parent
636442700c
commit
24776b2b80
|
@ -28,6 +28,7 @@ import org.elasticsearch.client.ml.CloseJobRequest;
|
|||
import org.elasticsearch.client.ml.DeleteJobRequest;
|
||||
import org.elasticsearch.client.ml.FlushJobRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetInfluencersRequest;
|
||||
import org.elasticsearch.client.ml.GetJobRequest;
|
||||
import org.elasticsearch.client.ml.GetJobStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
|
@ -186,4 +187,18 @@ final class MLRequestConverters {
|
|||
request.setEntity(createEntity(getRecordsRequest, REQUEST_BODY_CONTENT_TYPE));
|
||||
return request;
|
||||
}
|
||||
|
||||
static Request getInfluencers(GetInfluencersRequest getInfluencersRequest) throws IOException {
|
||||
String endpoint = new EndpointBuilder()
|
||||
.addPathPartAsIs("_xpack")
|
||||
.addPathPartAsIs("ml")
|
||||
.addPathPartAsIs("anomaly_detectors")
|
||||
.addPathPart(getInfluencersRequest.getJobId())
|
||||
.addPathPartAsIs("results")
|
||||
.addPathPartAsIs("influencers")
|
||||
.build();
|
||||
Request request = new Request(HttpGet.METHOD_NAME, endpoint);
|
||||
request.setEntity(createEntity(getInfluencersRequest, REQUEST_BODY_CONTENT_TYPE));
|
||||
return request;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,19 +19,20 @@
|
|||
package org.elasticsearch.client;
|
||||
|
||||
import org.elasticsearch.action.ActionListener;
|
||||
import org.elasticsearch.client.ml.FlushJobRequest;
|
||||
import org.elasticsearch.client.ml.FlushJobResponse;
|
||||
import org.elasticsearch.client.ml.GetJobStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetJobStatsResponse;
|
||||
import org.elasticsearch.client.ml.job.stats.JobStats;
|
||||
import org.elasticsearch.client.ml.CloseJobRequest;
|
||||
import org.elasticsearch.client.ml.CloseJobResponse;
|
||||
import org.elasticsearch.client.ml.DeleteJobRequest;
|
||||
import org.elasticsearch.client.ml.DeleteJobResponse;
|
||||
import org.elasticsearch.client.ml.FlushJobRequest;
|
||||
import org.elasticsearch.client.ml.FlushJobResponse;
|
||||
import org.elasticsearch.client.ml.GetBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsResponse;
|
||||
import org.elasticsearch.client.ml.GetInfluencersRequest;
|
||||
import org.elasticsearch.client.ml.GetInfluencersResponse;
|
||||
import org.elasticsearch.client.ml.GetJobRequest;
|
||||
import org.elasticsearch.client.ml.GetJobResponse;
|
||||
import org.elasticsearch.client.ml.GetJobStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetJobStatsResponse;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsResponse;
|
||||
import org.elasticsearch.client.ml.GetRecordsRequest;
|
||||
|
@ -40,6 +41,7 @@ import org.elasticsearch.client.ml.OpenJobRequest;
|
|||
import org.elasticsearch.client.ml.OpenJobResponse;
|
||||
import org.elasticsearch.client.ml.PutJobRequest;
|
||||
import org.elasticsearch.client.ml.PutJobResponse;
|
||||
import org.elasticsearch.client.ml.job.stats.JobStats;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Collections;
|
||||
|
@ -464,4 +466,43 @@ public final class MachineLearningClient {
|
|||
listener,
|
||||
Collections.emptySet());
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the influencers for a Machine Learning Job.
|
||||
* <p>
|
||||
* For additional info
|
||||
* see <a href="https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-get-influencer.html">
|
||||
* ML GET influencers documentation</a>
|
||||
*
|
||||
* @param request the request
|
||||
* @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized
|
||||
*/
|
||||
public GetInfluencersResponse getInfluencers(GetInfluencersRequest request, RequestOptions options) throws IOException {
|
||||
return restHighLevelClient.performRequestAndParseEntity(request,
|
||||
MLRequestConverters::getInfluencers,
|
||||
options,
|
||||
GetInfluencersResponse::fromXContent,
|
||||
Collections.emptySet());
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the influencers for a Machine Learning Job, notifies listener once the requested influencers are retrieved.
|
||||
* <p>
|
||||
* For additional info
|
||||
* * see <a href="https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-get-influencer.html">
|
||||
* ML GET influencers documentation</a>
|
||||
*
|
||||
* @param request the request
|
||||
* @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized
|
||||
* @param listener Listener to be notified upon request completion
|
||||
*/
|
||||
public void getInfluencersAsync(GetInfluencersRequest request, RequestOptions options,
|
||||
ActionListener<GetInfluencersResponse> listener) {
|
||||
restHighLevelClient.performRequestAsyncAndParseEntity(request,
|
||||
MLRequestConverters::getInfluencers,
|
||||
options,
|
||||
GetInfluencersResponse::fromXContent,
|
||||
listener,
|
||||
Collections.emptySet());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -41,7 +41,6 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
public static final ParseField START = new ParseField("start");
|
||||
public static final ParseField END = new ParseField("end");
|
||||
public static final ParseField ANOMALY_SCORE = new ParseField("anomaly_score");
|
||||
public static final ParseField TIMESTAMP = new ParseField("timestamp");
|
||||
public static final ParseField SORT = new ParseField("sort");
|
||||
public static final ParseField DESCENDING = new ParseField("desc");
|
||||
|
||||
|
@ -87,7 +86,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
|
||||
/**
|
||||
* Sets the timestamp of a specific bucket to be retrieved.
