Tests: Add unit test for SignificantLongTerms and SignificantStringTerms (#23428)

Relates to #22278
This commit is contained in:
Tanguy Leroux 2017-03-02 10:48:29 +01:00 committed by GitHub
parent 1228084c1c
commit 5a668c4add
7 changed files with 325 additions and 0 deletions

View File

@ -28,6 +28,7 @@ import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.function.Function;
import java.util.stream.Collectors;
@ -99,4 +100,21 @@ public abstract class InternalMappedSignificantTerms<
protected SignificanceHeuristic getSignificanceHeuristic() {
return significanceHeuristic;
}
@Override
protected boolean doEquals(Object obj) {
InternalMappedSignificantTerms<?, ?> that = (InternalMappedSignificantTerms<?, ?>) obj;
return super.doEquals(obj)
&& Objects.equals(format, that.format)
&& subsetSize == that.subsetSize
&& supersetSize == that.supersetSize
&& Objects.equals(significanceHeuristic, that.significanceHeuristic)
&& Objects.equals(buckets, that.buckets)
&& Objects.equals(bucketMap, that.bucketMap);
}
@Override
protected int doHashCode() {
return Objects.hash(super.doHashCode(), format, subsetSize, supersetSize, significanceHeuristic, buckets, bucketMap);
}
}

View File

@ -36,6 +36,7 @@ import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import static java.util.Collections.unmodifiableList;
@ -127,6 +128,27 @@ public abstract class InternalSignificantTerms<A extends InternalSignificantTerm
public double getSignificanceScore() {
return score;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Bucket<?> that = (Bucket<?>) o;
return bucketOrd == that.bucketOrd &&
Double.compare(that.score, score) == 0 &&
Objects.equals(aggregations, that.aggregations) &&
Objects.equals(format, that.format);
}
@Override
public int hashCode() {
return Objects.hash(getClass(), bucketOrd, aggregations, score, format);
}
}
protected final int requiredSize;
@ -226,4 +248,16 @@ public abstract class InternalSignificantTerms<A extends InternalSignificantTerm
protected abstract long getSupersetSize();
protected abstract SignificanceHeuristic getSignificanceHeuristic();
@Override
protected int doHashCode() {
return Objects.hash(minDocCount, requiredSize);
}
@Override
protected boolean doEquals(Object obj) {
InternalSignificantTerms<?, ?> that = (InternalSignificantTerms<?, ?>) obj;
return Objects.equals(minDocCount, that.minDocCount)
&& Objects.equals(requiredSize, that.requiredSize);
}
}

View File

@ -29,6 +29,7 @@ import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;
/**
* Result of the running the significant terms aggregation on a numeric field.
@ -109,6 +110,16 @@ public class SignificantLongTerms extends InternalMappedSignificantTerms<Signifi
builder.endObject();
return builder;
}
@Override
public boolean equals(Object obj) {
return super.equals(obj) && Objects.equals(term, ((Bucket) obj).term);
}
@Override
public int hashCode() {
return Objects.hash(super.hashCode(), term);
}
}
public SignificantLongTerms(String name, int requiredSize, long minDocCount, List<PipelineAggregator> pipelineAggregators,

View File

@ -30,6 +30,7 @@ import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;
/**
* Result of the running the significant terms aggregation on a String field.
@ -111,6 +112,16 @@ public class SignificantStringTerms extends InternalMappedSignificantTerms<Signi
builder.endObject();
return builder;
}
@Override
public boolean equals(Object obj) {
return super.equals(obj) && Objects.equals(termBytes, ((SignificantStringTerms.Bucket) obj).termBytes);
}
@Override
public int hashCode() {
return Objects.hash(super.hashCode(), termBytes);
}
}
public SignificantStringTerms(String name, int requiredSize, long minDocCount, List<PipelineAggregator> pipelineAggregators,

View File

@ -0,0 +1,68 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket.significant;
import org.elasticsearch.search.aggregations.InternalAggregationTestCase;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public abstract class InternalSignificantTermsTestCase extends InternalAggregationTestCase<InternalSignificantTerms<?, ?>> {
@Override
protected InternalSignificantTerms createUnmappedInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
InternalSignificantTerms<?, ?> testInstance = createTestInstance(name, pipelineAggregators, metaData);
return new UnmappedSignificantTerms(name, testInstance.requiredSize, testInstance.minDocCount, pipelineAggregators, metaData);
}
@Override
protected void assertReduced(InternalSignificantTerms<?, ?> reduced, List<InternalSignificantTerms<?, ?>> inputs) {
assertEquals(inputs.stream().mapToLong(InternalSignificantTerms::getSubsetSize).sum(), reduced.getSubsetSize());
assertEquals(inputs.stream().mapToLong(InternalSignificantTerms::getSupersetSize).sum(), reduced.getSupersetSize());
List<Function<SignificantTerms.Bucket, Long>> counts = Arrays.asList(
SignificantTerms.Bucket::getSubsetDf,
SignificantTerms.Bucket::getSupersetDf,
SignificantTerms.Bucket::getDocCount
);
for (Function<SignificantTerms.Bucket, Long> count : counts) {
Map<Object, Long> reducedCounts = toCounts(reduced.getBuckets().stream(), count);
Map<Object, Long> totalCounts = toCounts(inputs.stream().map(SignificantTerms::getBuckets).flatMap(List::stream), count);
Map<Object, Long> expectedReducedCounts = new HashMap<>(totalCounts);
expectedReducedCounts.keySet().retainAll(reducedCounts.keySet());
assertEquals(expectedReducedCounts, reducedCounts);
}
}
private static Map<Object, Long> toCounts(Stream<? extends SignificantTerms.Bucket> buckets,
Function<SignificantTerms.Bucket, Long> fn) {
return buckets.collect(Collectors.toMap(SignificantTerms.Bucket::getKey, fn, Long::sum));
}
}

View File

@ -0,0 +1,91 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket.significant;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.ChiSquare;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.GND;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.JLHScore;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.MutualInformation;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.SignificanceHeuristic;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import org.junit.Before;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import static org.elasticsearch.search.aggregations.InternalAggregations.EMPTY;
public class SignificantLongTermsTests extends InternalSignificantTermsTestCase {
private SignificanceHeuristic significanceHeuristic;
@Before
public void setUpSignificanceHeuristic() {
significanceHeuristic = randomSignificanceHeuristic();
}
@Override
protected InternalSignificantTerms createTestInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
DocValueFormat format = DocValueFormat.RAW;
int requiredSize = randomIntBetween(1, 5);
int shardSize = requiredSize + 2;
final int numBuckets = randomInt(shardSize);
long globalSubsetSize = 0;
long globalSupersetSize = 0;
List<SignificantLongTerms.Bucket> buckets = new ArrayList<>(numBuckets);
Set<Long> terms = new HashSet<>();
for (int i = 0; i < numBuckets; ++i) {
long term = randomValueOtherThanMany(l -> terms.add(l) == false, random()::nextLong);
int subsetDf = randomIntBetween(1, 10);
int supersetDf = randomIntBetween(subsetDf, 20);
int supersetSize = randomIntBetween(supersetDf, 30);
globalSubsetSize += subsetDf;
globalSupersetSize += supersetSize;
buckets.add(new SignificantLongTerms.Bucket(subsetDf, subsetDf, supersetDf, supersetSize, term, EMPTY, format));
}
return new SignificantLongTerms(name, requiredSize, 1L, pipelineAggregators, metaData, format, globalSubsetSize,
globalSupersetSize, significanceHeuristic, buckets);
}
@Override
protected Writeable.Reader<InternalSignificantTerms<?, ?>> instanceReader() {
return SignificantLongTerms::new;
}
private static SignificanceHeuristic randomSignificanceHeuristic() {
return randomFrom(
new JLHScore(),
new MutualInformation(randomBoolean(), randomBoolean()),
new GND(randomBoolean()),
new ChiSquare(randomBoolean(), randomBoolean()));
}
}

View File

@ -0,0 +1,92 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket.significant;
import org.apache.lucene.util.BytesRef;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.ChiSquare;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.GND;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.JLHScore;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.MutualInformation;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.SignificanceHeuristic;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import org.junit.Before;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import static org.elasticsearch.search.aggregations.InternalAggregations.EMPTY;
public class SignificantStringTermsTests extends InternalSignificantTermsTestCase {
private SignificanceHeuristic significanceHeuristic;
@Before
public void setUpSignificanceHeuristic() {
significanceHeuristic = randomSignificanceHeuristic();
}
@Override
protected InternalSignificantTerms createTestInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
DocValueFormat format = DocValueFormat.RAW;
int requiredSize = randomIntBetween(1, 5);
int shardSize = requiredSize + 2;
final int numBuckets = randomInt(shardSize);
long globalSubsetSize = 0;
long globalSupersetSize = 0;
List<SignificantStringTerms.Bucket> buckets = new ArrayList<>(numBuckets);
Set<BytesRef> terms = new HashSet<>();
for (int i = 0; i < numBuckets; ++i) {
BytesRef term = randomValueOtherThanMany(b -> terms.add(b) == false, () -> new BytesRef(randomAsciiOfLength(10)));
int subsetDf = randomIntBetween(1, 10);
int supersetDf = randomIntBetween(subsetDf, 20);
int supersetSize = randomIntBetween(supersetDf, 30);
globalSubsetSize += subsetDf;
globalSupersetSize += supersetSize;
buckets.add(new SignificantStringTerms.Bucket(term, subsetDf, subsetDf, supersetDf, supersetSize, EMPTY, format));
}
return new SignificantStringTerms(name, requiredSize, 1L, pipelineAggregators, metaData, format, globalSubsetSize,
globalSupersetSize, significanceHeuristic, buckets);
}
@Override
protected Writeable.Reader<InternalSignificantTerms<?, ?>> instanceReader() {
return SignificantStringTerms::new;
}
private static SignificanceHeuristic randomSignificanceHeuristic() {
return randomFrom(
new JLHScore(),
new MutualInformation(randomBoolean(), randomBoolean()),
new GND(randomBoolean()),
new ChiSquare(randomBoolean(), randomBoolean()));
}
}