[TESTS] Fix bad math in moving_avg unit tests
This commit is contained in:
parent
d5f73ec8ac
commit
531b894b5d
|
@ -351,12 +351,11 @@ public class MovAvgUnitTests extends ElasticsearchTestCase {
|
|||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
|
@ -371,14 +370,13 @@ public class MovAvgUnitTests extends ElasticsearchTestCase {
|
|||
s = alpha * (vs[i] / seasonal[i - period]) + (1.0d - alpha) * (last_s + last_b);
|
||||
b = beta * (s - last_s) + (1 - beta) * last_b;
|
||||
|
||||
//seasonal[i] = gamma * (vs[i] / s) + ((1 - gamma) * seasonal[i - period]);
|
||||
seasonal[i] = gamma * (vs[i] / (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
}
|
||||
|
||||
int seasonCounter = (windowSize - 1) - period;
|
||||
double expected = s + (0 * b) * seasonal[seasonCounter % windowSize];;
|
||||
int idx = window.size() - period + (0 % period);
|
||||
double expected = (s + (1 * b)) * seasonal[idx];
|
||||
double actual = model.next(window);
|
||||
assertThat(Double.compare(expected, actual), equalTo(0));
|
||||
}
|
||||
|
@ -424,35 +422,35 @@ public class MovAvgUnitTests extends ElasticsearchTestCase {
|
|||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
for (int i = 0; i < period; i++) {
|
||||
// Calculate first seasonal
|
||||
seasonal[i] = vs[i] / s;
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
Arrays.fill(seasonal, 0.0);
|
||||
} else {
|
||||
for (int i = 0; i < period; i++) {
|
||||
seasonal[i] = vs[i] / s;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = period; i < vs.length; i++) {
|
||||
s = alpha * (vs[i] / seasonal[i - period]) + (1.0d - alpha) * (last_s + last_b);
|
||||
b = beta * (s - last_s) + (1 - beta) * last_b;
|
||||
|
||||
//seasonal[i] = gamma * (vs[i] / s) + ((1 - gamma) * seasonal[i - period]);
|
||||
seasonal[i] = gamma * (vs[i] / (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
}
|
||||
|
||||
int seasonCounter = (windowSize - 1) - period;
|
||||
|
||||
for (int i = 0; i < numPredictions; i++) {
|
||||
|
||||
expected[i] = s + (i * b) * seasonal[seasonCounter % windowSize];
|
||||
assertThat(Double.compare(expected[i], actual[i]), equalTo(0));
|
||||
seasonCounter += 1;
|
||||
for (int i = 1; i <= numPredictions; i++) {
|
||||
int idx = window.size() - period + ((i - 1) % period);
|
||||
expected[i-1] = (s + (i * b)) * seasonal[idx];
|
||||
assertThat(Double.compare(expected[i-1], actual[i-1]), equalTo(0));
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -490,35 +488,36 @@ public class MovAvgUnitTests extends ElasticsearchTestCase {
|
|||
counter += 1;
|
||||
}
|
||||
|
||||
|
||||
// Initial level value is average of first season
|
||||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
for (int i = 0; i < period; i++) {
|
||||
// Calculate first seasonal
|
||||
seasonal[i] = vs[i] / s;
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
Arrays.fill(seasonal, 0.0);
|
||||
} else {
|
||||
for (int i = 0; i < period; i++) {
|
||||
seasonal[i] = vs[i] / s;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = period; i < vs.length; i++) {
|
||||
s = alpha * (vs[i] - seasonal[i - period]) + (1.0d - alpha) * (last_s + last_b);
|
||||
b = beta * (s - last_s) + (1 - beta) * last_b;
|
||||
|
||||
//seasonal[i] = gamma * (vs[i] / s) + ((1 - gamma) * seasonal[i - period]);
|
||||
seasonal[i] = gamma * (vs[i] - (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
seasonal[i] = gamma * (vs[i] - (last_s - last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
}
|
||||
|
||||
int seasonCounter = (windowSize - 1) - period;
|
||||
double expected = s + (0 * b) + seasonal[seasonCounter % windowSize];
|
||||
int idx = window.size() - period + (0 % period);
|
||||
double expected = s + (1 * b) + seasonal[idx];
|
||||
double actual = model.next(window);
|
||||
assertThat(Double.compare(expected, actual), equalTo(0));
|
||||
}
|
||||
|
@ -559,40 +558,38 @@ public class MovAvgUnitTests extends ElasticsearchTestCase {
|
|||
counter += 1;
|
||||
}
|
||||
|
||||
|
||||
// Initial level value is average of first season
|
||||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
for (int i = 0; i < period; i++) {
|
||||
// Calculate first seasonal
|
||||
seasonal[i] = vs[i] / s;
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
Arrays.fill(seasonal, 0.0);
|
||||
} else {
|
||||
for (int i = 0; i < period; i++) {
|
||||
seasonal[i] = vs[i] / s;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = period; i < vs.length; i++) {
|
||||
s = alpha * (vs[i] - seasonal[i - period]) + (1.0d - alpha) * (last_s + last_b);
|
||||
b = beta * (s - last_s) + (1 - beta) * last_b;
|
||||
|
||||
//seasonal[i] = gamma * (vs[i] / s) + ((1 - gamma) * seasonal[i - period]);
|
||||
seasonal[i] = gamma * (vs[i] - (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
seasonal[i] = gamma * (vs[i] - (last_s - last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
}
|
||||
|
||||
int seasonCounter = (windowSize - 1) - period;
|
||||
|
||||
for (int i = 0; i < numPredictions; i++) {
|
||||
|
||||
expected[i] = s + (i * b) + seasonal[seasonCounter % windowSize];
|
||||
assertThat(Double.compare(expected[i], actual[i]), equalTo(0));
|
||||
seasonCounter += 1;
|
||||
for (int i = 1; i <= numPredictions; i++) {
|
||||
int idx = window.size() - period + ((i - 1) % period);
|
||||
expected[i-1] = s + (i * b) + seasonal[idx];
|
||||
assertThat(Double.compare(expected[i-1], actual[i-1]), equalTo(0));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue