Add `shard_min_doc_count` parameter for significant terms similar to `shard_size`

Significant terms internally maintain a priority queue per shard with a size potentially
lower than the number of terms. This queue uses the score as criterion to determine if
a bucket is kept or not. If many terms with low subsetDF score very high
but the `min_doc_count` is set high, this might result in no terms being
returned because the pq is filled with low frequent terms which are all sorted
out in the end.

This can be avoided by increasing the `shard_size` parameter to a higher value.
However, it is not immediately clear to which value this parameter must be set
because we can not know how many terms with low frequency are scored higher that
the high frequent terms that we are actually interested in.

On the other hand, if there is no routing of docs to shards involved, we can maybe
assume that the documents of classes and also the terms therein are distributed evenly
across shards. In that case it might be easier to not add documents to the pq that have
subsetDF <= `shard_min_doc_count` which can be set to something like
`min_doc_count`/number of shards  because we would assume that even when summing up
the subsetDF across shards `min_doc_count` will not be reached.

closes #5998
closes #6041
This commit is contained in:
Britta Weber 2014-04-30 13:49:10 +02:00
parent f554178fc7
commit 7944369fd1
8 changed files with 185 additions and 25 deletions

View File

@ -319,10 +319,23 @@ It is possible to only return terms that match more than a configured number of
The above aggregation would only return tags which have been found in 10 hits or more. Default value is `3`.
Terms that score highly will be collected on a shard level and merged with the terms collected from other shards in a second step. However, the shard does not have the information about the global term frequencies available. The decision if a term is added to a candidate list depends only on the score computed on the shard using local shard frequencies, not the global frequencies of the word. The `min_doc_count` criterion is only applied after merging local terms statistics of all shards. In a way the decision to add the term as a candidate is made without being very _certain_ about if the term will actually reach the required `min_doc_count`. This might cause many (globally) high frequent terms to be missing in the final result if low frequent but high scoring terms populated the candidate lists. To avoid this, the `shard_size` parameter can be increased to allow more candidate terms on the shards. However, this increases memory consumption and network traffic.
The parameter `shard_min_doc_count` regulates the _certainty_ a shard has if the term should actually be added to the candidate list or not with respect to the `min_doc_count`. Terms will only be considered if their local shard frequency within the set is higher than the `shard_min_doc_count`. If your dictionary contains many low frequent words and you are not interested in these (for example misspellings), then you can set the `shard_min_doc_count` parameter to filter out candidate terms on a shard level that will with a resonable certainty not reach the required `min_doc_count` even after merging the local frequencies. `shard_min_doc_count` is set to `1` per default and has no effect unless you explicitly set it.
WARNING: Setting `min_doc_count` to `1` is generally not advised as it tends to return terms that
are typos or other bizarre curiosities. Finding more than one instance of a term helps
reinforce that, while still rare, the term was not the result of a one-off accident. The
default value of 3 is used to provide a minimum weight-of-evidence.
Setting `shard_min_doc_count` too high will cause significant candidate terms to be filtered out on a shard level. This value should be set much lower than `min_doc_count/#shards`.
===== Filtering Values

