[ML] Add r_squared eval metric to regression (#44248) (#44378)

* [ML] Add r_squared eval metric to regression

* fixing tests and binarysoftclassification class

* Update RSquared.java

* Update x-pack/plugin/core/src/main/java/org/elasticsearch/xpack/core/ml/dataframe/evaluation/regression/RSquared.java

Co-Authored-By: David Kyle <david.kyle@elastic.co>

* removing unnecessary debug test
This commit is contained in:
Benjamin Trent 2019-07-16 11:11:31 -05:00 committed by GitHub
parent 858dbfc074
commit 2c7ff812da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 694 additions and 20 deletions

View File

@ -19,6 +19,7 @@
package org.elasticsearch.client.ml.dataframe.evaluation;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.RSquaredMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.BinarySoftClassification;
import org.elasticsearch.common.ParseField;
@ -49,6 +50,8 @@ public class MlEvaluationNamedXContentProvider implements NamedXContentProvider
EvaluationMetric.class, new ParseField(ConfusionMatrixMetric.NAME), ConfusionMatrixMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(MeanSquaredErrorMetric.NAME), MeanSquaredErrorMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(RSquaredMetric.NAME), RSquaredMetric::fromXContent),
// Evaluation metrics results
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(AucRocMetric.NAME), AucRocMetric.Result::fromXContent),
@ -56,6 +59,8 @@ public class MlEvaluationNamedXContentProvider implements NamedXContentProvider
EvaluationMetric.Result.class, new ParseField(PrecisionMetric.NAME), PrecisionMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(RecallMetric.NAME), RecallMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(RSquaredMetric.NAME), RSquaredMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(MeanSquaredErrorMetric.NAME), MeanSquaredErrorMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(

View File

@ -0,0 +1,131 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;
import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
import org.elasticsearch.common.xcontent.ObjectParser;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;
import java.io.IOException;
import java.util.Objects;
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;
/**
* Calculates R-Squared between two known numerical fields.
*
* equation: mse = 1 - SSres/SStot
* such that,
* SSres = Σ(y - y´)^2
* SStot = Σ(y - y_mean)^2
*/
public class RSquaredMetric implements EvaluationMetric {
public static final String NAME = "r_squared";
private static final ObjectParser<RSquaredMetric, Void> PARSER =
new ObjectParser<>("r_squared", true, RSquaredMetric::new);
public static RSquaredMetric fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}
public RSquaredMetric() {
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.endObject();
return builder;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
return true;
}
@Override
public int hashCode() {
// create static hash code from name as there are currently no unique fields per class instance
return Objects.hashCode(NAME);
}
@Override
public String getName() {
return NAME;
}
public static class Result implements EvaluationMetric.Result {
public static final ParseField VALUE = new ParseField("value");
private final double value;
public static Result fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}
private static final ConstructingObjectParser<Result, Void> PARSER =
new ConstructingObjectParser<>("r_squared_result", true, args -> new Result((double) args[0]));
static {
PARSER.declareDouble(constructorArg(), VALUE);
}
public Result(double value) {
this.value = value;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(VALUE.getPreferredName(), value);
builder.endObject();
return builder;
}
public double getValue() {
return value;
}
@Override
public String getMetricName() {
return NAME;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Result that = (Result) o;
return Objects.equals(that.value, this.value);
}
@Override
public int hashCode() {
return Objects.hash(value);
}
}
}

View File

@ -29,6 +29,7 @@ import org.elasticsearch.common.xcontent.XContentParser;
import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Objects;
@ -84,8 +85,11 @@ public class Regression implements Evaluation {
}
public Regression(String actualField, String predictedField, @Nullable List<EvaluationMetric> metrics) {
this.actualField = actualField;
this.predictedField = predictedField;
this.actualField = Objects.requireNonNull(actualField);
this.predictedField = Objects.requireNonNull(predictedField);
if (metrics != null) {
metrics.sort(Comparator.comparing(EvaluationMetric::getName));
}
this.metrics = metrics;
}

