[DOCS] Adds regression analytics resources and examples to the data frame analytics APIs and the evaluation API (#46176)
* [DOCS] Adds regression analytics resources and examples to the data frame analytics APIs. Co-Authored-By: Benjamin Trent <ben.w.trent@gmail.com> Co-Authored-By: Tom Veasey <tveasey@users.noreply.github.com>
This commit is contained in:
parent
65fffcc9c1
commit
3be51fbdf7
|
@ -12,7 +12,8 @@
|
|||
|
||||
`analysis`::
|
||||
(object) The type of analysis that is performed on the `source`. For example:
|
||||
`outlier_detection`. For more information, see <<dfanalytics-types>>.
|
||||
`outlier_detection` or `regression`. For more information, see
|
||||
<<dfanalytics-types>>.
|
||||
|
||||
`analyzed_fields`::
|
||||
(object) You can specify both `includes` and/or `excludes` patterns. If
|
||||
|
@ -98,15 +99,13 @@ PUT _ml/data_frame/analytics/loganalytics
|
|||
==== Analysis objects
|
||||
|
||||
{dfanalytics-cap} resources contain `analysis` objects. For example, when you
|
||||
create a {dfanalytics-job}, you must define the type of analysis it performs.
|
||||
Currently, `outlier_detection` is the only available type of analysis, however,
|
||||
other types will be added, for example `regression`.
|
||||
|
||||
create a {dfanalytics-job}, you must define the type of analysis it performs.
|
||||
|
||||
[discrete]
|
||||
[[oldetection-resources]]
|
||||
==== {oldetection-cap} configuration objects
|
||||
|
||||
An {oldetection} configuration object has the following properties:
|
||||
An `outlier_detection` configuration object has the following properties:
|
||||
|
||||
`compute_feature_influence`::
|
||||
(boolean) If `true`, the feature influence calculation is enabled. Defaults to
|
||||
|
@ -123,7 +122,7 @@ An {oldetection} configuration object has the following properties:
|
|||
recommend to use the ensemble method. Available methods are `lof`, `ldof`,
|
||||
`distance_kth_nn`, `distance_knn`.
|
||||
|
||||
`n_neighbors`::
|
||||
`n_neighbors`::
|
||||
(integer) Defines the value for how many nearest neighbors each method of
|
||||
{oldetection} will use to calculate its {olscore}. When the value is not set,
|
||||
different values will be used for different ensemble members. This helps
|
||||
|
@ -140,3 +139,122 @@ An {oldetection} configuration object has the following properties:
|
|||
before computing outlier scores: (x_i - mean(x_i)) / sd(x_i). Defaults to
|
||||
`true`. For more information, see
|
||||
https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)[this wiki page about standardization].
|
||||
|
||||
|
||||
[discrete]
|
||||
[[regression-resources]]
|
||||
==== {regression-cap} configuration objects
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
PUT _ml/data_frame/analytics/house_price_regression_analysis
|
||||
{
|
||||
"source": {
|
||||
"index": "houses_sold_last_10_yrs" <1>
|
||||
},
|
||||
"dest": {
|
||||
"index": "house_price_predictions" <2>
|
||||
},
|
||||
"analysis":
|
||||
{
|
||||
"regression": { <3>
|
||||
"dependent_variable": "price" <4>
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
// TEST[skip:TBD]
|
||||
|
||||
<1> Training data is taken from source index `houses_sold_last_10_yrs`.
|
||||
<2> Analysis results will be output to destination index
|
||||
`house_price_predictions`.
|
||||
<3> The regression analysis configuration object.
|
||||
<4> Regression analysis will use field `price` to train on. As no other
|
||||
parameters have been specified it will train on 100% of eligible data, store its
|
||||
prediction in destination index field `price_prediction` and use in-built
|
||||
hyperparameter optimization to give minimum validation errors.
|
||||
|
||||
|
||||
[float]
|
||||
[[regression-resources-standard]]
|
||||
===== Standard parameters
|
||||
|
||||
`dependent_variable`::
|
||||
(Required, string) Defines which field of the {dataframe} is to be predicted.
|
||||
This parameter is supplied by field name and must match one of the fields in
|
||||
the index being used to train. If this field is missing from a document, then
|
||||
that document will not be used for training, but a prediction with the trained
|
||||
model will be generated for it. The data type of the field must be numeric. It
|
||||
is also known as continuous target variable.
|
||||
|
||||
`prediction_field_name`::
|
||||
(Optional, string) Defines the name of the prediction field in the results.