View File

@ -42,15 +42,17 @@ public class GlobalOrdinalsSignificantTermsAggregator extends GlobalOrdinalsStri
protected long numCollectedDocs;
protected final SignificantTermsAggregatorFactory termsAggFactory;
protected long shardMinDocCount;
public GlobalOrdinalsSignificantTermsAggregator(String name, AggregatorFactories factories, ValuesSource.Bytes.WithOrdinals.FieldData valuesSource,
long estimatedBucketCount, long maxOrd, int requiredSize, int shardSize, long minDocCount,
long estimatedBucketCount, long maxOrd, int requiredSize, int shardSize, long minDocCount, long shardMinDocCount,
AggregationContext aggregationContext, Aggregator parent,
SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, estimatedBucketCount, maxOrd, null, requiredSize, shardSize,
minDocCount, aggregationContext, parent);
this.termsAggFactory = termsAggFactory;
this.shardMinDocCount = shardMinDocCount;
}
@Override
@ -99,8 +101,9 @@ public class GlobalOrdinalsSignificantTermsAggregator extends GlobalOrdinalsStri
// Back at the central reducer these properties will be updated with
// global stats
spare.updateScore();
spare = (SignificantStringTerms.Bucket) ordered.insertWithOverflow(spare);
if (spare.subsetDf >= shardMinDocCount) {
spare = (SignificantStringTerms.Bucket) ordered.insertWithOverflow(spare);
}
}
final InternalSignificantTerms.Bucket[] list = new InternalSignificantTerms.Bucket[ordered.size()];
@ -133,8 +136,8 @@ public class GlobalOrdinalsSignificantTermsAggregator extends GlobalOrdinalsStri
private final LongHash bucketOrds;
public WithHash(String name, AggregatorFactories factories, ValuesSource.Bytes.WithOrdinals.FieldData valuesSource, long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount, AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, estimatedBucketCount, estimatedBucketCount, requiredSize, shardSize, minDocCount, aggregationContext, parent, termsAggFactory);
public WithHash(String name, AggregatorFactories factories, ValuesSource.Bytes.WithOrdinals.FieldData valuesSource, long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, estimatedBucketCount, estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, aggregationContext, parent, termsAggFactory);
bucketOrds = new LongHash(estimatedBucketCount, aggregationContext.bigArrays());
}

View File

@ -39,15 +39,17 @@ import java.util.Collections;
public class SignificantLongTermsAggregator extends LongTermsAggregator {
public SignificantLongTermsAggregator(String name, AggregatorFactories factories, ValuesSource.Numeric valuesSource, @Nullable ValueFormat format,
long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount,
long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount, long shardMinDocCount,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, format, estimatedBucketCount, null, requiredSize, shardSize, minDocCount, aggregationContext, parent);
this.termsAggFactory = termsAggFactory;
this.shardMinDocCount = shardMinDocCount;
}
protected long numCollectedDocs;
private final SignificantTermsAggregatorFactory termsAggFactory;
protected long shardMinDocCount;
@Override
public void collect(int doc, long owningBucketOrdinal) throws IOException {
@ -81,7 +83,9 @@ public class SignificantLongTermsAggregator extends LongTermsAggregator {
spare.updateScore();
spare.bucketOrd = i;
spare = (SignificantLongTerms.Bucket) ordered.insertWithOverflow(spare);
if (spare.subsetDf >= shardMinDocCount) {
spare = (SignificantLongTerms.Bucket) ordered.insertWithOverflow(spare);
}
}
final InternalSignificantTerms.Bucket[] list = new InternalSignificantTerms.Bucket[ordered.size()];

View File

@ -45,15 +45,17 @@ public class SignificantStringTermsAggregator extends StringTermsAggregator {
protected long numCollectedDocs;
protected final SignificantTermsAggregatorFactory termsAggFactory;
protected long shardMinDocCount;
public SignificantStringTermsAggregator(String name, AggregatorFactories factories, ValuesSource valuesSource,
long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount,
long estimatedBucketCount, int requiredSize, int shardSize, long minDocCount, long shardMinDocCount,
IncludeExclude includeExclude, AggregationContext aggregationContext, Aggregator parent,
SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, estimatedBucketCount, null, requiredSize, shardSize,
minDocCount, includeExclude, aggregationContext, parent);
this.termsAggFactory = termsAggFactory;
this.shardMinDocCount = shardMinDocCount;
}
@Override
@ -90,7 +92,9 @@ public class SignificantStringTermsAggregator extends StringTermsAggregator {
spare.updateScore();
spare.bucketOrd = i;
spare = (SignificantStringTerms.Bucket) ordered.insertWithOverflow(spare);
if (spare.subsetDf >= shardMinDocCount) {
spare = (SignificantStringTerms.Bucket) ordered.insertWithOverflow(spare);
}
}
final InternalSignificantTerms.Bucket[] list = new InternalSignificantTerms.Bucket[ordered.size()];
@ -130,9 +134,9 @@ public class SignificantStringTermsAggregator extends StringTermsAggregator {
private LongArray ordinalToBucket;
public WithOrdinals(String name, AggregatorFactories factories, ValuesSource.Bytes.WithOrdinals valuesSource,
long esitmatedBucketCount, int requiredSize, int shardSize, long minDocCount, AggregationContext aggregationContext,
long esitmatedBucketCount, int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, AggregationContext aggregationContext,
Aggregator parent, SignificantTermsAggregatorFactory termsAggFactory) {
super(name, factories, valuesSource, esitmatedBucketCount, requiredSize, shardSize, minDocCount, null, aggregationContext, parent, termsAggFactory);
super(name, factories, valuesSource, esitmatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, null, aggregationContext, parent, termsAggFactory);
this.valuesSource = valuesSource;
}