View File

@ -29,6 +29,7 @@ import org.elasticsearch.common.xcontent.XContentParser;
import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Objects;
@ -52,6 +53,7 @@ public class BinarySoftClassification implements Evaluation {
public static final ConstructingObjectParser<BinarySoftClassification, Void> PARSER =
new ConstructingObjectParser<>(
NAME,
true,
args -> new BinarySoftClassification((String) args[0], (String) args[1], (List<EvaluationMetric>) args[2]));
static {
@ -80,6 +82,10 @@ public class BinarySoftClassification implements Evaluation {
*/
private final List<EvaluationMetric> metrics;
public BinarySoftClassification(String actualField, String predictedField) {
this(actualField, predictedField, (List<EvaluationMetric>)null);
}
public BinarySoftClassification(String actualField, String predictedProbabilityField, EvaluationMetric... metric) {
this(actualField, predictedProbabilityField, Arrays.asList(metric));
}
@ -88,7 +94,10 @@ public class BinarySoftClassification implements Evaluation {
@Nullable List<EvaluationMetric> metrics) {
this.actualField = Objects.requireNonNull(actualField);
this.predictedProbabilityField = Objects.requireNonNull(predictedProbabilityField);
this.metrics = Objects.requireNonNull(metrics);
if (metrics != null) {
metrics.sort(Comparator.comparing(EvaluationMetric::getName));
}
this.metrics = metrics;
}
@Override
@ -102,11 +111,13 @@ public class BinarySoftClassification implements Evaluation {
builder.field(ACTUAL_FIELD.getPreferredName(), actualField);
builder.field(PREDICTED_PROBABILITY_FIELD.getPreferredName(), predictedProbabilityField);
if (metrics != null) {
builder.startObject(METRICS.getPreferredName());
for (EvaluationMetric metric : metrics) {
builder.field(metric.getName(), metric);
}
builder.endObject();
}
builder.endObject();
return builder;

View File

@ -124,6 +124,7 @@ import org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsStats;
import org.elasticsearch.client.ml.dataframe.OutlierDetection;
import org.elasticsearch.client.ml.dataframe.QueryConfig;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.RSquaredMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.AucRocMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.BinarySoftClassification;
@ -1597,16 +1598,21 @@ public class MachineLearningIT extends ESRestHighLevelClientTestCase {
.add(docForRegression(regressionIndex, 0.5, 0.9)); // #9
highLevelClient().bulk(regressionBulk, RequestOptions.DEFAULT);
evaluateDataFrameRequest = new EvaluateDataFrameRequest(regressionIndex, new Regression(actualRegression, probabilityRegression));
evaluateDataFrameRequest = new EvaluateDataFrameRequest(regressionIndex,
new Regression(actualRegression, probabilityRegression, new MeanSquaredErrorMetric(), new RSquaredMetric()));
evaluateDataFrameResponse =
execute(evaluateDataFrameRequest, machineLearningClient::evaluateDataFrame, machineLearningClient::evaluateDataFrameAsync);
assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Regression.NAME));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(2));
MeanSquaredErrorMetric.Result mseResult = evaluateDataFrameResponse.getMetricByName(MeanSquaredErrorMetric.NAME);
assertThat(mseResult.getMetricName(), equalTo(MeanSquaredErrorMetric.NAME));
assertThat(mseResult.getError(), closeTo(0.061000000, 1e-9));
RSquaredMetric.Result rSquaredResult = evaluateDataFrameResponse.getMetricByName(RSquaredMetric.NAME);
assertThat(rSquaredResult.getMetricName(), equalTo(RSquaredMetric.NAME));
assertThat(rSquaredResult.getValue(), closeTo(-5.1000000000000005, 1e-9));
}
private static XContentBuilder defaultMappingForTest() throws IOException {