|
||||
Defaults to `<dependent_variable>_prediction`.
|
||||
|
||||
`training_percent`::
|
||||
(Optional, integer) Defines what percentage of the eligible documents that will
|
||||
be used for training. Documents that are ignored by the analysis (for example
|
||||
those that contain arrays) won’t be included in the calculation for used
|
||||
percentage. Defaults to `100`.
|
||||
|
||||
|
||||
[float]
|
||||
[[regression-resources-advanced]]
|
||||
===== Advanced parameters
|
||||
|
||||
Advanced parameters are for fine-tuning {reganalysis}. They are set
|
||||
automatically by <<ml-hyperparameter-optimization,hyperparameter optimization>>
|
||||
to give minimum validation error. It is highly recommended to use the default
|
||||
values unless you fully understand the function of these parameters. If these
|
||||
parameters are not supplied, their values are automatically tuned to give
|
||||
minimum validation error.
|
||||
|
||||
`eta`::
|
||||
(Optional, double) The shrinkage applied to the weights. Smaller values result
|
||||
in larger forests which have better generalization error. However, the smaller
|
||||
the value the longer the training will take. For more information, see
|
||||
https://en.wikipedia.org/wiki/Gradient_boosting#Shrinkage[this wiki article]
|
||||
about shrinkage.
|
||||
|
||||
`feature_bag_fraction`::
|
||||
(Optional, double) Defines the fraction of features that will be used when
|
||||
selecting a random bag for each candidate split.
|
||||
|
||||
`maximum_number_trees`::
|
||||
(Optional, integer) Defines the maximum number of trees the forest is allowed
|
||||
to contain. The maximum value is 2000.
|
||||
|
||||
`gamma`::
|
||||
(Optional, double) Regularization parameter to prevent overfitting on the
|
||||
training dataset. Multiplies a linear penalty associated with the size of
|
||||
individual trees in the forest. The higher the value the more training will
|
||||
prefer smaller trees. The smaller this parameter the larger individual trees
|
||||
will be and the longer train will take.
|
||||
|
||||
`lambda`::
|
||||
(Optional, double) Regularization parameter to prevent overfitting on the
|
||||
training dataset. Multiplies an L2 regularisation term which applies to leaf
|
||||
weights of the individual trees in the forest. The higher the value the more
|
||||
training will attempt to keep leaf weights small. This makes the prediction
|
||||
function smoother at the expense of potentially not being able to capture
|
||||
relevant relationships between the features and the {depvar}. The smaller this
|
||||
parameter the larger individual trees will be and the longer train will take.
|
||||
|
||||
|
||||
[[ml-hyperparameter-optimization]]
|
||||
===== Hyperparameter optimization
|
||||
|
||||
If you don't supply {regression} parameters, hyperparameter optimization will be
|
||||
performed by default to set a value for the undefined parameters. The starting
|
||||
point is calculated for data dependent parameters by examining the loss on the
|
||||
training data. Subject to the size constraint, this operation provides an upper
|
||||
bound on the improvement in validation loss.
|
||||
|
||||
A fixed number of rounds is used for optimization which depends on the number of
|
||||
parameters being optimized. The optimitazion starts with random search, then
|
||||
Bayesian Optimisation is performed that is targeting maximum expected
|
||||
improvement. If you override any parameters, then the optimization will
|
||||
calculate the value of the remaining parameters accordingly and use the value
|
||||
you provided for the overridden parameter. The number of rounds are reduced
|
||||
respectively. The validation error is estimated in each round by using 4-fold
|
||||
cross validation.
|
|
@ -27,15 +27,11 @@ information, see {stack-ov}/security-privileges.html[Security privileges] and
|
|||
[[ml-evaluate-dfanalytics-desc]]
|
||||
==== {api-description-title}
|
||||
|
||||
This API evaluates the executed analysis on an index that is already annotated
|
||||
with a field that contains the results of the analytics (the `ground truth`)
|
||||
for each {dataframe} row.
|
||||
The API packages together commonly used evaluation metrics for various types of
|
||||
machine learning features. This has been designed for use on indexes created by
|
||||
{dfanalytics}. Evaluation requires both a ground truth field and an analytics
|
||||
result field to be present.
|
||||
|
||||
Evaluation is typically done by calculating a set of metrics that capture various aspects of the quality of the results over the data for which you have the
|
||||
`ground truth`.
|
||||
|
||||
For different types of analyses different metrics are suitable. This API
|
||||
packages together commonly used metrics for various analyses.
