[DOCS] Rewrite `term` query docs for new format (#41498)
* [DOCS] Restructure `term` query docs.
This commit is contained in:
parent
8580053818
commit
2306531815
|
@ -1,168 +1,220 @@
|
|||
[[query-dsl-term-query]]
|
||||
=== Term Query
|
||||
|
||||
The `term` query finds documents that contain the *exact* term specified
|
||||
in the inverted index. For instance:
|
||||
Returns documents that contain an *exact* term in a provided field.
|
||||
|
||||
You can use the `term` query to find documents based on a precise value such as
|
||||
a price, a product ID, or a username.
|
||||
|
||||
[WARNING]
|
||||
====
|
||||
Avoid using the `term` query for <<text, `text`>> fields.
|
||||
|
||||
By default, {es} changes the values of `text` fields as part of <<analysis,
|
||||
analysis>>. This can make finding exact matches for `text` field values
|
||||
difficult.
|
||||
|
||||
To search `text` field values, use the <<query-dsl-match-query,`match`>> query
|
||||
instead.
|
||||
====
|
||||
|
||||
[[term-query-ex-request]]
|
||||
==== Example request
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
POST _search
|
||||
----
|
||||
GET /_search
|
||||
{
|
||||
"query": {
|
||||
"term" : { "user" : "Kimchy" } <1>
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
// CONSOLE
|
||||
<1> Finds documents which contain the exact term `Kimchy` in the inverted index
|
||||
of the `user` field.
|
||||
|
||||
A `boost` parameter can be specified to give this `term` query a higher
|
||||
relevance score than another query, for instance:
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
GET _search
|
||||
{
|
||||
"query": {
|
||||
"bool": {
|
||||
"should": [
|
||||
{
|
||||
"term": {
|
||||
"status": {
|
||||
"value": "urgent",
|
||||
"boost": 2.0 <1>
|
||||
"query": {
|
||||
"term": {
|
||||
"user": {
|
||||
"value": "Kimchy",
|
||||
"boost": 1.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"term": {
|
||||
"status": "normal" <2>
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
----
|
||||
// CONSOLE
|
||||
|
||||
<1> The `urgent` query clause has a boost of `2.0`, meaning it is twice as important
|
||||
as the query clause for `normal`.
|
||||
<2> The `normal` clause has the default neutral boost of `1.0`.
|
||||
[[term-top-level-params]]
|
||||
==== Top-level parameters for `term`
|
||||
`<field>`::
|
||||
Field you wish to search.
|
||||
|
||||
A `term` query can also match against <<range, range data types>>.
|
||||
[[term-field-params]]
|
||||
==== Parameters for `<field>`
|
||||
`value`::
|
||||
Term you wish to find in the provided `<field>`. To return a document, the term
|
||||
must exactly match the field value, including whitespace and capitalization.
|
||||
|
||||
.Why doesn't the `term` query match my document?
|
||||
**************************************************
|
||||
`boost`::
|
||||
Floating point number used to decrease or increase the
|
||||
<<query-filter-context, relevance scores>> of a query. Default is `1.0`.
|
||||
Optional.
|
||||
+
|
||||
You can use the `boost` parameter to adjust relevance scores for searches
|
||||
containing two or more queries.
|
||||
+
|
||||
Boost values are relative to the default value of `1.0`. A boost value between
|
||||
`0` and `1.0` decreases the relevance score. A value greater than `1.0`
|
||||
increases the relevance score.
|
||||
|
||||
String fields can be of type `text` (treated as full text, like the body of an
|
||||
email), or `keyword` (treated as exact values, like an email address or a
|
||||
zip code). Exact values (like numbers, dates, and keywords) have
|
||||
the exact value specified in the field added to the inverted index in order
|
||||
to make them searchable.
|
||||
[[term-query-notes]]
|
||||
==== Notes
|
||||
|
||||
However, `text` fields are `analyzed`. This means that their
|
||||
values are first passed through an <<analysis,analyzer>> to produce a list of
|
||||
terms, which are then added to the inverted index.
|
||||
[[avoid-term-query-text-fields]]
|
||||
===== Avoid using the `term` query for `text` fields
|
||||
By default, {es} changes the values of `text` fields during analysis. For
|
||||
example, the default <<analysis-standard-analyzer, standard analyzer>> changes
|
||||
`text` field values as follows:
|
||||
|
||||
There are many ways to analyze text: the default
|
||||
<<analysis-standard-analyzer,`standard` analyzer>> drops most punctuation,
|
||||
breaks up text into individual words, and lower cases them. For instance,
|
||||
the `standard` analyzer would turn the string ``Quick Brown Fox!'' into the
|
||||
terms [`quick`, `brown`, `fox`].
|
||||
* Removes most punctuation
|
||||
* Divides the remaining content into individual words, called
|
||||
<<analysis-tokenizers, tokens>>
|
||||
* Lowercases the tokens
|
||||
|
||||
This analysis process makes it possible to search for individual words
|
||||
within a big block of full text.
|
||||
To better search `text` fields, the `match` query also analyzes your provided
|
||||
search term before performing a search. This means the `match` query can search
|
||||
`text` fields for analyzed tokens rather than an exact term.
|
||||
|
||||
The `term` query looks for the *exact* term in the field's inverted index --
|
||||
it doesn't know anything about the field's analyzer. This makes it useful for
|
||||
looking up values in keyword fields, or in numeric or date
|
||||
fields. When querying full text fields, use the
|
||||
<<query-dsl-match-query,`match` query>> instead, which understands how the field
|
||||
has been analyzed.
|
||||
The `term` query does *not* analyze the search term. The `term` query only
|
||||
searches for the *exact* term you provide. This means the `term` query may
|
||||
return poor or no results when searching `text` fields.