View File

@ -61,6 +61,7 @@ import org.elasticsearch.client.indexlifecycle.UnfollowAction;
import org.elasticsearch.client.ml.dataframe.DataFrameAnalysis;
import org.elasticsearch.client.ml.dataframe.OutlierDetection;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.RSquaredMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.AucRocMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.BinarySoftClassification;
@ -676,7 +677,7 @@ public class RestHighLevelClientTests extends ESTestCase {
public void testProvidedNamedXContents() {
List<NamedXContentRegistry.Entry> namedXContents = RestHighLevelClient.getProvidedNamedXContents();
assertEquals(34, namedXContents.size());
assertEquals(36, namedXContents.size());
Map<Class<?>, Integer> categories = new HashMap<>();
List<String> names = new ArrayList<>();
for (NamedXContentRegistry.Entry namedXContent : namedXContents) {
@ -716,12 +717,22 @@ public class RestHighLevelClientTests extends ESTestCase {
assertTrue(names.contains(TimeSyncConfig.NAME));
assertEquals(Integer.valueOf(2), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.Evaluation.class));
assertThat(names, hasItems(BinarySoftClassification.NAME, Regression.NAME));
assertEquals(Integer.valueOf(5), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.class));
assertEquals(Integer.valueOf(6), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.class));
assertThat(names,
hasItems(AucRocMetric.NAME, PrecisionMetric.NAME, RecallMetric.NAME, ConfusionMatrixMetric.NAME, MeanSquaredErrorMetric.NAME));
assertEquals(Integer.valueOf(5), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.Result.class));
hasItems(AucRocMetric.NAME,
PrecisionMetric.NAME,
RecallMetric.NAME,
ConfusionMatrixMetric.NAME,
MeanSquaredErrorMetric.NAME,
RSquaredMetric.NAME));
assertEquals(Integer.valueOf(6), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.Result.class));
assertThat(names,
hasItems(AucRocMetric.NAME, PrecisionMetric.NAME, RecallMetric.NAME, ConfusionMatrixMetric.NAME, MeanSquaredErrorMetric.NAME));
hasItems(AucRocMetric.NAME,
PrecisionMetric.NAME,
RecallMetric.NAME,
ConfusionMatrixMetric.NAME,
MeanSquaredErrorMetric.NAME,
RSquaredMetric.NAME));
}
public void testApiNamingConventions() throws Exception {

View File

@ -26,7 +26,7 @@ import java.io.IOException;
public class ConfusionMatrixMetricConfusionMatrixTests extends AbstractXContentTestCase<ConfusionMatrixMetric.ConfusionMatrix> {
static ConfusionMatrixMetric.ConfusionMatrix randomConfusionMatrix() {
public static ConfusionMatrixMetric.ConfusionMatrix randomConfusionMatrix() {
return new ConfusionMatrixMetric.ConfusionMatrix(randomInt(), randomInt(), randomInt(), randomInt());
}

View File

@ -0,0 +1,53 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;
import org.elasticsearch.client.ml.dataframe.evaluation.MlEvaluationNamedXContentProvider;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractXContentTestCase;
import java.io.IOException;
public class RSquaredMetricResultTests extends AbstractXContentTestCase<RSquaredMetric.Result> {
public static RSquaredMetric.Result randomResult() {
return new RSquaredMetric.Result(randomDouble());
}
@Override
protected RSquaredMetric.Result createTestInstance() {
return randomResult();
}
@Override
protected RSquaredMetric.Result doParseInstance(XContentParser parser) throws IOException {
return RSquaredMetric.Result.fromXContent(parser);
}
@Override
protected boolean supportsUnknownFields() {
return true;
}
@Override
protected NamedXContentRegistry xContentRegistry() {
return new NamedXContentRegistry(new MlEvaluationNamedXContentProvider().getNamedXContentParsers());
}
}

View File

@ -0,0 +1,49 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;
import org.elasticsearch.client.ml.dataframe.evaluation.MlEvaluationNamedXContentProvider;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractXContentTestCase;
import java.io.IOException;
public class RSquaredMetricTests extends AbstractXContentTestCase<RSquaredMetric> {
@Override
protected NamedXContentRegistry xContentRegistry() {
return new NamedXContentRegistry(new MlEvaluationNamedXContentProvider().getNamedXContentParsers());
}
@Override
protected RSquaredMetric createTestInstance() {
return new RSquaredMetric();
}
@Override
protected RSquaredMetric doParseInstance(XContentParser parser) throws IOException {
return RSquaredMetric.fromXContent(parser);
}
@Override
protected boolean supportsUnknownFields() {
return true;
}
}

View File

@ -18,13 +18,15 @@
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;
import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.MlEvaluationNamedXContentProvider;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractXContentTestCase;
import java.io.IOException;
import java.util.Collections;
import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;
public class RegressionTests extends AbstractXContentTestCase<Regression> {
@ -36,9 +38,16 @@ public class RegressionTests extends AbstractXContentTestCase<Regression> {
@Override
protected Regression createTestInstance() {
List<EvaluationMetric> metrics = new ArrayList<>();
if (randomBoolean()) {
metrics.add(new MeanSquaredErrorMetric());
}
if (randomBoolean()) {
metrics.add(new RSquaredMetric());
}
return randomBoolean() ?
new Regression(randomAlphaOfLength(10), randomAlphaOfLength(10)) :
new Regression(randomAlphaOfLength(10), randomAlphaOfLength(10), Collections.singletonList(new MeanSquaredErrorMetric()));
new Regression(randomAlphaOfLength(10), randomAlphaOfLength(10), metrics.isEmpty() ? null : metrics);
}
@Override
@ -56,4 +65,5 @@ public class RegressionTests extends AbstractXContentTestCase<Regression> {
// allow unknown fields in the root of the object only
return field -> !field.isEmpty();
}
}

View File

@ -0,0 +1,85 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.softclassification;
import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.MlEvaluationNamedXContentProvider;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractXContentTestCase;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.Predicate;
public class BinarySoftClassificationTests extends AbstractXContentTestCase<BinarySoftClassification> {
@Override
protected NamedXContentRegistry xContentRegistry() {
return new NamedXContentRegistry(new MlEvaluationNamedXContentProvider().getNamedXContentParsers());
}
@Override
protected BinarySoftClassification createTestInstance() {
List<EvaluationMetric> metrics = new ArrayList<>();
if (randomBoolean()) {
metrics.add(new AucRocMetric(randomBoolean()));
}
if (randomBoolean()) {
metrics.add(new PrecisionMetric(Arrays.asList(randomArray(1,
4,
Double[]::new,
BinarySoftClassificationTests::randomDouble))));
}
if (randomBoolean()) {
metrics.add(new RecallMetric(Arrays.asList(randomArray(1,
4,
Double[]::new,
BinarySoftClassificationTests::randomDouble))));
}
if (randomBoolean()) {
metrics.add(new ConfusionMatrixMetric(Arrays.asList(randomArray(1,
4,
Double[]::new,
BinarySoftClassificationTests::randomDouble))));
}
return randomBoolean() ?
new BinarySoftClassification(randomAlphaOfLength(10), randomAlphaOfLength(10)) :
new BinarySoftClassification(randomAlphaOfLength(10), randomAlphaOfLength(10), metrics.isEmpty() ? null : metrics);
}
@Override
protected BinarySoftClassification doParseInstance(XContentParser parser) throws IOException {
return BinarySoftClassification.fromXContent(parser);
}
@Override
protected boolean supportsUnknownFields() {
return true;
}
@Override
protected Predicate<String> getRandomFieldsExcludeFilter() {
// allow unknown fields in the root of the object only
return field -> !field.isEmpty();
}
}

View File

@ -9,6 +9,7 @@ import org.elasticsearch.common.io.stream.NamedWriteableRegistry;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.plugins.spi.NamedXContentProvider;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression.MeanSquaredError;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression.RSquared;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression.RegressionMetric;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.softclassification.AucRoc;
@ -42,6 +43,7 @@ public class MlEvaluationNamedXContentProvider implements NamedXContentProvider
// Regression metrics
namedXContent.add(new NamedXContentRegistry.Entry(RegressionMetric.class, MeanSquaredError.NAME, MeanSquaredError::fromXContent));
namedXContent.add(new NamedXContentRegistry.Entry(RegressionMetric.class, RSquared.NAME, RSquared::fromXContent));
return namedXContent;
}
@ -66,6 +68,9 @@ public class MlEvaluationNamedXContentProvider implements NamedXContentProvider
namedWriteables.add(new NamedWriteableRegistry.Entry(RegressionMetric.class,
MeanSquaredError.NAME.getPreferredName(),
MeanSquaredError::new));
namedWriteables.add(new NamedWriteableRegistry.Entry(RegressionMetric.class,
RSquared.NAME.getPreferredName(),
RSquared::new));
// Evaluation Metrics Results
namedWriteables.add(new NamedWriteableRegistry.Entry(EvaluationMetricResult.class, AucRoc.NAME.getPreferredName(),
@ -77,6 +82,9 @@ public class MlEvaluationNamedXContentProvider implements NamedXContentProvider
namedWriteables.add(new NamedWriteableRegistry.Entry(EvaluationMetricResult.class,
MeanSquaredError.NAME.getPreferredName(),
MeanSquaredError.Result::new));
namedWriteables.add(new NamedWriteableRegistry.Entry(EvaluationMetricResult.class,
RSquared.NAME.getPreferredName(),
RSquared.Result::new));
return namedWriteables;
}

View File

@ -0,0 +1,152 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.xcontent.ObjectParser;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.script.Script;
import org.elasticsearch.search.aggregations.AggregationBuilder;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.metrics.ExtendedStats;
import org.elasticsearch.search.aggregations.metrics.ExtendedStatsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.NumericMetricsAggregation;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.EvaluationMetricResult;
import java.io.IOException;
import java.text.MessageFormat;
import java.util.Arrays;
import java.util.List;
import java.util.Locale;
import java.util.Objects;
/**
* Calculates R-Squared between two known numerical fields.
*
* equation: R-Squared = 1 - SSres/SStot
* such that,
* SSres = Σ(y - y´)^2, The residual sum of squares
* SStot = Σ(y - y_mean)^2, The total sum of squares
*/
public class RSquared implements RegressionMetric {
public static final ParseField NAME = new ParseField("r_squared");
private static final String PAINLESS_TEMPLATE = "def diff = doc[''{0}''].value - doc[''{1}''].value;return diff * diff;";
private static final String SS_RES = "residual_sum_of_squares";
private static String buildScript(Object... args) {
return new MessageFormat(PAINLESS_TEMPLATE, Locale.ROOT).format(args);
}
private static final ObjectParser<RSquared, Void> PARSER =
new ObjectParser<>("r_squared", true, RSquared::new);
public static RSquared fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}
public RSquared(StreamInput in) {
}
public RSquared() {
}
@Override
public String getMetricName() {
return NAME.getPreferredName();
}
@Override
public List<AggregationBuilder> aggs(String actualField, String predictedField) {
return Arrays.asList(
AggregationBuilders.sum(SS_RES).script(new Script(buildScript(actualField, predictedField))),
AggregationBuilders.extendedStats(ExtendedStatsAggregationBuilder.NAME + "_actual").field(actualField));
}
@Override
public EvaluationMetricResult evaluate(Aggregations aggs) {
NumericMetricsAggregation.SingleValue residualSumOfSquares = aggs.get(SS_RES);
ExtendedStats extendedStats = aggs.get(ExtendedStatsAggregationBuilder.NAME + "_actual");
// extendedStats.getVariance() is the statistical sumOfSquares divided by count
return residualSumOfSquares == null || extendedStats == null || extendedStats.getCount() == 0 ?
null :
new Result(1 - (residualSumOfSquares.value() / (extendedStats.getVariance() * extendedStats.getCount())));
}
@Override
public String getWriteableName() {
return NAME.getPreferredName();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.endObject();
return builder;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
return true;
}
@Override
public int hashCode() {
// create static hash code from name as there are currently no unique fields per class instance
return Objects.hashCode(NAME.getPreferredName());
}
public static class Result implements EvaluationMetricResult {
private static final String VALUE = "value";
private final double value;
public Result(double value) {
this.value = value;
}
public Result(StreamInput in) throws IOException {
this.value = in.readDouble();
}
@Override
public String getWriteableName() {
return NAME.getPreferredName();
}
@Override
public String getName() {
return NAME.getPreferredName();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeDouble(value);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(VALUE, value);
builder.endObject();
return builder;
}
}
}

View File

@ -94,8 +94,9 @@ public class Regression implements Evaluation {
}
private static List<RegressionMetric> defaultMetrics() {
List<RegressionMetric> defaultMetrics = new ArrayList<>(1);
List<RegressionMetric> defaultMetrics = new ArrayList<>(2);
defaultMetrics.add(new MeanSquaredError());
defaultMetrics.add(new RSquared());
return defaultMetrics;
}