View File

@ -52,9 +52,9 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
@Override
Aggregator create(String name, AggregatorFactories factories, ValuesSource valuesSource, long estimatedBucketCount,
int requiredSize, int shardSize, long minDocCount, IncludeExclude includeExclude,
int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggregatorFactory) {
return new SignificantStringTermsAggregator(name, factories, valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, includeExclude, aggregationContext, parent, termsAggregatorFactory);
return new SignificantStringTermsAggregator(name, factories, valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, includeExclude, aggregationContext, parent, termsAggregatorFactory);
}
@Override
@ -67,12 +67,12 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
@Override
Aggregator create(String name, AggregatorFactories factories, ValuesSource valuesSource, long estimatedBucketCount,
int requiredSize, int shardSize, long minDocCount, IncludeExclude includeExclude,
int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggregatorFactory) {
if (includeExclude != null) {
throw new ElasticsearchIllegalArgumentException("The `" + this + "` execution mode cannot filter terms.");
}
return new SignificantStringTermsAggregator.WithOrdinals(name, factories, (ValuesSource.Bytes.WithOrdinals) valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, aggregationContext, parent, termsAggregatorFactory);
return new SignificantStringTermsAggregator.WithOrdinals(name, factories, (ValuesSource.Bytes.WithOrdinals) valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, aggregationContext, parent, termsAggregatorFactory);
}
@Override
@ -85,7 +85,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
@Override
Aggregator create(String name, AggregatorFactories factories, ValuesSource valuesSource, long estimatedBucketCount,
int requiredSize, int shardSize, long minDocCount, IncludeExclude includeExclude,
int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggregatorFactory) {
if (includeExclude != null) {
throw new ElasticsearchIllegalArgumentException("The `" + this + "` execution mode cannot filter terms.");
@ -93,7 +93,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
ValuesSource.Bytes.WithOrdinals valueSourceWithOrdinals = (ValuesSource.Bytes.WithOrdinals) valuesSource;
IndexSearcher indexSearcher = aggregationContext.searchContext().searcher();
long maxOrd = valueSourceWithOrdinals.globalMaxOrd(indexSearcher);
return new GlobalOrdinalsSignificantTermsAggregator(name, factories, (ValuesSource.Bytes.WithOrdinals.FieldData) valuesSource, estimatedBucketCount, maxOrd, requiredSize, shardSize, minDocCount, aggregationContext, parent, termsAggregatorFactory);
return new GlobalOrdinalsSignificantTermsAggregator(name, factories, (ValuesSource.Bytes.WithOrdinals.FieldData) valuesSource, estimatedBucketCount, maxOrd, requiredSize, shardSize, minDocCount, shardMinDocCount, aggregationContext, parent, termsAggregatorFactory);
}
@Override
@ -106,12 +106,12 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
@Override
Aggregator create(String name, AggregatorFactories factories, ValuesSource valuesSource, long estimatedBucketCount,
int requiredSize, int shardSize, long minDocCount, IncludeExclude includeExclude,
int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggregatorFactory) {
if (includeExclude != null) {