|
||||
|
||||
[[ml-evaluate-dfanalytics-request-body]]
|
||||
==== {api-request-body-title}
|
||||
|
@ -45,15 +41,20 @@ packages together commonly used metrics for various analyses.
|
|||
performed.
|
||||
|
||||
`query`::
|
||||
(Optional, object) Query used to select data from the index.
|
||||
The {es} query domain-specific language (DSL). This value corresponds to the query
|
||||
object in an {es} search POST body. By default, this property has the following
|
||||
value: `{"match_all": {}}`.
|
||||
(Optional, object) A query clause that retrieves a subset of data from the
|
||||
source index. See <<query-dsl>>.
|
||||
|
||||
`evaluation`::
|
||||
(Required, object) Defines the type of evaluation you want to perform. For example:
|
||||
`binary_soft_classification`. See <<ml-evaluate-dfanalytics-resources>>.
|
||||
|
||||
(Required, object) Defines the type of evaluation you want to perform. See
|
||||
<<ml-evaluate-dfanalytics-resources>>.
|
||||
+
|
||||
--
|
||||
Available evaluation types:
|
||||
* `binary_soft_classification`
|
||||
* `regression`
|
||||
--
|
||||
|
||||
|
||||
////
|
||||
[[ml-evaluate-dfanalytics-results]]
|
||||
==== {api-response-body-title}
|
||||
|
@ -74,6 +75,8 @@ packages together commonly used metrics for various analyses.
|
|||
[[ml-evaluate-dfanalytics-example]]
|
||||
==== {api-examples-title}
|
||||
|
||||
===== Binary soft classification
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
POST _ml/data_frame/_evaluate
|
||||
|
@ -131,3 +134,40 @@ The API returns the following results:
|
|||
}
|
||||
}
|
||||
----
|
||||
|
||||
|
||||
===== {regression-cap}
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
POST _ml/data_frame/_evaluate
|
||||
{
|
||||
"index": "house_price_predictions", <1>
|
||||
"query": {
|
||||
"bool": {
|
||||
"filter": [
|
||||
{ "term": { "ml.is_training": false } } <2>
|
||||
]
|
||||
}
|
||||
},
|
||||
"evaluation": {
|
||||
"regression": {
|
||||
"actual_field": "price", <3>
|
||||
"predicted_field": "ml.price_prediction", <4>
|
||||
"metrics": {
|
||||
"r_squared": {},
|
||||
"mean_squared_error": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
// TEST[skip:TBD]
|
||||
|
||||
<1> The output destination index from a {dfanalytics} {reganalysis}.
|
||||
<2> In this example, a test/train split (`training_percent`) was defined for the
|
||||
{reganalysis}. This query limits evaluation to be performed on the test split
|
||||
only.
|
||||
<3> The ground truth value for the actual house price. This is required in order
|
||||
to evaluate results.
|
||||
<4> The predicted value for house price calculated by the {reganalysis}.
|
||||
|
|
|
@ -12,7 +12,19 @@ Evaluation configuration objects relate to the <<evaluate-dfanalytics>>.
|
|||
`evaluation`::
|
||||
(object) Defines the type of evaluation you want to perform. The value of this
|
||||
object can be different depending on the type of evaluation you want to
|
||||
perform. For example, it can contain <<binary-sc-resources>>.
|
||||
perform.
|
||||
+
|
||||
--
|
||||
Available evaluation types:
|
||||
* `binary_soft_classification`
|
||||
* `regression`
|
||||
--
|
||||
|
||||
`query`::
|
||||
(object) A query clause that retrieves a subset of data from the source index.
|
||||
See <<query-dsl>>. The evaluation only applies to those documents of the index
|
||||
that match the query.
|
||||
|
||||
|
||||
[[binary-sc-resources]]
|
||||
==== Binary soft classification configuration objects
|
||||
|
@ -27,18 +39,18 @@ probability whether each row is an outlier.
|
|||
===== {api-definitions-title}
|
||||
|
||||
`actual_field`::
|
||||
(string) The field of the `index` which contains the `ground
|
||||
truth`. The data type of this field can be boolean or integer. If the data
|
||||
type is integer, the value has to be either `0` (false) or `1` (true).
|
||||
(string) The field of the `index` which contains the `ground truth`.
|
||||
The data type of this field can be boolean or integer. If the data type is
|
||||
integer, the value has to be either `0` (false) or `1` (true).