|
||||
* @param timestamp the timestamp of a specific bucket to be retrieved
|
||||
* @param timestamp String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setTimestamp(String timestamp) {
|
||||
this.timestamp = timestamp;
|
||||
|
@ -106,11 +105,11 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
* When {@code true}, buckets will be expanded to include their records.
|
||||
* @param expand value of "expand" to be set
|
||||
*/
|
||||
public void setExpand(boolean expand) {
|
||||
public void setExpand(Boolean expand) {
|
||||
this.expand = expand;
|
||||
}
|
||||
|
||||
public boolean isExcludeInterim() {
|
||||
public Boolean isExcludeInterim() {
|
||||
return excludeInterim;
|
||||
}
|
||||
|
||||
|
@ -119,7 +118,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
* When {@code true}, interim buckets will be filtered out.
|
||||
* @param excludeInterim value of "exclude_interim" to be set
|
||||
*/
|
||||
public void setExcludeInterim(boolean excludeInterim) {
|
||||
public void setExcludeInterim(Boolean excludeInterim) {
|
||||
this.excludeInterim = excludeInterim;
|
||||
}
|
||||
|
||||
|
@ -130,7 +129,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
/**
|
||||
* Sets the value of "start" which is a timestamp.
|
||||
* Only buckets whose timestamp is on or after the "start" value will be returned.
|
||||
* @param start value of "start" to be set
|
||||
* @param start String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setStart(String start) {
|
||||
this.start = start;
|
||||
|
@ -143,7 +142,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
/**
|
||||
* Sets the value of "end" which is a timestamp.
|
||||
* Only buckets whose timestamp is before the "end" value will be returned.
|
||||
* @param end value of "end" to be set
|
||||
* @param end String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setEnd(String end) {
|
||||
this.end = end;
|
||||
|
@ -170,7 +169,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
* Only buckets with "anomaly_score" equal or greater will be returned.
|
||||
* @param anomalyScore value of "anomaly_score".
|
||||
*/
|
||||
public void setAnomalyScore(double anomalyScore) {
|
||||
public void setAnomalyScore(Double anomalyScore) {
|
||||
this.anomalyScore = anomalyScore;
|
||||
}
|
||||
|
||||
|
@ -187,7 +186,7 @@ public class GetBucketsRequest extends ActionRequest implements ToXContentObject
|
|||
this.sort = sort;
|
||||
}
|
||||
|
||||
public boolean isDescending() {
|
||||
public Boolean isDescending() {
|
||||
return descending;
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,227 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.action.ActionRequest;
|
||||
import org.elasticsearch.action.ActionRequestValidationException;
|
||||
import org.elasticsearch.client.ml.job.config.Job;
|
||||
import org.elasticsearch.client.ml.job.util.PageParams;
|
||||
import org.elasticsearch.common.ParseField;
|
||||
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
|
||||
import org.elasticsearch.common.xcontent.ToXContentObject;
|
||||
import org.elasticsearch.common.xcontent.XContentBuilder;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* A request to retrieve influencers of a given job
|
||||
*/
|
||||
public class GetInfluencersRequest extends ActionRequest implements ToXContentObject {
|
||||
|
||||
public static final ParseField EXCLUDE_INTERIM = new ParseField("exclude_interim");
|
||||
public static final ParseField START = new ParseField("start");
|
||||
public static final ParseField END = new ParseField("end");
|
||||
public static final ParseField INFLUENCER_SCORE = new ParseField("influencer_score");
|
||||
public static final ParseField SORT = new ParseField("sort");
|
||||
public static final ParseField DESCENDING = new ParseField("desc");
|
||||
|
||||
public static final ConstructingObjectParser<GetInfluencersRequest, Void> PARSER = new ConstructingObjectParser<>(
|
||||
"get_influencers_request", a -> new GetInfluencersRequest((String) a[0]));
|
||||
|
||||
static {
|
||||
PARSER.declareString(ConstructingObjectParser.constructorArg(), Job.ID);
|
||||
PARSER.declareBoolean(GetInfluencersRequest::setExcludeInterim, EXCLUDE_INTERIM);
|
||||
PARSER.declareStringOrNull(GetInfluencersRequest::setStart, START);
|
||||
PARSER.declareStringOrNull(GetInfluencersRequest::setEnd, END);
|
||||
PARSER.declareObject(GetInfluencersRequest::setPageParams, PageParams.PARSER, PageParams.PAGE);
|
||||
PARSER.declareDouble(GetInfluencersRequest::setInfluencerScore, INFLUENCER_SCORE);
|
||||
PARSER.declareString(GetInfluencersRequest::setSort, SORT);
|
||||
PARSER.declareBoolean(GetInfluencersRequest::setDescending, DESCENDING);
|
||||
}
|
||||
|
||||
private final String jobId;
|
||||
private Boolean excludeInterim;
|
||||
private String start;
|
||||
private String end;
|
||||
private Double influencerScore;
|
||||
private PageParams pageParams;
|
||||
private String sort;
|
||||
private Boolean descending;
|
||||
|
||||
/**
|
||||
* Constructs a request to retrieve influencers of a given job
|
||||
* @param jobId id of the job to retrieve influencers of
|
||||
*/
|
||||
public GetInfluencersRequest(String jobId) {
|
||||
this.jobId = Objects.requireNonNull(jobId);
|
||||
}
|
||||
|
||||
public String getJobId() {
|
||||
return jobId;
|
||||
}
|
||||
|
||||
public Boolean isExcludeInterim() {
|
||||
return excludeInterim;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "exclude_interim".
|
||||
* When {@code true}, interim influencers will be filtered out.
|
||||
* @param excludeInterim value of "exclude_interim" to be set
|
||||
*/
|
||||
public void setExcludeInterim(Boolean excludeInterim) {
|
||||
this.excludeInterim = excludeInterim;
|
||||
}
|
||||
|
||||
public String getStart() {
|
||||
return start;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "start" which is a timestamp.