throw new ElasticsearchIllegalArgumentException("The `" + this + "` execution mode cannot filter terms.");
}
return new GlobalOrdinalsSignificantTermsAggregator.WithHash(name, factories, (ValuesSource.Bytes.WithOrdinals.FieldData) valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, aggregationContext, parent, termsAggregatorFactory);
return new GlobalOrdinalsSignificantTermsAggregator.WithHash(name, factories, (ValuesSource.Bytes.WithOrdinals.FieldData) valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, aggregationContext, parent, termsAggregatorFactory);
}
@Override
@ -136,7 +136,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
}
abstract Aggregator create(String name, AggregatorFactories factories, ValuesSource valuesSource, long estimatedBucketCount,
int requiredSize, int shardSize, long minDocCount, IncludeExclude includeExclude,
int requiredSize, int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
AggregationContext aggregationContext, Aggregator parent, SignificantTermsAggregatorFactory termsAggregatorFactory);
abstract boolean needsGlobalOrdinals();
@ -150,6 +150,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
private final int requiredSize;
private final int shardSize;
private final long minDocCount;
private final long shardMinDocCount;
private final IncludeExclude includeExclude;
private final String executionHint;
private String indexedFieldName;
@ -159,13 +160,14 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
private Filter filter;
public SignificantTermsAggregatorFactory(String name, ValuesSourceConfig valueSourceConfig, int requiredSize,
int shardSize, long minDocCount, IncludeExclude includeExclude,
int shardSize, long minDocCount, long shardMinDocCount, IncludeExclude includeExclude,
String executionHint, Filter filter) {
super(name, SignificantStringTerms.TYPE.name(), valueSourceConfig);
this.requiredSize = requiredSize;
this.shardSize = shardSize;
this.minDocCount = minDocCount;
this.shardMinDocCount = shardMinDocCount;
this.includeExclude = includeExclude;
this.executionHint = executionHint;
if (!valueSourceConfig.unmapped()) {
@ -211,7 +213,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
}
assert execution != null;
valuesSource.setNeedsGlobalOrdinals(execution.needsGlobalOrdinals());
return execution.create(name, factories, valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, includeExclude, aggregationContext, parent, this);
return execution.create(name, factories, valuesSource, estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, includeExclude, aggregationContext, parent, this);
}
if (includeExclude != null) {
@ -224,7 +226,7 @@ public class SignificantTermsAggregatorFactory extends ValuesSourceAggregatorFac
if (((ValuesSource.Numeric) valuesSource).isFloatingPoint()) {
throw new UnsupportedOperationException("No support for examining floating point numerics");
}
return new SignificantLongTermsAggregator(name, factories, (ValuesSource.Numeric) valuesSource, config.format(), estimatedBucketCount, requiredSize, shardSize, minDocCount, aggregationContext, parent, this);
return new SignificantLongTermsAggregator(name, factories, (ValuesSource.Numeric) valuesSource, config.format(), estimatedBucketCount, requiredSize, shardSize, minDocCount, shardMinDocCount, aggregationContext, parent, this);
}
throw new AggregationExecutionException("sigfnificant_terms aggregation cannot be applied to field [" + config.fieldContext().field() +