|
||||
|
||||
`predicted_probability_field`::
|
||||
(string) The field of the `index` that defines the probability of whether the
|
||||
item belongs to the class in question or not. It's the field that contains the
|
||||
results of the analysis.
|
||||
(string) The field of the `index` that defines the probability of
|
||||
whether the item belongs to the class in question or not. It's the field that
|
||||
contains the results of the analysis.
|
||||
|
||||
`metrics`::
|
||||
(object) Specifies the metrics that are used for the evaluation. Available
|
||||
metrics:
|
||||
(object) Specifies the metrics that are used for the evaluation.
|
||||
Available metrics:
|
||||
|
||||
`auc_roc`::
|
||||
(object) The AUC ROC (area under the curve of the receiver operating
|
||||
|
@ -60,4 +72,27 @@ probability whether each row is an outlier.
|
|||
(`tp` - true positive, `fp` - false positive, `tn` - true negative, `fn` -
|
||||
false negative) are calculated.
|
||||
Default value is {"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
|
||||
|
||||
[[regression-evaluation-resources]]
|
||||
==== {regression-cap} evaluation objects
|
||||
|
||||
{regression-cap} evaluation evaluates the results of a {regression} analysis
|
||||
which outputs a prediction of values.
|
||||
|
||||
|
||||
[discrete]
|
||||
[[regression-evaluation-resources-properties]]
|
||||
===== {api-definitions-title}
|
||||
|
||||
`actual_field`::
|
||||
(string) The field of the `index` which contains the `ground truth`. The data
|
||||
type of this field must be numerical.
|
||||
|
||||
`predicted_field`::
|
||||
(string) The field in the `index` that contains the predicted value,
|
||||
in other words the results of the {regression} analysis.
|
||||
|
||||
`metrics`::
|
||||
(object) Specifies the metrics that are used for the evaluation. Available
|
||||
metrics are `r_squared` and `mean_squared_error`.
|
|
@ -121,6 +121,9 @@ and mappings.
|
|||
[[ml-put-dfanalytics-example]]
|
||||
==== {api-examples-title}
|
||||
|
||||
[[ml-put-dfanalytics-example-od]]
|
||||
===== {oldetection-cap} example
|
||||
|
||||
The following example creates the `loganalytics` {dfanalytics-job}, the analysis
|
||||
type is `outlier_detection`:
|
||||
|
||||
|
@ -172,4 +175,64 @@ The API returns the following result:
|
|||
}
|
||||
----
|
||||
// TESTRESPONSE[s/1562351429434/$body.$_path/]
|
||||
// TESTRESPONSE[s/"version" : "7.3.0"/"version" : $body.version/]
|
||||
// TESTRESPONSE[s/"version" : "7.3.0"/"version" : $body.version/]
|
||||
|
||||
|
||||
[[ml-put-dfanalytics-example-r]]
|
||||
===== {regression-cap} example
|
||||
|
||||
The following example creates the `house_price_regression_analysis` {
|
||||
dfanalytics-job}, the analysis type is `regression`:
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
PUT _ml/data_frame/analytics/house_price_regression_analysis
|
||||
{
|
||||
"source": {
|
||||
"index": "houses_sold_last_10_yrs"
|
||||
},
|
||||
"dest": {
|
||||
"index": "house_price_predictions"
|
||||
},
|
||||
"analysis":
|
||||
{
|
||||
"regression": {
|
||||
"dependent_variable": "price"
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
// TEST[skip:TBD]
|
||||
|
||||
|
||||
The API returns the following result:
|
||||
|
||||
[source,console-result]
|
||||
----
|
||||
{
|
||||
"id" : "house_price_regression_analysis",
|
||||
"source" : {
|
||||
"index" : [
|
||||
"houses_sold_last_10_yrs"
|
||||
],
|
||||
"query" : {
|
||||
"match_all" : { }
|
||||
}
|
||||
},
|
||||
"dest" : {
|
||||
"index" : "house_price_predictions",
|
||||
"results_field" : "ml"
|
||||
},
|
||||
"analysis" : {
|
||||
"regression" : {
|
||||
"dependent_variable" : "price",
|
||||
"training_percent" : 100
|
||||
}
|
||||
},
|
||||
"model_memory_limit" : "1gb",
|
||||
"create_time" : 1567168659127,
|
||||
"version" : "8.0.0"
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/1567168659127/$body.$_path/]
|
||||
// TESTRESPONSE[s/"version": "8.0.0"/"version": $body.version/]
|
Loading…
Reference in New Issue