|
||||
* Only influencers whose timestamp is on or after the "start" value will be returned.
|
||||
* @param start String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setStart(String start) {
|
||||
this.start = start;
|
||||
}
|
||||
|
||||
public String getEnd() {
|
||||
return end;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "end" which is a timestamp.
|
||||
* Only influencers whose timestamp is before the "end" value will be returned.
|
||||
* @param end String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setEnd(String end) {
|
||||
this.end = end;
|
||||
}
|
||||
|
||||
public PageParams getPageParams() {
|
||||
return pageParams;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the paging parameters
|
||||
* @param pageParams The paging parameters
|
||||
*/
|
||||
public void setPageParams(PageParams pageParams) {
|
||||
this.pageParams = pageParams;
|
||||
}
|
||||
|
||||
public Double getInfluencerScore() {
|
||||
return influencerScore;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "influencer_score".
|
||||
* Only influencers with "influencer_score" equal or greater will be returned.
|
||||
* @param influencerScore value of "influencer_score".
|
||||
*/
|
||||
public void setInfluencerScore(Double influencerScore) {
|
||||
this.influencerScore = influencerScore;
|
||||
}
|
||||
|
||||
public String getSort() {
|
||||
return sort;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "sort".
|
||||
* Specifies the influencer field to sort on.
|
||||
* @param sort value of "sort".
|
||||
*/
|
||||
public void setSort(String sort) {
|
||||
this.sort = sort;
|
||||
}
|
||||
|
||||
public Boolean isDescending() {
|
||||
return descending;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the value of "desc".
|
||||
* Specifies the sorting order.
|
||||
* @param descending value of "desc"
|
||||
*/
|
||||
public void setDescending(Boolean descending) {
|
||||
this.descending = descending;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ActionRequestValidationException validate() {
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.startObject();
|
||||
builder.field(Job.ID.getPreferredName(), jobId);
|
||||
if (excludeInterim != null) {
|
||||
builder.field(EXCLUDE_INTERIM.getPreferredName(), excludeInterim);
|
||||
}
|
||||
if (start != null) {
|
||||
builder.field(START.getPreferredName(), start);
|
||||
}
|
||||
if (end != null) {
|
||||
builder.field(END.getPreferredName(), end);
|
||||
}
|
||||
if (pageParams != null) {
|
||||
builder.field(PageParams.PAGE.getPreferredName(), pageParams);
|
||||
}
|
||||
if (influencerScore != null) {
|
||||
builder.field(INFLUENCER_SCORE.getPreferredName(), influencerScore);
|
||||
}
|
||||
if (sort != null) {
|
||||
builder.field(SORT.getPreferredName(), sort);
|
||||
}
|
||||
if (descending != null) {
|
||||
builder.field(DESCENDING.getPreferredName(), descending);
|
||||
}
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(jobId, excludeInterim, influencerScore, pageParams, start, end, sort, descending);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (obj == null) {
|
||||
return false;
|
||||
}
|
||||
if (getClass() != obj.getClass()) {
|
||||
return false;
|
||||
}
|
||||
GetInfluencersRequest other = (GetInfluencersRequest) obj;
|
||||
return Objects.equals(jobId, other.jobId) &&
|
||||
Objects.equals(excludeInterim, other.excludeInterim) &&
|
||||
Objects.equals(influencerScore, other.influencerScore) &&
|
||||
Objects.equals(pageParams, other.pageParams) &&
|
||||
Objects.equals(start, other.start) &&
|
||||
Objects.equals(end, other.end) &&
|
||||
Objects.equals(sort, other.sort) &&
|
||||
Objects.equals(descending, other.descending);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.client.ml.job.results.Influencer;
|
||||
import org.elasticsearch.common.ParseField;
|
||||
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* A response containing the requested influencers
|
||||
*/
|
||||
public class GetInfluencersResponse extends AbstractResultResponse<Influencer> {
|
||||
|
||||
public static final ParseField INFLUENCERS = new ParseField("influencers");
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public static final ConstructingObjectParser<GetInfluencersResponse, Void> PARSER = new ConstructingObjectParser<>(
|
||||
"get_influencers_response", true, a -> new GetInfluencersResponse((List<Influencer>) a[0], (long) a[1]));
|
||||
|
||||
static {
|
||||
PARSER.declareObjectArray(ConstructingObjectParser.constructorArg(), Influencer.PARSER, INFLUENCERS);
|
||||
PARSER.declareLong(ConstructingObjectParser.constructorArg(), COUNT);
|
||||
}
|
||||
|
||||
public static GetInfluencersResponse fromXContent(XContentParser parser) throws IOException {
|
||||
return PARSER.parse(parser, null);
|
||||
}
|
||||
|
||||
GetInfluencersResponse(List<Influencer> influencers, long count) {
|
||||
super(INFLUENCERS, influencers, count);
|
||||
}
|
||||
|
||||
/**
|
||||
* The retrieved influencers
|
||||
* @return the retrieved influencers
|
||||
*/
|
||||
public List<Influencer> influencers() {
|
||||
return results;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(count, results);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (obj == null) {
|
||||
return false;
|
||||
}
|
||||
if (getClass() != obj.getClass()) {
|
||||
return false;
|
||||
}
|
||||
GetInfluencersResponse other = (GetInfluencersResponse) obj;
|
||||
return count == other.count && Objects.equals(results, other.results);
|
||||
}
|
||||
}
|
|
@ -154,7 +154,7 @@ public class GetOverallBucketsRequest extends ActionRequest implements ToXConten
|
|||
/**
|
||||
* Sets the value of "start" which is a timestamp.
