what we need, we'll go back and determine the interval
|
||||
// based on a size calculation.
|
||||
if (bucketCount > reduced.getBuckets().size()) {
|
||||
for (int i = innerIntervalIndex; i < roundingInfo.innerIntervals.length; i++) {
|
||||
long newIntervalMillis = roundingInfo.innerIntervals[i] * roundingInfo.getRoughEstimateDurationMillis();
|
||||
if (getBucketCount(lowest, highest, roundingInfo, newIntervalMillis) <= reduced.getBuckets().size()) {
|
||||
innerIntervalToUse = roundingInfo.innerIntervals[i];
|
||||
intervalInMillis = innerIntervalToUse * roundingInfo.getRoughEstimateDurationMillis();
|
||||
}
|
||||
/*
|
||||
* Next pick smaller intervals until we find the one that makes the right
|
||||
* number of buckets.
|
||||
*/
|
||||
int innerIntervalToUse;
|
||||
do {
|
||||
innerIntervalToUse = roundingInfo.innerIntervals[innerIntervalIndex];
|
||||
int bucketCount = getBucketCount(lowest, highest, roundingInfo.rounding, innerIntervalToUse);
|
||||
if (bucketCount == reduced.getBuckets().size()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (bucketCount < reduced.getBuckets().size()) {
|
||||
innerIntervalToUse = roundingInfo.innerIntervals[Math.max(0, innerIntervalIndex - 1)];
|
||||
break;
|
||||
}
|
||||
} while (++innerIntervalIndex < roundingInfo.innerIntervals.length);
|
||||
|
||||
Map<Long, Long> expectedCounts = new TreeMap<>();
|
||||
for (long keyForBucket = roundingInfo.rounding.round(lowest);
|
||||
keyForBucket <= roundingInfo.rounding.round(highest);
|
||||
keyForBucket = keyForBucket + intervalInMillis) {
|
||||
expectedCounts.put(keyForBucket, 0L);
|
||||
assertThat(reduced.getInterval().toString(), equalTo(innerIntervalToUse + roundingInfo.unitAbbreviation));
|
||||
Map<Instant, Long> expectedCounts = new TreeMap<>();
|
||||
long keyForBucket = roundingInfo.rounding.round(lowest);
|
||||
while (keyForBucket <= roundingInfo.rounding.round(highest)) {
|
||||
long nextKey = keyForBucket;
|
||||
for (int i = 0; i < innerIntervalToUse; i++) {
|
||||
nextKey = roundingInfo.rounding.nextRoundingValue(nextKey);
|
||||
}
|
||||
Instant key = Instant.ofEpochMilli(keyForBucket);
|
||||
expectedCounts.put(key, 0L);
|
||||
|
||||
// Iterate through the input buckets, and for each bucket, determine if it's inside
|
||||
// the range of the bucket in the outer loop. if it is, add the doc count to the total
|
||||
|
@ -178,26 +188,26 @@ public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregati
|
|||
for (Histogram.Bucket bucket : histogram.getBuckets()) {
|
||||
long roundedBucketKey = roundingInfo.rounding.round(((ZonedDateTime) bucket.getKey()).toInstant().toEpochMilli());
|
||||
long docCount = bucket.getDocCount();
|
||||
if (roundedBucketKey >= keyForBucket
|
||||
&& roundedBucketKey < keyForBucket + intervalInMillis) {
|
||||
expectedCounts.compute(keyForBucket,
|
||||
(key, oldValue) -> (oldValue == null ? 0 : oldValue) + docCount);
|
||||
if (roundedBucketKey >= keyForBucket && roundedBucketKey < nextKey) {
|
||||
expectedCounts.compute(key,
|
||||
(k, oldValue) -> (oldValue == null ? 0 : oldValue) + docCount);
|
||||
}
|
||||
}
|
||||
}
|
||||
keyForBucket = nextKey;
|
||||
}
|
||||
|
||||
// If there is only a single bucket, and we haven't added it above, add a bucket with no documents.
|
||||
// this step is necessary because of the roundedBucketKey < keyForBucket + intervalInMillis above.
|
||||
if (roundingInfo.rounding.round(lowest) == roundingInfo.rounding.round(highest) && expectedCounts.isEmpty()) {
|
||||
expectedCounts.put(roundingInfo.rounding.round(lowest), 0L);
|
||||
expectedCounts.put(Instant.ofEpochMilli(roundingInfo.rounding.round(lowest)), 0L);
|
||||
}
|
||||
|
||||
|
||||
// pick out the actual reduced values to the make the assertion more readable
|
||||
Map<Long, Long> actualCounts = new TreeMap<>();
|
||||
Map<Instant, Long> actualCounts = new TreeMap<>();
|
||||
for (Histogram.Bucket bucket : reduced.getBuckets()) {
|
||||
actualCounts.compute(((ZonedDateTime) bucket.getKey()).toInstant().toEpochMilli(),
|
||||
actualCounts.compute(((ZonedDateTime) bucket.getKey()).toInstant(),
|
||||
(key, oldValue) -> (oldValue == null ? 0 : oldValue) + bucket.getDocCount());
|
||||
}
|
||||
assertEquals(expectedCounts, actualCounts);
|
||||
|
@ -211,11 +221,13 @@ public class InternalAutoDateHistogramTests extends InternalMultiBucketAggregati
|
|||
assertThat(reduced.getInterval(), equalTo(expectedInterval));
|
||||
}
|
||||
|
||||
private int getBucketCount(long lowest, long highest, RoundingInfo roundingInfo, long intervalInMillis) {
|
||||
private int getBucketCount(long min, long max, Rounding rounding, int interval) {
|
||||
int bucketCount = 0;
|
||||
for (long keyForBucket = roundingInfo.rounding.round(lowest);
|
||||
keyForBucket <= roundingInfo.rounding.round(highest);
|
||||
keyForBucket = keyForBucket + intervalInMillis) {
|
||||
long key = rounding.round(min);
|
||||
while (key < max) {
|
||||
for (int i = 0; i < interval; i++) {
|
||||
key = rounding.nextRoundingValue(key);
|
||||
}
|
||||
bucketCount++;
|
||||
}
|
||||
return bucketCount;
|
||||
|
|
Loading…
Reference in New Issue