From 40f40d767696f1cc0c346b72ca336c8902f03b37 Mon Sep 17 00:00:00 2001 From: Clinton Gormley Date: Wed, 8 Feb 2017 17:12:33 +0100 Subject: [PATCH] Docs: Fix termvectors by removing example blocks with embedded CONSOLE tests --- docs/reference/docs/termvectors.asciidoc | 28 ++++++++++-------------- 1 file changed, 11 insertions(+), 17 deletions(-) diff --git a/docs/reference/docs/termvectors.asciidoc b/docs/reference/docs/termvectors.asciidoc index 50c2bd19308..05372d13f30 100644 --- a/docs/reference/docs/termvectors.asciidoc +++ b/docs/reference/docs/termvectors.asciidoc @@ -121,8 +121,8 @@ whereas the absolute numbers have no meaning in this context. By default, when requesting term vectors of artificial documents, a shard to get the statistics from is randomly selected. Use `routing` only to hit a particular shard. -.Returning stored term vectors -================================================== +[float] +==== Example: Returning stored term vectors First, we create an index that stores term vectors, payloads etc. : @@ -270,10 +270,8 @@ Response: // TEST[continued] // TESTRESPONSE[s/"took": 6/"took": "$body.took"/] -================================================== - -.Generating term vectors on the fly -================================================== +[float] +==== Example: Generating term vectors on the fly Term vectors which are not explicitly stored in the index are automatically computed on the fly. The following request returns all information and statistics for the @@ -293,12 +291,10 @@ GET /twitter/tweet/1/_termvectors -------------------------------------------------- // CONSOLE // TEST[continued] -================================================== [[docs-termvectors-artificial-doc]] -[example] -.Artificial documents --- +[float] +==== Example: Artificial documents Term vectors can also be generated for artificial documents, that is for documents not present in the index. For example, the following request would @@ -320,11 +316,10 @@ GET /twitter/tweet/_termvectors -------------------------------------------------- // CONSOLE // TEST[continued] --- [[docs-termvectors-per-field-analyzer]] -.Per-field analyzer -================================================== +[float] +===== Per-field analyzer Additionally, a different analyzer than the one at the field may be provided by using the `per_field_analyzer` parameter. This is useful in order to @@ -387,11 +382,11 @@ Response: // TESTRESPONSE[s/"sum_doc_freq": 2/"sum_doc_freq": "$body.term_vectors.fullname.field_statistics.sum_doc_freq"/] // TESTRESPONSE[s/"doc_count": 4/"doc_count": "$body.term_vectors.fullname.field_statistics.doc_count"/] // TESTRESPONSE[s/"sum_ttf": 4/"sum_ttf": "$body.term_vectors.fullname.field_statistics.sum_ttf"/] -================================================== + [[docs-termvectors-terms-filtering]] -.Terms filtering -================================================== +[float] +==== Example: Terms filtering Finally, the terms returned could be filtered based on their tf-idf scores. In the example below we obtain the three most "interesting" keywords from the @@ -461,4 +456,3 @@ Response: } -------------------------------------------------- // TESTRESPONSE -==================================================