|
||||
* Only overall buckets whose timestamp is on or after the "start" value will be returned.
|
||||
* @param start value of "start" to be set
|
||||
* @param start String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setStart(String start) {
|
||||
this.start = start;
|
||||
|
@ -167,7 +167,7 @@ public class GetOverallBucketsRequest extends ActionRequest implements ToXConten
|
|||
/**
|
||||
* Sets the value of "end" which is a timestamp.
|
||||
* Only overall buckets whose timestamp is before the "end" value will be returned.
|
||||
* @param end value of "end" to be set
|
||||
* @param end String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setEnd(String end) {
|
||||
this.end = end;
|
||||
|
|
|
@ -41,7 +41,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
public static final ParseField SORT = new ParseField("sort");
|
||||
public static final ParseField DESCENDING = new ParseField("desc");
|
||||
|
||||
public static final ObjectParser<GetRecordsRequest, Void> PARSER = new ObjectParser<>("get_buckets_request", GetRecordsRequest::new);
|
||||
public static final ObjectParser<GetRecordsRequest, Void> PARSER = new ObjectParser<>("get_records_request", GetRecordsRequest::new);
|
||||
|
||||
static {
|
||||
PARSER.declareString((request, jobId) -> request.jobId = jobId, Job.ID);
|
||||
|
@ -77,7 +77,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
return jobId;
|
||||
}
|
||||
|
||||
public boolean isExcludeInterim() {
|
||||
public Boolean isExcludeInterim() {
|
||||
return excludeInterim;
|
||||
}
|
||||
|
||||
|
@ -86,7 +86,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
* When {@code true}, interim records will be filtered out.
|
||||
* @param excludeInterim value of "exclude_interim" to be set
|
||||
*/
|
||||
public void setExcludeInterim(boolean excludeInterim) {
|
||||
public void setExcludeInterim(Boolean excludeInterim) {
|
||||
this.excludeInterim = excludeInterim;
|
||||
}
|
||||
|
||||
|
@ -97,7 +97,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
/**
|
||||
* Sets the value of "start" which is a timestamp.
|
||||
* Only records whose timestamp is on or after the "start" value will be returned.
|
||||
* @param start value of "start" to be set
|
||||
* @param start String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setStart(String start) {
|
||||
this.start = start;
|
||||
|
@ -110,7 +110,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
/**
|
||||
* Sets the value of "end" which is a timestamp.
|
||||
* Only records whose timestamp is before the "end" value will be returned.
|
||||
* @param end value of "end" to be set
|
||||
* @param end String representation of a timestamp; may be an epoch seconds, epoch millis or an ISO string
|
||||
*/
|
||||
public void setEnd(String end) {
|
||||
this.end = end;
|
||||
|
@ -137,7 +137,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
* Only records with "record_score" equal or greater will be returned.
|
||||
* @param recordScore value of "record_score".
|
||||
*/
|
||||
public void setRecordScore(double recordScore) {
|
||||
public void setRecordScore(Double recordScore) {
|
||||
this.recordScore = recordScore;
|
||||
}
|
||||
|
||||
|
@ -147,14 +147,14 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
|
||||
/**
|
||||
* Sets the value of "sort".
|
||||
* Specifies the bucket field to sort on.
|
||||
* Specifies the record field to sort on.
|
||||
* @param sort value of "sort".
|
||||
*/
|
||||
public void setSort(String sort) {
|
||||
this.sort = sort;
|
||||
}
|
||||
|
||||
public boolean isDescending() {
|
||||
public Boolean isDescending() {
|
||||
return descending;
|
||||
}
|
||||
|
||||
|
@ -163,7 +163,7 @@ public class GetRecordsRequest implements ToXContentObject, Validatable {
|
|||
* Specifies the sorting order.
|
||||
* @param descending value of "desc"
|
||||
*/
|
||||
public void setDescending(boolean descending) {
|
||||
public void setDescending(Boolean descending) {
|
||||
this.descending = descending;
|
||||
}
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ import java.util.List;
|
|||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* A response containing the requested buckets
|
||||
* A response containing the requested records
|
||||
*/
|
||||
public class GetRecordsResponse extends AbstractResultResponse<AnomalyRecord> {
|
||||
|
||||
|
@ -47,8 +47,8 @@ public class GetRecordsResponse extends AbstractResultResponse<AnomalyRecord> {
|
|||
return PARSER.parse(parser, null);
|
||||
}
|
||||
|
||||
GetRecordsResponse(List<AnomalyRecord> buckets, long count) {
|
||||
super(RECORDS, buckets, count);
|
||||
GetRecordsResponse(List<AnomalyRecord> records, long count) {
|
||||
super(RECORDS, records, count);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -27,6 +27,7 @@ import org.elasticsearch.client.ml.CloseJobRequest;
|
|||
import org.elasticsearch.client.ml.DeleteJobRequest;
|
||||
import org.elasticsearch.client.ml.FlushJobRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetInfluencersRequest;
|
||||
import org.elasticsearch.client.ml.GetJobRequest;
|
||||
import org.elasticsearch.client.ml.GetJobStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
|
@ -220,6 +221,26 @@ public class MLRequestConvertersTests extends ESTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testGetInfluencers() throws IOException {
|
||||
String jobId = randomAlphaOfLength(10);
|
||||
GetInfluencersRequest getInfluencersRequest = new GetInfluencersRequest(jobId);
|
||||
getInfluencersRequest.setStart("2018-08-08T00:00:00Z");
|
||||
getInfluencersRequest.setEnd("2018-09-08T00:00:00Z");
|
||||
getInfluencersRequest.setPageParams(new PageParams(100, 300));
|
||||
getInfluencersRequest.setInfluencerScore(75.0);
|
||||
getInfluencersRequest.setSort("anomaly_score");
|
||||
getInfluencersRequest.setDescending(true);
|
||||
