[7.x] Add docs for HLRC for Estimate memory usage API (#45538) (#45783)

This commit is contained in:
Przemysław Witek 2019-08-21 14:27:36 +02:00 committed by GitHub
parent bf701b83d2
commit 5faa012fd6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 112 additions and 6 deletions

View File

@ -48,6 +48,7 @@ import org.elasticsearch.client.ml.DeleteForecastRequest;
import org.elasticsearch.client.ml.DeleteJobRequest;
import org.elasticsearch.client.ml.DeleteJobResponse;
import org.elasticsearch.client.ml.DeleteModelSnapshotRequest;
import org.elasticsearch.client.ml.EstimateMemoryUsageResponse;
import org.elasticsearch.client.ml.EvaluateDataFrameRequest;
import org.elasticsearch.client.ml.EvaluateDataFrameResponse;
import org.elasticsearch.client.ml.FindFileStructureRequest;
@ -194,11 +195,13 @@ import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import static org.hamcrest.Matchers.allOf;
import static org.hamcrest.Matchers.closeTo;
import static org.hamcrest.Matchers.containsInAnyOrder;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.greaterThan;
import static org.hamcrest.Matchers.hasSize;
import static org.hamcrest.Matchers.lessThan;
import static org.hamcrest.core.Is.is;
public class MlClientDocumentationIT extends ESRestHighLevelClientTestCase {
@ -3262,6 +3265,72 @@ public class MlClientDocumentationIT extends ESRestHighLevelClientTestCase {
}
}
public void testEstimateMemoryUsage() throws Exception {
createIndex("estimate-test-source-index");
BulkRequest bulkRequest =
new BulkRequest("estimate-test-source-index")
.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE);
for (int i = 0; i < 10; ++i) {
bulkRequest.add(new IndexRequest().source(XContentType.JSON, "timestamp", 123456789L, "total", 10L));
}
RestHighLevelClient client = highLevelClient();
client.bulk(bulkRequest, RequestOptions.DEFAULT);
{
// tag::estimate-memory-usage-request
DataFrameAnalyticsConfig config = DataFrameAnalyticsConfig.builder()
.setSource(DataFrameAnalyticsSource.builder().setIndex("estimate-test-source-index").build())
.setAnalysis(OutlierDetection.createDefault())
.build();
PutDataFrameAnalyticsRequest request = new PutDataFrameAnalyticsRequest(config); // <1>
// end::estimate-memory-usage-request
// tag::estimate-memory-usage-execute
EstimateMemoryUsageResponse response = client.machineLearning().estimateMemoryUsage(request, RequestOptions.DEFAULT);
// end::estimate-memory-usage-execute
// tag::estimate-memory-usage-response
ByteSizeValue expectedMemoryWithoutDisk = response.getExpectedMemoryWithoutDisk(); // <1>
ByteSizeValue expectedMemoryWithDisk = response.getExpectedMemoryWithDisk(); // <2>
// end::estimate-memory-usage-response
// We are pretty liberal here as this test does not aim at verifying concrete numbers but rather end-to-end user workflow.
ByteSizeValue lowerBound = new ByteSizeValue(1, ByteSizeUnit.KB);
ByteSizeValue upperBound = new ByteSizeValue(1, ByteSizeUnit.GB);
assertThat(expectedMemoryWithoutDisk, allOf(greaterThan(lowerBound), lessThan(upperBound)));
assertThat(expectedMemoryWithDisk, allOf(greaterThan(lowerBound), lessThan(upperBound)));
}
{
DataFrameAnalyticsConfig config = DataFrameAnalyticsConfig.builder()
.setSource(DataFrameAnalyticsSource.builder().setIndex("estimate-test-source-index").build())
.setAnalysis(OutlierDetection.createDefault())
.build();
PutDataFrameAnalyticsRequest request = new PutDataFrameAnalyticsRequest(config);
// tag::estimate-memory-usage-execute-listener
ActionListener<EstimateMemoryUsageResponse> listener = new ActionListener<EstimateMemoryUsageResponse>() {
@Override
public void onResponse(EstimateMemoryUsageResponse response) {
// <1>
}
@Override
public void onFailure(Exception e) {
// <2>
}
};
// end::estimate-memory-usage-execute-listener
// Replace the empty listener by a blocking listener in test
final CountDownLatch latch = new CountDownLatch(1);
listener = new LatchedActionListener<>(listener, latch);
// tag::estimate-memory-usage-execute-async
client.machineLearning().estimateMemoryUsageAsync(request, RequestOptions.DEFAULT, listener); // <1>
// end::estimate-memory-usage-execute-async
assertTrue(latch.await(30L, TimeUnit.SECONDS));
}
}
public void testCreateFilter() throws Exception {
RestHighLevelClient client = highLevelClient();
{

