[ML] updating feature_importance results mapping (#61104) (#61144)

This updates the feature_importance mapping change from elastic/ml-cpp#1387
This commit is contained in:
Benjamin Trent 2020-08-14 08:43:10 -04:00 committed by GitHub
parent f2f1552e2c
commit 7c3bfb9437
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 174 additions and 44 deletions

View File

@ -314,7 +314,7 @@ public class Classification implements DataFrameAnalysis {
@Override @Override
public Map<String, Object> getExplicitlyMappedFields(Map<String, Object> mappingsProperties, String resultsFieldName) { public Map<String, Object> getExplicitlyMappedFields(Map<String, Object> mappingsProperties, String resultsFieldName) {
Map<String, Object> additionalProperties = new HashMap<>(); Map<String, Object> additionalProperties = new HashMap<>();
additionalProperties.put(resultsFieldName + ".feature_importance", MapUtils.featureImportanceMapping()); additionalProperties.put(resultsFieldName + ".feature_importance", MapUtils.classificationFeatureImportanceMapping());
Object dependentVariableMapping = extractMapping(dependentVariable, mappingsProperties); Object dependentVariableMapping = extractMapping(dependentVariable, mappingsProperties);
if ((dependentVariableMapping instanceof Map) == false) { if ((dependentVariableMapping instanceof Map) == false) {
return additionalProperties; return additionalProperties;

View File

@ -18,22 +18,46 @@ import java.util.Map;
final class MapUtils { final class MapUtils {
private static final Map<String, Object> FEATURE_IMPORTANCE_MAPPING; private static Map<String, Object> createFeatureImportanceMapping(Map<String, Object> featureImportanceMappingProperties){
static {
Map<String, Object> featureImportanceMappingProperties = new HashMap<>();
featureImportanceMappingProperties.put("feature_name", Collections.singletonMap("type", KeywordFieldMapper.CONTENT_TYPE)); featureImportanceMappingProperties.put("feature_name", Collections.singletonMap("type", KeywordFieldMapper.CONTENT_TYPE));
featureImportanceMappingProperties.put("importance",
Collections.singletonMap("type", NumberFieldMapper.NumberType.DOUBLE.typeName()));
Map<String, Object> featureImportanceMapping = new HashMap<>(); Map<String, Object> featureImportanceMapping = new HashMap<>();
// TODO sorted indices don't support nested types // TODO sorted indices don't support nested types
//featureImportanceMapping.put("dynamic", true); //featureImportanceMapping.put("dynamic", true);
//featureImportanceMapping.put("type", ObjectMapper.NESTED_CONTENT_TYPE); //featureImportanceMapping.put("type", ObjectMapper.NESTED_CONTENT_TYPE);
featureImportanceMapping.put("properties", featureImportanceMappingProperties); featureImportanceMapping.put("properties", featureImportanceMappingProperties);
FEATURE_IMPORTANCE_MAPPING = Collections.unmodifiableMap(featureImportanceMapping); return featureImportanceMapping;
} }
static Map<String, Object> featureImportanceMapping() { private static final Map<String, Object> CLASSIFICATION_FEATURE_IMPORTANCE_MAPPING;
return FEATURE_IMPORTANCE_MAPPING; static {
Map<String, Object> classImportancePropertiesMapping = new HashMap<>();
// TODO sorted indices don't support nested types
//classImportancePropertiesMapping.put("dynamic", true);
//classImportancePropertiesMapping.put("type", ObjectMapper.NESTED_CONTENT_TYPE);
classImportancePropertiesMapping.put("class_name", Collections.singletonMap("type", KeywordFieldMapper.CONTENT_TYPE));
classImportancePropertiesMapping.put("importance",
Collections.singletonMap("type", NumberFieldMapper.NumberType.DOUBLE.typeName()));
Map<String, Object> featureImportancePropertiesMapping = new HashMap<>();
featureImportancePropertiesMapping.put("classes", Collections.singletonMap("properties", classImportancePropertiesMapping));
CLASSIFICATION_FEATURE_IMPORTANCE_MAPPING =
Collections.unmodifiableMap(createFeatureImportanceMapping(featureImportancePropertiesMapping));
}
private static final Map<String, Object> REGRESSION_FEATURE_IMPORTANCE_MAPPING;
static {
Map<String, Object> featureImportancePropertiesMapping = new HashMap<>();
featureImportancePropertiesMapping.put("importance",
Collections.singletonMap("type", NumberFieldMapper.NumberType.DOUBLE.typeName()));
REGRESSION_FEATURE_IMPORTANCE_MAPPING =
Collections.unmodifiableMap(createFeatureImportanceMapping(featureImportancePropertiesMapping));
}
static Map<String, Object> regressionFeatureImportanceMapping() {
return REGRESSION_FEATURE_IMPORTANCE_MAPPING;
}
static Map<String, Object> classificationFeatureImportanceMapping() {
return CLASSIFICATION_FEATURE_IMPORTANCE_MAPPING;
} }
private MapUtils() {} private MapUtils() {}

View File

@ -247,7 +247,7 @@ public class Regression implements DataFrameAnalysis {
@Override @Override
public Map<String, Object> getExplicitlyMappedFields(Map<String, Object> mappingsProperties, String resultsFieldName) { public Map<String, Object> getExplicitlyMappedFields(Map<String, Object> mappingsProperties, String resultsFieldName) {
Map<String, Object> additionalProperties = new HashMap<>(); Map<String, Object> additionalProperties = new HashMap<>();
additionalProperties.put(resultsFieldName + ".feature_importance", MapUtils.featureImportanceMapping()); additionalProperties.put(resultsFieldName + ".feature_importance", MapUtils.regressionFeatureImportanceMapping());
// Prediction field should be always mapped as "double" rather than "float" in order to increase precision in case of // Prediction field should be always mapped as "double" rather than "float" in order to increase precision in case of
// high (over 10M) values of dependent variable. // high (over 10M) values of dependent variable.
additionalProperties.put(resultsFieldName + "." + predictionFieldName, additionalProperties.put(resultsFieldName + "." + predictionFieldName,

View File

@ -5,6 +5,7 @@
*/ */
package org.elasticsearch.xpack.core.ml.inference.results; package org.elasticsearch.xpack.core.ml.inference.results;
import org.elasticsearch.Version;
import org.elasticsearch.common.ParseField; import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.io.stream.StreamInput; import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput; import org.elasticsearch.common.io.stream.StreamOutput;
@ -16,65 +17,74 @@ import org.elasticsearch.common.xcontent.XContentParser;
import java.io.IOException; import java.io.IOException;
import java.util.Collections; import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedHashMap; import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.Objects; import java.util.Objects;
import java.util.stream.Collectors;
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg; import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.optionalConstructorArg; import static org.elasticsearch.common.xcontent.ConstructingObjectParser.optionalConstructorArg;
public class FeatureImportance implements Writeable, ToXContentObject { public class FeatureImportance implements Writeable, ToXContentObject {
private final Map<String, Double> classImportance; private final List<ClassImportance> classImportance;
private final double importance; private final double importance;
private final String featureName; private final String featureName;
static final String IMPORTANCE = "importance"; static final String IMPORTANCE = "importance";
static final String FEATURE_NAME = "feature_name"; static final String FEATURE_NAME = "feature_name";
static final String CLASS_IMPORTANCE = "class_importance"; static final String CLASSES = "classes";
public static FeatureImportance forRegression(String featureName, double importance) { public static FeatureImportance forRegression(String featureName, double importance) {
return new FeatureImportance(featureName, importance, null); return new FeatureImportance(featureName, importance, null);
} }
public static FeatureImportance forClassification(String featureName, Map<String, Double> classImportance) { public static FeatureImportance forClassification(String featureName, List<ClassImportance> classImportance) {
return new FeatureImportance(featureName, classImportance.values().stream().mapToDouble(Math::abs).sum(), classImportance); return new FeatureImportance(featureName,
classImportance.stream().mapToDouble(ClassImportance::getImportance).map(Math::abs).sum(),
classImportance);
} }
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
private static final ConstructingObjectParser<FeatureImportance, Void> PARSER = private static final ConstructingObjectParser<FeatureImportance, Void> PARSER =
new ConstructingObjectParser<>("feature_importance", new ConstructingObjectParser<>("feature_importance",
a -> new FeatureImportance((String) a[0], (Double) a[1], (Map<String, Double>) a[2]) a -> new FeatureImportance((String) a[0], (Double) a[1], (List<ClassImportance>) a[2])
); );
static { static {
PARSER.declareString(constructorArg(), new ParseField(FeatureImportance.FEATURE_NAME)); PARSER.declareString(constructorArg(), new ParseField(FeatureImportance.FEATURE_NAME));
PARSER.declareDouble(constructorArg(), new ParseField(FeatureImportance.IMPORTANCE)); PARSER.declareDouble(constructorArg(), new ParseField(FeatureImportance.IMPORTANCE));
PARSER.declareObject(optionalConstructorArg(), (p, c) -> p.map(HashMap::new, XContentParser::doubleValue), PARSER.declareObjectArray(optionalConstructorArg(),
new ParseField(FeatureImportance.CLASS_IMPORTANCE)); (p, c) -> ClassImportance.fromXContent(p),
new ParseField(FeatureImportance.CLASSES));
} }
public static FeatureImportance fromXContent(XContentParser parser) { public static FeatureImportance fromXContent(XContentParser parser) {
return PARSER.apply(parser, null); return PARSER.apply(parser, null);
} }
FeatureImportance(String featureName, double importance, Map<String, Double> classImportance) { FeatureImportance(String featureName, double importance, List<ClassImportance> classImportance) {
this.featureName = Objects.requireNonNull(featureName); this.featureName = Objects.requireNonNull(featureName);
this.importance = importance; this.importance = importance;