|
||||
|
||||
To see the difference in search results, try the following example.
|
||||
|
||||
To demonstrate, try out the example below. First, create an index, specifying the field mappings, and index a document:
|
||||
. Create an index with a `text` field called `full_text`.
|
||||
+
|
||||
--
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
----
|
||||
PUT my_index
|
||||
{
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"full_text": {
|
||||
"type": "text" <1>
|
||||
},
|
||||
"exact_value": {
|
||||
"type": "keyword" <2>
|
||||
}
|
||||
"mappings" : {
|
||||
"properties" : {
|
||||
"full_text" : { "type" : "text" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
PUT my_index/_doc/1
|
||||
{
|
||||
"full_text": "Quick Foxes!", <3>
|
||||
"exact_value": "Quick Foxes!" <4>
|
||||
}
|
||||
--------------------------------------------------
|
||||
----
|
||||
// CONSOLE
|
||||
|
||||
<1> The `full_text` field is of type `text` and will be analyzed.
|
||||
<2> The `exact_value` field is of type `keyword` and will NOT be analyzed.
|
||||
<3> The `full_text` inverted index will contain the terms: [`quick`, `foxes`].
|
||||
<4> The `exact_value` inverted index will contain the exact term: [`Quick Foxes!`].
|
||||
--
|
||||
|
||||
Now, compare the results for the `term` query and the `match` query:
|
||||
. Index a document with a value of `Quick Brown Foxes!` in the `full_text`
|
||||
field.
|
||||
+
|
||||
--
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
GET my_index/_search
|
||||
----
|
||||
PUT my_index/_doc/1
|
||||
{
|
||||
"query": {
|
||||
"term": {
|
||||
"exact_value": "Quick Foxes!" <1>
|
||||
}
|
||||
}
|
||||
"full_text": "Quick Brown Foxes!"
|
||||
}
|
||||
|
||||
GET my_index/_search
|
||||
{
|
||||
"query": {
|
||||
"term": {
|
||||
"full_text": "Quick Foxes!" <2>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GET my_index/_search
|
||||
{
|
||||
"query": {
|
||||
"term": {
|
||||
"full_text": "foxes" <3>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GET my_index/_search
|
||||
{
|
||||
"query": {
|
||||
"match": {
|
||||
"full_text": "Quick Foxes!" <4>
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
----
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
|
||||
<1> This query matches because the `exact_value` field contains the exact
|
||||
term `Quick Foxes!`.
|
||||
<2> This query does not match, because the `full_text` field only contains
|
||||
the terms `quick` and `foxes`. It does not contain the exact term
|
||||
`Quick Foxes!`.
|
||||
<3> A `term` query for the term `foxes` matches the `full_text` field.
|
||||
<4> This `match` query on the `full_text` field first analyzes the query string,
|
||||
then looks for documents containing `quick` or `foxes` or both.
|
||||
**************************************************
|
||||
Because `full_text` is a `text` field, {es} changes `Quick Brown Foxes!` to
|
||||
`[quick, brown, fox]` during analysis.
|
||||
|
||||
--
|
||||
|
||||
. Use the `term` query to search for `Quick Brown Foxes!` in the `full_text`
|
||||
field. Include the `pretty` parameter so the response is more readable.
|
||||
+
|
||||
--
|
||||
|
||||
[source,js]
|
||||
----
|
||||
GET my_index/_search?pretty
|
||||
{
|
||||
"query": {
|
||||
"term": {
|
||||
"full_text": "Quick Brown Foxes!"
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
|
||||
Because the `full_text` field no longer contains the *exact* term `Quick Brown
|
||||
Foxes!`, the `term` query search returns no results.
|
||||
|
||||
--
|
||||
|
||||
. Use the `match` query to search for `Quick Brown Foxes!` in the `full_text`
|
||||
field.
|
||||
+
|
||||
--
|
||||
|
||||
////
|
||||
|
||||
[source,js]
|
||||
----
|
||||
POST my_index/_refresh
|
||||
----
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
|
||||
////
|
||||
|
||||
[source,js]
|
||||
----
|
||||
GET my_index/_search?pretty
|
||||
{
|
||||
"query": {
|
||||
"match": {
|
||||
"full_text": "Quick Brown Foxes!"
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
// CONSOLE
|
||||
// TEST[continued]
|
||||
|
||||
Unlike the `term` query, the `match` query analyzes your provided search term,
|
||||
`Quick Brown Foxes!`, before performing a search. The `match` query then returns
|
||||
any documents containing the `quick`, `brown`, or `fox` tokens in the
|
||||
`full_text` field.
|
||||
|
||||
Here's the response for the `match` query search containing the indexed document
|
||||
in the results.
|
||||
|
||||
[source,js]
|
||||
----
|
||||
{
|
||||
"took" : 1,
|
||||
"timed_out" : false,
|
||||
"_shards" : {
|
||||
"total" : 1,
|
||||
"successful" : 1,
|
||||
"skipped" : 0,
|
||||
"failed" : 0
|
||||
},
|
||||
"hits" : {
|
||||
"total" : {
|
||||
"value" : 1,
|
||||
"relation" : "eq"
|
||||
},
|
||||
"max_score" : 0.8630463,
|
||||
"hits" : [
|
||||
{
|
||||
"_index" : "my_index",
|
||||
"_type" : "_doc",
|
||||
"_id" : "1",
|
||||
"_score" : 0.8630463,
|
||||
"_source" : {
|
||||
"full_text" : "Quick Brown Foxes!"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/"took" : 1/"took" : $body.took/]
|
||||
--
|
Loading…
Reference in New Issue