diff --git a/docs/en/ml/limitations.asciidoc b/docs/en/ml/limitations.asciidoc index 5a36652cb90..3e245cb602f 100644 --- a/docs/en/ml/limitations.asciidoc +++ b/docs/en/ml/limitations.asciidoc @@ -84,7 +84,7 @@ Missing fields might be expected due to the structure of the data and therefore do not generate poor results. For more information about `missing_field_count`, -see {ref}/ml-datacounts.html[Data Counts Objects]. +see {ref}/ml-jobstats.html#ml-datacounts[Data Counts Objects]. [float] @@ -118,7 +118,7 @@ are not certain that you need this option or if you experience performance issues, edit your job configuration to disable this option. For more information, see -{ref}/ml-apimodelplotconfig.html[Model Plot Config]. +{ref}/ml-job-resource.html#ml-apimodelplotconfig[Model Plot Config]. Likewise, when you create a single or multi-metric job in {kib}, in some cases it uses aggregations on the data that it retrieves from {es}. One of the diff --git a/docs/en/ml/overview.asciidoc b/docs/en/ml/overview.asciidoc index 625c65e58bf..6382050ea29 100644 --- a/docs/en/ml/overview.asciidoc +++ b/docs/en/ml/overview.asciidoc @@ -10,7 +10,7 @@ concepts from the outset will tremendously help ease the learning process. Machine learning jobs contain the configuration information and metadata necessary to perform an analytics task. For a list of the properties associated -with a job, see {ref}ml-job-resource.html[Job Resources]. +with a job, see {ref}/ml-job-resource.html[Job Resources]. [float] [[ml-dfeeds]]