View File

@ -0,0 +1,116 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.core.ml.dataframe.evaluation.regression;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.metrics.ExtendedStats;
import org.elasticsearch.search.aggregations.metrics.NumericMetricsAggregation;
import org.elasticsearch.test.AbstractSerializingTestCase;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.EvaluationMetricResult;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.nullValue;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
public class RSquaredTests extends AbstractSerializingTestCase<RSquared> {
@Override
protected RSquared doParseInstance(XContentParser parser) throws IOException {
return RSquared.fromXContent(parser);
}
@Override
protected RSquared createTestInstance() {
return createRandom();
}
@Override
protected Writeable.Reader<RSquared> instanceReader() {
return RSquared::new;
}
public static RSquared createRandom() {
return new RSquared();
}
public void testEvaluate() {
Aggregations aggs = new Aggregations(Arrays.asList(
createSingleMetricAgg("residual_sum_of_squares", 10_111),
createExtendedStatsAgg("extended_stats_actual", 155.23, 1000),
createExtendedStatsAgg("some_other_extended_stats",99.1, 10_000),
createSingleMetricAgg("some_other_single_metric_agg", 0.2377)
));
RSquared rSquared = new RSquared();
EvaluationMetricResult result = rSquared.evaluate(aggs);
String expected = "{\"value\":0.9348643947690524}";
assertThat(Strings.toString(result), equalTo(expected));
}
public void testEvaluateWithZeroCount() {
Aggregations aggs = new Aggregations(Arrays.asList(
createSingleMetricAgg("residual_sum_of_squares", 0),
createExtendedStatsAgg("extended_stats_actual", 0.0, 0),
createExtendedStatsAgg("some_other_extended_stats",99.1, 10_000),
createSingleMetricAgg("some_other_single_metric_agg", 0.2377)
));
RSquared rSquared = new RSquared();
EvaluationMetricResult result = rSquared.evaluate(aggs);
assertThat(result, is(nullValue()));
}
public void testEvaluate_GivenMissingAggs() {
Aggregations aggs = new Aggregations(Collections.singletonList(
createSingleMetricAgg("some_other_single_metric_agg", 0.2377)
));
RSquared rSquared = new RSquared();
EvaluationMetricResult result = rSquared.evaluate(aggs);
assertThat(result, is(nullValue()));
aggs = new Aggregations(Arrays.asList(
createSingleMetricAgg("some_other_single_metric_agg", 0.2377),
createSingleMetricAgg("residual_sum_of_squares", 0.2377)
));
result = rSquared.evaluate(aggs);
assertThat(result, is(nullValue()));
aggs = new Aggregations(Arrays.asList(
createSingleMetricAgg("some_other_single_metric_agg", 0.2377),
createExtendedStatsAgg("extended_stats_actual",100, 50)
));
result = rSquared.evaluate(aggs);
assertThat(result, is(nullValue()));
}
private static NumericMetricsAggregation.SingleValue createSingleMetricAgg(String name, double value) {
NumericMetricsAggregation.SingleValue agg = mock(NumericMetricsAggregation.SingleValue.class);
when(agg.getName()).thenReturn(name);
when(agg.value()).thenReturn(value);
return agg;
}
private static ExtendedStats createExtendedStatsAgg(String name, double variance, long count) {
ExtendedStats agg = mock(ExtendedStats.class);
when(agg.getName()).thenReturn(name);
when(agg.getVariance()).thenReturn(variance);
when(agg.getCount()).thenReturn(count);
return agg;
}
}

View File

@ -14,6 +14,7 @@ import org.elasticsearch.test.AbstractSerializingTestCase;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.MlEvaluationNamedXContentProvider;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
@ -32,8 +33,20 @@ public class RegressionTests extends AbstractSerializingTestCase<Regression> {
}
public static Regression createRandom() {
List<RegressionMetric> metrics = Collections.singletonList(MeanSquaredErrorTests.createRandom());
return new Regression(randomAlphaOfLength(10), randomAlphaOfLength(10), randomBoolean() ? null : metrics);
List<RegressionMetric> metrics = new ArrayList<>();
if (randomBoolean()) {
metrics.add(MeanSquaredErrorTests.createRandom());
}
if (randomBoolean()) {
metrics.add(RSquaredTests.createRandom());
}
return new Regression(randomAlphaOfLength(10),
randomAlphaOfLength(10),
randomBoolean() ?
null :
metrics.isEmpty() ?
null :
metrics);
}
@Override

View File

@ -567,6 +567,24 @@ setup:
}
- match: { regression.mean_squared_error.error: 28.67749840974834 }
- is_false: regression.r_squared.value
---
"Test regression r_squared":
- do:
ml.evaluate_data_frame:
body: >
{
"index": "utopia",
"evaluation": {
"regression": {
"actual_field": "regression_field_act",
"predicted_field": "regression_field_pred",
"metrics": { "r_squared": {} }
}
}
}
- match: { regression.r_squared.value: 0.8551031778603486 }
- is_false: regression.mean_squared_error
---
"Test regression with null metrics":
- do:
@ -583,3 +601,4 @@ setup:
}
- match: { regression.mean_squared_error.error: 28.67749840974834 }
- match: { regression.r_squared.value: 0.8551031778603486 }