getInfluencersRequest.setExcludeInterim(true);
|
||||
|
||||
Request request = MLRequestConverters.getInfluencers(getInfluencersRequest);
|
||||
assertEquals(HttpGet.METHOD_NAME, request.getMethod());
|
||||
assertEquals("/_xpack/ml/anomaly_detectors/" + jobId + "/results/influencers", request.getEndpoint());
|
||||
try (XContentParser parser = createParser(JsonXContent.jsonXContent, request.getEntity().getContent())) {
|
||||
GetInfluencersRequest parsedRequest = GetInfluencersRequest.PARSER.apply(parser, null);
|
||||
assertThat(parsedRequest, equalTo(getInfluencersRequest));
|
||||
}
|
||||
}
|
||||
|
||||
private static Job createValidJob(String jobId) {
|
||||
AnalysisConfig.Builder analysisConfig = AnalysisConfig.builder(Collections.singletonList(
|
||||
Detector.builder().setFunction("count").build()));
|
||||
|
|
|
@ -23,6 +23,8 @@ import org.elasticsearch.action.index.IndexRequest;
|
|||
import org.elasticsearch.action.support.WriteRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsResponse;
|
||||
import org.elasticsearch.client.ml.GetInfluencersRequest;
|
||||
import org.elasticsearch.client.ml.GetInfluencersResponse;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetOverallBucketsResponse;
|
||||
import org.elasticsearch.client.ml.GetRecordsRequest;
|
||||
|
@ -34,6 +36,7 @@ import org.elasticsearch.client.ml.job.config.Detector;
|
|||
import org.elasticsearch.client.ml.job.config.Job;
|
||||
import org.elasticsearch.client.ml.job.results.AnomalyRecord;
|
||||
import org.elasticsearch.client.ml.job.results.Bucket;
|
||||
import org.elasticsearch.client.ml.job.results.Influencer;
|
||||
import org.elasticsearch.client.ml.job.results.OverallBucket;
|
||||
import org.elasticsearch.client.ml.job.util.PageParams;
|
||||
import org.elasticsearch.common.unit.TimeValue;
|
||||
|
@ -387,6 +390,106 @@ public class MachineLearningGetResultsIT extends ESRestHighLevelClientTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testGetInfluencers() throws IOException {
|
||||
MachineLearningClient machineLearningClient = highLevelClient().machineLearning();
|
||||
|
||||
// Let us index a few influencer docs
|
||||
BulkRequest bulkRequest = new BulkRequest();
|
||||
bulkRequest.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE);
|
||||
long timestamp = START_TIME_EPOCH_MS;
|
||||
long end = START_TIME_EPOCH_MS + 5 * 3600000L;
|
||||
while (timestamp < end) {
|
||||
boolean isLast = timestamp == end - 3600000L;
|
||||
// Last one is interim
|
||||
boolean isInterim = isLast;
|
||||
// Last one score is higher
|
||||
double score = isLast ? 90.0 : 42.0;
|
||||
|
||||
IndexRequest indexRequest = new IndexRequest(RESULTS_INDEX, DOC);
|
||||
indexRequest.source("{\"job_id\":\"" + JOB_ID + "\", \"result_type\":\"influencer\", \"timestamp\": " +
|
||||
timestamp + "," + "\"bucket_span\": 3600,\"is_interim\": " + isInterim + ", \"influencer_score\": " + score + ", " +
|
||||
"\"influencer_field_name\":\"my_influencer\", \"influencer_field_value\": \"inf_1\", \"probability\":"
|
||||
+ randomDouble() + "}", XContentType.JSON);
|
||||
bulkRequest.add(indexRequest);
|
||||
timestamp += 3600000L;
|
||||
}
|
||||
highLevelClient().bulk(bulkRequest, RequestOptions.DEFAULT);
|
||||
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setDescending(false);
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.count(), equalTo(5L));
|
||||
}
|
||||
{
|
||||
long requestStart = START_TIME_EPOCH_MS + 3600000L;
|
||||
long requestEnd = end - 3600000L;
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setStart(String.valueOf(requestStart));
|
||||
request.setEnd(String.valueOf(requestEnd));
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.count(), equalTo(3L));
|
||||
for (Influencer influencer : response.influencers()) {
|
||||
assertThat(influencer.getTimestamp().getTime(), greaterThanOrEqualTo(START_TIME_EPOCH_MS));
|
||||
assertThat(influencer.getTimestamp().getTime(), lessThan(end));
|
||||
}
|
||||
}
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setSort("timestamp");
|
||||
request.setDescending(false);
|
||||
request.setPageParams(new PageParams(1, 2));
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.influencers().size(), equalTo(2));
|
||||
assertThat(response.influencers().get(0).getTimestamp().getTime(), equalTo(START_TIME_EPOCH_MS + 3600000L));
|
||||
assertThat(response.influencers().get(1).getTimestamp().getTime(), equalTo(START_TIME_EPOCH_MS + 2 * 3600000L));
|
||||
}
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setExcludeInterim(true);
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.count(), equalTo(4L));
|
||||
assertThat(response.influencers().stream().anyMatch(Influencer::isInterim), is(false));
|
||||
}
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setInfluencerScore(75.0);
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.count(), equalTo(1L));
|
||||
assertThat(response.influencers().get(0).getInfluencerScore(), greaterThanOrEqualTo(75.0));
|
||||
}
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(JOB_ID);
|
||||
request.setSort("probability");
|
||||
request.setDescending(true);
|
||||
|
||||
GetInfluencersResponse response = execute(request, machineLearningClient::getInfluencers,
|
||||
machineLearningClient::getInfluencersAsync);
|
||||
|
||||
assertThat(response.influencers().size(), equalTo(5));
|
||||
double previousProb = 1.0;
|
||||
for (Influencer influencer : response.influencers()) {
|
||||
assertThat(influencer.getProbability(), lessThanOrEqualTo(previousProb));
|
||||
previousProb = influencer.getProbability();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static Job buildJob(String jobId) {
|
||||
Job.Builder builder = new Job.Builder(jobId);
|
||||
|
||||
|
|
|
@ -37,6 +37,8 @@ import org.elasticsearch.client.ml.FlushJobRequest;
|
|||
import org.elasticsearch.client.ml.FlushJobResponse;
|
||||
import org.elasticsearch.client.ml.GetBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetBucketsResponse;
|
||||
import org.elasticsearch.client.ml.GetInfluencersRequest;
|
||||
import org.elasticsearch.client.ml.GetInfluencersResponse;
|
||||
import org.elasticsearch.client.ml.GetJobRequest;
|
||||
import org.elasticsearch.client.ml.GetJobResponse;
|
||||
import org.elasticsearch.client.ml.GetJobStatsRequest;
|
||||
|
@ -55,6 +57,7 @@ import org.elasticsearch.client.ml.job.config.Detector;
|
|||
import org.elasticsearch.client.ml.job.config.Job;
|
||||
import org.elasticsearch.client.ml.job.results.AnomalyRecord;
|
||||
import org.elasticsearch.client.ml.job.results.Bucket;
|
||||
import org.elasticsearch.client.ml.job.results.Influencer;
|
||||
import org.elasticsearch.client.ml.job.results.OverallBucket;
|
||||
import org.elasticsearch.client.ml.job.stats.JobStats;
|
||||
import org.elasticsearch.client.ml.job.util.PageParams;
|
||||
|
@ -781,4 +784,95 @@ public class MlClientDocumentationIT extends ESRestHighLevelClientTestCase {
|
|||
assertTrue(latch.await(30L, TimeUnit.SECONDS));
|
||||
}
|
||||
}
|
||||
|
||||
public void testGetInfluencers() throws IOException, InterruptedException {
|
||||
RestHighLevelClient client = highLevelClient();
|
||||
|
||||
String jobId = "test-get-influencers";
|
||||
Job job = MachineLearningIT.buildJob(jobId);
|
||||
client.machineLearning().putJob(new PutJobRequest(job), RequestOptions.DEFAULT);
|
||||
|
||||
// Let us index a record
|
||||
IndexRequest indexRequest = new IndexRequest(".ml-anomalies-shared", "doc");
|
||||
indexRequest.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE);
|
||||
indexRequest.source("{\"job_id\":\"test-get-influencers\", \"result_type\":\"influencer\", \"timestamp\": 1533081600000," +
|
||||
"\"bucket_span\": 600,\"is_interim\": false, \"influencer_score\": 80.0, \"influencer_field_name\": \"my_influencer\"," +
|
||||
"\"influencer_field_value\":\"foo\"}", XContentType.JSON);
|
||||
client.index(indexRequest, RequestOptions.DEFAULT);
|
||||
|
||||
{
|
||||
// tag::x-pack-ml-get-influencers-request
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(jobId); // <1>
|
||||
// end::x-pack-ml-get-influencers-request
|
||||
|
||||
// tag::x-pack-ml-get-influencers-desc
|
||||
request.setDescending(true); // <1>
|
||||
// end::x-pack-ml-get-influencers-desc
|
||||
|
||||
// tag::x-pack-ml-get-influencers-end
|
||||
request.setEnd("2018-08-21T00:00:00Z"); // <1>
|
||||
// end::x-pack-ml-get-influencers-end
|
||||
|
||||
// tag::x-pack-ml-get-influencers-exclude-interim
|
||||
request.setExcludeInterim(true); // <1>
|
||||
// end::x-pack-ml-get-influencers-exclude-interim
|
||||
|
||||
// tag::x-pack-ml-get-influencers-influencer-score
|
||||
request.setInfluencerScore(75.0); // <1>
|
||||
// end::x-pack-ml-get-influencers-influencer-score
|
||||
|
||||
// tag::x-pack-ml-get-influencers-page
|
||||
request.setPageParams(new PageParams(100, 200)); // <1>
|
||||
// end::x-pack-ml-get-influencers-page
|
||||
|
||||
// Set page params back to null so the response contains the influencer we indexed
|
||||
request.setPageParams(null);
|
||||
|
||||
// tag::x-pack-ml-get-influencers-sort
|
||||
request.setSort("probability"); // <1>
|
||||
// end::x-pack-ml-get-influencers-sort
|
||||
|
||||
// tag::x-pack-ml-get-influencers-start
|
||||
request.setStart("2018-08-01T00:00:00Z"); // <1>
|
||||
// end::x-pack-ml-get-influencers-start
|
||||
|
||||
// tag::x-pack-ml-get-influencers-execute
|
||||
GetInfluencersResponse response = client.machineLearning().getInfluencers(request, RequestOptions.DEFAULT);
|
||||
// end::x-pack-ml-get-influencers-execute
|
||||
|
||||
// tag::x-pack-ml-get-influencers-response
|
||||
long count = response.count(); // <1>
|
||||
List<Influencer> influencers = response.influencers(); // <2>
|
||||
// end::x-pack-ml-get-influencers-response
|
||||
assertEquals(1, influencers.size());
|
||||
}
|
||||
{
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(jobId);
|
||||
|
||||
// tag::x-pack-ml-get-influencers-listener
|
||||
ActionListener<GetInfluencersResponse> listener =
|
||||
new ActionListener<GetInfluencersResponse>() {
|
||||
@Override
|
||||
public void onResponse(GetInfluencersResponse getInfluencersResponse) {
|
||||
// <1>
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onFailure(Exception e) {
|
||||
// <2>
|
||||
}
|
||||
};
|
||||
// end::x-pack-ml-get-influencers-listener
|
||||
|
||||
// Replace the empty listener by a blocking listener in test
|
||||
final CountDownLatch latch = new CountDownLatch(1);
|
||||
listener = new LatchedActionListener<>(listener, latch);
|
||||
|
||||
// tag::x-pack-ml-get-influencers-execute-async
|
||||
client.machineLearning().getInfluencersAsync(request, RequestOptions.DEFAULT, listener); // <1>
|
||||
// end::x-pack-ml-get-influencers-execute-async
|
||||
|
||||
assertTrue(latch.await(30L, TimeUnit.SECONDS));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.client.ml.job.util.PageParams;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.test.AbstractXContentTestCase;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
public class GetInfluencersRequestTests extends AbstractXContentTestCase<GetInfluencersRequest> {
|
||||
|
||||
@Override
|
||||
protected GetInfluencersRequest createTestInstance() {
|
||||
GetInfluencersRequest request = new GetInfluencersRequest(randomAlphaOfLengthBetween(1, 20));
|
||||
|
||||
if (randomBoolean()) {
|
||||
request.setStart(String.valueOf(randomLong()));
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setEnd(String.valueOf(randomLong()));
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setExcludeInterim(randomBoolean());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setInfluencerScore(randomDouble());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
int from = randomInt(10000);
|
||||
int size = randomInt(10000);
|
||||
request.setPageParams(new PageParams(from, size));
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setSort("influencer_score");
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setDescending(randomBoolean());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
request.setExcludeInterim(randomBoolean());
|
||||
}
|
||||
return request;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected GetInfluencersRequest doParseInstance(XContentParser parser) throws IOException {
|
||||
return GetInfluencersRequest.PARSER.apply(parser, null);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean supportsUnknownFields() {
|
||||
return false;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,53 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.client.ml.job.results.Influencer;
|
||||
import org.elasticsearch.client.ml.job.results.InfluencerTests;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.test.AbstractXContentTestCase;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
public class GetInfluencersResponseTests extends AbstractXContentTestCase<GetInfluencersResponse> {
|
||||
|
||||
@Override
|
||||
protected GetInfluencersResponse createTestInstance() {
|
||||
String jobId = randomAlphaOfLength(20);
|
||||
int listSize = randomInt(10);
|
||||
List<Influencer> influencers = new ArrayList<>(listSize);
|
||||
for (int j = 0; j < listSize; j++) {
|
||||
Influencer influencer = InfluencerTests.createTestInstance(jobId);
|
||||
influencers.add(influencer);
|
||||
}
|
||||
return new GetInfluencersResponse(influencers, listSize);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected GetInfluencersResponse doParseInstance(XContentParser parser) throws IOException {
|
||||
return GetInfluencersResponse.fromXContent(parser);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean supportsUnknownFields() {
|
||||
return true;
|
||||
}
|
||||
}
|
|
@ -21,7 +21,6 @@ package org.elasticsearch.client.ml;
|
|||
import org.elasticsearch.client.ml.job.util.PageParams;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.test.AbstractXContentTestCase;
|
||||
import org.elasticsearch.test.ESTestCase;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
|
@ -29,33 +28,33 @@ public class GetRecordsRequestTests extends AbstractXContentTestCase<GetRecordsR
|
|||
|
||||
@Override
|
||||
protected GetRecordsRequest createTestInstance() {
|
||||
GetRecordsRequest request = new GetRecordsRequest(ESTestCase.randomAlphaOfLengthBetween(1, 20));
|
||||
GetRecordsRequest request = new GetRecordsRequest(randomAlphaOfLengthBetween(1, 20));
|
||||
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setStart(String.valueOf(ESTestCase.randomLong()));
|
||||
if (randomBoolean()) {
|
||||
request.setStart(String.valueOf(randomLong()));
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setEnd(String.valueOf(ESTestCase.randomLong()));
|
||||
if (randomBoolean()) {
|
||||
request.setEnd(String.valueOf(randomLong()));
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setExcludeInterim(ESTestCase.randomBoolean());
|
||||
if (randomBoolean()) {
|
||||
request.setExcludeInterim(randomBoolean());
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setRecordScore(ESTestCase.randomDouble());
|
||||
if (randomBoolean()) {
|
||||
request.setRecordScore(randomDouble());
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
int from = ESTestCase.randomInt(10000);
|
||||
int size = ESTestCase.randomInt(10000);
|
||||
if (randomBoolean()) {
|
||||
int from = randomInt(10000);
|
||||
int size = randomInt(10000);
|
||||
request.setPageParams(new PageParams(from, size));
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
if (randomBoolean()) {
|
||||
request.setSort("anomaly_score");
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setDescending(ESTestCase.randomBoolean());
|
||||
if (randomBoolean()) {
|
||||
request.setDescending(randomBoolean());
|
||||
}
|
||||
if (ESTestCase.randomBoolean()) {
|
||||
request.setExcludeInterim(ESTestCase.randomBoolean());
|
||||
if (randomBoolean()) {
|
||||
request.setExcludeInterim(randomBoolean());
|
||||
}
|
||||
return request;
|
||||
}
|
||||
|
|
|
@ -22,7 +22,6 @@ import org.elasticsearch.client.ml.job.results.AnomalyRecord;
|
|||
import org.elasticsearch.client.ml.job.results.AnomalyRecordTests;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.test.AbstractXContentTestCase;
|
||||
import org.elasticsearch.test.ESTestCase;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
|
@ -32,8 +31,8 @@ public class GetRecordsResponseTests extends AbstractXContentTestCase<GetRecords
|
|||
|
||||
@Override
|
||||
protected GetRecordsResponse createTestInstance() {
|
||||
String jobId = ESTestCase.randomAlphaOfLength(20);
|
||||
int listSize = ESTestCase.randomInt(10);
|
||||
String jobId = randomAlphaOfLength(20);
|
||||
int listSize = randomInt(10);
|
||||
List<AnomalyRecord> records = new ArrayList<>(listSize);
|
||||
for (int j = 0; j < listSize; j++) {
|
||||
AnomalyRecord record = AnomalyRecordTests.createTestInstance(jobId);
|
||||
|
|
|
@ -29,7 +29,7 @@ import java.util.Date;
|
|||
|
||||
public class InfluencerTests extends AbstractXContentTestCase<Influencer> {
|
||||
|
||||
public Influencer createTestInstance(String jobId) {
|
||||
public static Influencer createTestInstance(String jobId) {
|
||||
Influencer influencer = new Influencer(jobId, randomAlphaOfLengthBetween(1, 20), randomAlphaOfLengthBetween(1, 20),
|
||||
new Date(randomNonNegativeLong()), randomNonNegativeLong());
|
||||
influencer.setInterim(randomBoolean());
|
||||
|
|
|
@ -0,0 +1,112 @@
|
|||
[[java-rest-high-x-pack-ml-get-influencers]]
|
||||
=== Get Influencers API
|
||||
|
||||
The Get Influencers API retrieves one or more influencer results.