View File

@ -36,6 +36,7 @@ public class SignificantTermsBuilder extends AggregationBuilder<SignificantTerms
private int requiredSize = SignificantTermsParser.DEFAULT_REQUIRED_SIZE;
private int shardSize = SignificantTermsParser.DEFAULT_SHARD_SIZE;
private int minDocCount = SignificantTermsParser.DEFAULT_MIN_DOC_COUNT;
private int shardMinDocCount = SignificantTermsParser.DEFAULT_SHARD_MIN_DOC_COUNT;
private String executionHint;
public SignificantTermsBuilder(String name) {
@ -62,6 +63,11 @@ public class SignificantTermsBuilder extends AggregationBuilder<SignificantTerms
return this;
}
public SignificantTermsBuilder shardMinDocCount(int shardMinDocCount) {
this.shardMinDocCount = shardMinDocCount;
return this;
}
public SignificantTermsBuilder executionHint(String executionHint) {
this.executionHint = executionHint;
return this;
@ -76,6 +82,9 @@ public class SignificantTermsBuilder extends AggregationBuilder<SignificantTerms
if (minDocCount != SignificantTermsParser.DEFAULT_MIN_DOC_COUNT) {
builder.field("minDocCount", minDocCount);
}
if (shardMinDocCount != SignificantTermsParser.DEFAULT_SHARD_MIN_DOC_COUNT) {
builder.field("shardMinDocCount", shardMinDocCount);
}
if (requiredSize != SignificantTermsParser.DEFAULT_REQUIRED_SIZE) {
builder.field("size", requiredSize);
}

View File

@ -19,6 +19,7 @@
package org.elasticsearch.search.aggregations.bucket.significant;
import org.apache.lucene.search.Filter;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.search.SearchParseException;
import org.elasticsearch.search.aggregations.Aggregator;
@ -41,6 +42,9 @@ public class SignificantTermsParser implements Aggregator.Parser {
//Typically need more than one occurrence of something for it to be statistically significant
public static final int DEFAULT_MIN_DOC_COUNT = 3;
static final ParseField SHARD_MIN_DOC_COUNT_FIELD_NAME = new ParseField("shard_min_doc_count");
public static final int DEFAULT_SHARD_MIN_DOC_COUNT = 1;
@Override
public String type() {
return SignificantStringTerms.TYPE.name();
@ -62,6 +66,8 @@ public class SignificantTermsParser implements Aggregator.Parser {
int requiredSize = DEFAULT_REQUIRED_SIZE;
int shardSize = DEFAULT_SHARD_SIZE;
long minDocCount = DEFAULT_MIN_DOC_COUNT;
long shardMinDocCount = DEFAULT_SHARD_MIN_DOC_COUNT;
String executionHint = null;
XContentParser.Token token;
@ -86,8 +92,11 @@ public class SignificantTermsParser implements Aggregator.Parser {
shardSize = parser.intValue();
} else if ("min_doc_count".equals(currentFieldName) || "minDocCount".equals(currentFieldName)) {
minDocCount = parser.intValue();
} else if (SHARD_MIN_DOC_COUNT_FIELD_NAME.match(currentFieldName)){
shardMinDocCount = parser.longValue();
} else {
throw new SearchParseException(context, "Unknown key for a " + token + " in [" + aggregationName + "]: [" + currentFieldName + "].");
throw new SearchParseException(context, "Unknown key for a " + token + " in [" + aggregationName + "]: [" + currentFieldName + "].");
}
} else if (token == XContentParser.Token.START_OBJECT) {
// TODO not sure if code below is the best means to declare a filter for
@ -124,8 +133,13 @@ public class SignificantTermsParser implements Aggregator.Parser {
shardSize = requiredSize;
}
// shard_min_doc_count should not be larger than min_doc_count because this can cause buckets to be removed that would match the min_doc_count criteria
if (shardMinDocCount > minDocCount) {
shardMinDocCount = minDocCount;
}
IncludeExclude includeExclude = incExcParser.includeExclude();
return new SignificantTermsAggregatorFactory(aggregationName, vsParser.config(), requiredSize, shardSize, minDocCount, includeExclude, executionHint, filter);
return new SignificantTermsAggregatorFactory(aggregationName, vsParser.config(), requiredSize, shardSize, minDocCount, shardMinDocCount, includeExclude, executionHint, filter);
}
}

View File

@ -0,0 +1,111 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket;
import org.elasticsearch.action.index.IndexRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.index.query.FilterBuilders;
import org.elasticsearch.search.aggregations.bucket.filter.FilterAggregationBuilder;
import org.elasticsearch.search.aggregations.bucket.filter.InternalFilter;
import org.elasticsearch.search.aggregations.bucket.significant.SignificantTerms;
import org.elasticsearch.search.aggregations.bucket.significant.SignificantTermsAggregatorFactory;
import org.elasticsearch.search.aggregations.bucket.significant.SignificantTermsBuilder;
import org.elasticsearch.test.ElasticsearchIntegrationTest;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import static org.elasticsearch.cluster.metadata.IndexMetaData.SETTING_NUMBER_OF_REPLICAS;
import static org.elasticsearch.cluster.metadata.IndexMetaData.SETTING_NUMBER_OF_SHARDS;
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertAcked;
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertSearchResponse;
import static org.hamcrest.Matchers.equalTo;
/**
*
*/
public class SignificantTermsMinDocCountTests extends ElasticsearchIntegrationTest {
private static final String index = "someindex";
private static final String type = "testtype";
public String randomExecutionHint() {
return randomBoolean() ? null : randomFrom(SignificantTermsAggregatorFactory.ExecutionMode.values()).toString();
}
// see https://github.com/elasticsearch/elasticsearch/issues/5998
@Test
public void shardMinDocCountTest() throws Exception {
String termtype = "string";
if (randomBoolean()) {
termtype = "long";
}
assertAcked(prepareCreate(index).setSettings(SETTING_NUMBER_OF_SHARDS, 1, SETTING_NUMBER_OF_REPLICAS, 0).addMapping(type, "{\"properties\":{\"text\": {\"type\": \"" + termtype + "\"}}}"));
ensureYellow(index);
List<IndexRequestBuilder> indexBuilders = new ArrayList<>();
addTermsDocs("1", 1, 0, indexBuilders);//high score but low doc freq
addTermsDocs("2", 1, 0, indexBuilders);
addTermsDocs("3", 1, 0, indexBuilders);
addTermsDocs("4", 1, 0, indexBuilders);
addTermsDocs("5", 3, 1, indexBuilders);//low score but high doc freq
addTermsDocs("6", 3, 1, indexBuilders);
addTermsDocs("7", 0, 3, indexBuilders);// make sure the terms all get score > 0 except for this one
indexRandom(true, indexBuilders);
// first, check that indeed when not setting the shardMinDocCount parameter 0 terms are returned
SearchResponse response = client().prepareSearch(index)
.addAggregation(
(new FilterAggregationBuilder("inclass").filter(FilterBuilders.termFilter("class", true)))
.subAggregation(new SignificantTermsBuilder("mySignificantTerms").field("text").minDocCount(2).size(2).executionHint(randomExecutionHint()))
)
.execute()
.actionGet();
assertSearchResponse(response);
InternalFilter filteredBucket = response.getAggregations().get("inclass");
SignificantTerms sigterms = filteredBucket.getAggregations().get("mySignificantTerms");
assertThat(sigterms.getBuckets().size(), equalTo(0));
response = client().prepareSearch(index)
.addAggregation(
(new FilterAggregationBuilder("inclass").filter(FilterBuilders.termFilter("class", true)))
.subAggregation(new SignificantTermsBuilder("mySignificantTerms").field("text").minDocCount(2).shardMinDocCount(2).size(2).executionHint(randomExecutionHint()))
)
.execute()
.actionGet();
assertSearchResponse(response);
filteredBucket = response.getAggregations().get("inclass");
sigterms = filteredBucket.getAggregations().get("mySignificantTerms");
assertThat(sigterms.getBuckets().size(), equalTo(2));
}
private void addTermsDocs(String term, int numInClass, int numNotInClass, List<IndexRequestBuilder> builders) {
String sourceClass = "{\"text\": \"" + term + "\", \"class\":" + "true" + "}";
String sourceNotClass = "{\"text\": \"" + term + "\", \"class\":" + "false" + "}";
for (int i = 0; i < numInClass; i++) {
builders.add(client().prepareIndex(index, type).setSource(sourceClass));
}
for (int i = 0; i < numNotInClass; i++) {
builders.add(client().prepareIndex(index, type).setSource(sourceNotClass));
}
}
}