View File

@ -0,0 +1,35 @@
--
:api: estimate-memory-usage
:request: PutDataFrameAnalyticsRequest
:response: EstimateMemoryUsageResponse
--
[id="{upid}-{api}"]
=== Estimate memory usage API
The Estimate memory usage API is used to estimate memory usage of {dfanalytics}.
Estimation results can be used when deciding the appropriate value for `model_memory_limit` setting later on.
The API accepts an +{request}+ object and returns an +{response}+.
[id="{upid}-{api}-request"]
==== Estimate memory usage Request
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-request]
--------------------------------------------------
<1> Constructing a new request containing a {dataframe-analytics-config} for which memory usage estimation should be performed
include::../execution.asciidoc[]
[id="{upid}-{api}-response"]
==== Response
The returned +{response}+ contains the memory usage estimates.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-response]
--------------------------------------------------
<1> Estimated memory usage under the assumption that the whole {dfanalytics} should happen in memory (i.e. without overflowing to disk).
<2> Estimated memory usage under the assumption that overflowing to disk is allowed during {dfanalytics}.

View File

@ -295,6 +295,7 @@ The Java High Level REST Client supports the following Machine Learning APIs:
* <<{upid}-start-data-frame-analytics>>
* <<{upid}-stop-data-frame-analytics>>
* <<{upid}-evaluate-data-frame>>
* <<{upid}-estimate-memory-usage>>
* <<{upid}-put-filter>>
* <<{upid}-get-filters>>
* <<{upid}-update-filter>>
@ -346,6 +347,7 @@ include::ml/delete-data-frame-analytics.asciidoc[]
include::ml/start-data-frame-analytics.asciidoc[]
include::ml/stop-data-frame-analytics.asciidoc[]
include::ml/evaluate-data-frame.asciidoc[]
include::ml/estimate-memory-usage.asciidoc[]
include::ml/put-filter.asciidoc[]
include::ml/get-filters.asciidoc[]
include::ml/update-filter.asciidoc[]

View File

@ -42,14 +42,14 @@ Serves as an advice on how to set `model_memory_limit` when creating {dfanalytic
[[ml-estimate-memory-usage-dfanalytics-results]]
==== {api-response-body-title}
`expected_memory_usage_with_one_partition`::
`expected_memory_without_disk`::
(string) Estimated memory usage under the assumption that the whole {dfanalytics} should happen in memory
(i.e. without overflowing to disk).
`expected_memory_usage_with_max_partitions`::
`expected_memory_with_disk`::
(string) Estimated memory usage under the assumption that overflowing to disk is allowed during {dfanalytics}.
`expected_memory_usage_with_max_partitions` is usually smaller than `expected_memory_usage_with_one_partition`
as using disk allows to limit the main memory needed to perform {dfanalytics}.
`expected_memory_with_disk` is usually smaller than `expected_memory_without_disk` as using disk allows to
limit the main memory needed to perform {dfanalytics}.
[[ml-estimate-memory-usage-dfanalytics-example]]
==== {api-examples-title}
@ -76,8 +76,8 @@ The API returns the following results:
[source,js]
----
{
"expected_memory_usage_with_one_partition": "128MB",
"expected_memory_usage_with_max_partitions": "32MB"
"expected_memory_without_disk": "128MB",
"expected_memory_with_disk": "32MB"
}
----
// TESTRESPONSE