|
||||
It accepts a `GetInfluencersRequest` object and responds
|
||||
with a `GetInfluencersResponse` object.
|
||||
|
||||
[[java-rest-high-x-pack-ml-get-influencers-request]]
|
||||
==== Get Influencers Request
|
||||
|
||||
A `GetInfluencersRequest` object gets created with an existing non-null `jobId`.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-request]
|
||||
--------------------------------------------------
|
||||
<1> Constructing a new request referencing an existing `jobId`
|
||||
|
||||
==== Optional Arguments
|
||||
The following arguments are optional:
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-desc]
|
||||
--------------------------------------------------
|
||||
<1> If `true`, the influencers are sorted in descending order. Defaults to `false`.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-end]
|
||||
--------------------------------------------------
|
||||
<1> Influencers with timestamps earlier than this time will be returned.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-exclude-interim]
|
||||
--------------------------------------------------
|
||||
<1> If `true`, interim results will be excluded. Defaults to `false`.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-influencer-score]
|
||||
--------------------------------------------------
|
||||
<1> Influencers with influencer_score greater or equal than this value will be returned.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-page]
|
||||
--------------------------------------------------
|
||||
<1> The page parameters `from` and `size`. `from` specifies the number of influencers to skip.
|
||||
`size` specifies the maximum number of influencers to get. Defaults to `0` and `100` respectively.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-sort]
|
||||
--------------------------------------------------
|
||||
<1> The field to sort influencers on. Defaults to `influencer_score`.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-start]
|
||||
--------------------------------------------------
|
||||
<1> Influencers with timestamps on or after this time will be returned.
|
||||
|
||||
[[java-rest-high-x-pack-ml-get-influencers-execution]]
|
||||
==== Execution
|
||||
|
||||
The request can be executed through the `MachineLearningClient` contained
|
||||
in the `RestHighLevelClient` object, accessed via the `machineLearningClient()` method.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-execute]
|
||||
--------------------------------------------------
|
||||
|
||||
[[java-rest-high-x-pack-ml-get-influencers-execution-async]]
|
||||
==== Asynchronous Execution
|
||||
|
||||
The request can also be executed asynchronously:
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-execute-async]
|
||||
--------------------------------------------------
|
||||
<1> The `GetInfluencersRequest` to execute and the `ActionListener` to use when
|
||||
the execution completes
|
||||
|
||||
The asynchronous method does not block and returns immediately. Once it is
|
||||
completed the `ActionListener` is called back with the `onResponse` method
|
||||
if the execution is successful or the `onFailure` method if the execution
|
||||
failed.
|
||||
|
||||
A typical listener for `GetInfluencersResponse` looks like:
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-listener]
|
||||
--------------------------------------------------
|
||||
<1> `onResponse` is called back when the action is completed successfully
|
||||
<2> `onFailure` is called back when some unexpected error occurs
|
||||
|
||||
[[java-rest-high-snapshot-ml-get-influencers-response]]
|
||||
==== Get Influencers Response
|
||||
|
||||
The returned `GetInfluencersResponse` contains the requested influencers:
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-get-influencers-response]
|
||||
--------------------------------------------------
|
||||
<1> The count of influencers that were matched
|
||||
<2> The influencers retrieved
|
|
@ -220,6 +220,7 @@ The Java High Level REST Client supports the following Machine Learning APIs:
|
|||
* <<java-rest-high-x-pack-ml-get-buckets>>
|
||||
* <<java-rest-high-x-pack-ml-get-overall-buckets>>
|
||||
* <<java-rest-high-x-pack-ml-get-records>>
|
||||
* <<java-rest-high-x-pack-ml-get-influencers>>
|
||||
|
||||
include::ml/put-job.asciidoc[]
|
||||
include::ml/get-job.asciidoc[]
|
||||
|
@ -231,6 +232,7 @@ include::ml/get-job-stats.asciidoc[]
|
|||
include::ml/get-buckets.asciidoc[]
|
||||
include::ml/get-overall-buckets.asciidoc[]
|
||||
include::ml/get-records.asciidoc[]
|
||||
include::ml/get-influencers.asciidoc[]
|
||||
|
||||
== Migration APIs
|
||||
|
||||
|
|
Loading…
Reference in New Issue