this.classImportance = classImportance == null ? null : Collections.unmodifiableMap(classImportance); this.classImportance = classImportance == null ? null : Collections.unmodifiableList(classImportance);
} }
public FeatureImportance(StreamInput in) throws IOException { public FeatureImportance(StreamInput in) throws IOException {
this.featureName = in.readString(); this.featureName = in.readString();
this.importance = in.readDouble(); this.importance = in.readDouble();
if (in.readBoolean()) { if (in.readBoolean()) {
this.classImportance = in.readMap(StreamInput::readString, StreamInput::readDouble); if (in.getVersion().before(Version.V_7_10_0)) {
Map<String, Double> classImportance = in.readMap(StreamInput::readString, StreamInput::readDouble);
this.classImportance = ClassImportance.fromMap(classImportance);
} else {
this.classImportance = in.readList(ClassImportance::new);
}
} else { } else {
this.classImportance = null; this.classImportance = null;
} }
} }
public Map<String, Double> getClassImportance() { public List<ClassImportance> getClassImportance() {
return classImportance; return classImportance;
} }
@ -92,7 +102,11 @@ public class FeatureImportance implements Writeable, ToXContentObject {
out.writeDouble(this.importance); out.writeDouble(this.importance);
out.writeBoolean(this.classImportance != null); out.writeBoolean(this.classImportance != null);
if (this.classImportance != null) { if (this.classImportance != null) {
out.writeMap(this.classImportance, StreamOutput::writeString, StreamOutput::writeDouble); if (out.getVersion().before(Version.V_7_10_0)) {
out.writeMap(ClassImportance.toMap(this.classImportance), StreamOutput::writeString, StreamOutput::writeDouble);
} else {
out.writeList(this.classImportance);
}
} }
} }
@ -101,7 +115,7 @@ public class FeatureImportance implements Writeable, ToXContentObject {
map.put(FEATURE_NAME, featureName); map.put(FEATURE_NAME, featureName);
map.put(IMPORTANCE, importance); map.put(IMPORTANCE, importance);
if (classImportance != null) { if (classImportance != null) {
classImportance.forEach(map::put); map.put(CLASSES, classImportance.stream().map(ClassImportance::toMap).collect(Collectors.toList()));
} }
return map; return map;
} }
@ -112,11 +126,7 @@ public class FeatureImportance implements Writeable, ToXContentObject {
builder.field(FEATURE_NAME, featureName); builder.field(FEATURE_NAME, featureName);
builder.field(IMPORTANCE, importance); builder.field(IMPORTANCE, importance);
if (classImportance != null && classImportance.isEmpty() == false) { if (classImportance != null && classImportance.isEmpty() == false) {
builder.startObject(CLASS_IMPORTANCE); builder.field(CLASSES, classImportance);
for (Map.Entry<String, Double> entry : classImportance.entrySet()) {
builder.field(entry.getKey(), entry.getValue());
}
builder.endObject();
} }
builder.endObject(); builder.endObject();
return builder; return builder;
@ -136,4 +146,92 @@ public class FeatureImportance implements Writeable, ToXContentObject {
public int hashCode() { public int hashCode() {
return Objects.hash(featureName, importance, classImportance); return Objects.hash(featureName, importance, classImportance);
} }
public static class ClassImportance implements Writeable, ToXContentObject {
static final String CLASS_NAME = "class_name";
private static final ConstructingObjectParser<ClassImportance, Void> PARSER =
new ConstructingObjectParser<>("feature_importance_class_importance",
a -> new ClassImportance((String) a[0], (Double) a[1])
);
static {
PARSER.declareString(constructorArg(), new ParseField(CLASS_NAME));
PARSER.declareDouble(constructorArg(), new ParseField(FeatureImportance.IMPORTANCE));
}
private static ClassImportance fromMapEntry(Map.Entry<String, Double> entry) {
return new ClassImportance(entry.getKey(), entry.getValue());
}
private static List<ClassImportance> fromMap(Map<String, Double> classImportanceMap) {
return classImportanceMap.entrySet().stream().map(ClassImportance::fromMapEntry).collect(Collectors.toList());
}
private static Map<String, Double> toMap(List<ClassImportance> importances) {
return importances.stream().collect(Collectors.toMap(i -> i.className, i -> i.importance));
}
public static ClassImportance fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}
private final String className;
private final double importance;
public ClassImportance(String className, double importance) {
this.className = className;
this.importance = importance;
}
public ClassImportance(StreamInput in) throws IOException {
this.className = in.readString();
this.importance = in.readDouble();
}
public String getClassName() {
return className;
}
public double getImportance() {
return importance;
}
public Map<String, Object> toMap() {
Map<String, Object> map = new LinkedHashMap<>();
map.put(CLASS_NAME, className);
map.put(IMPORTANCE, importance);
return map;
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeString(className);
out.writeDouble(importance);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(CLASS_NAME, className);
builder.field(IMPORTANCE, importance);
builder.endObject();
return builder;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
ClassImportance that = (ClassImportance) o;
return Double.compare(that.importance, importance) == 0 &&
Objects.equals(className, that.className);
}
@Override
public int hashCode() {
return Objects.hash(className, importance);
}
}
} }

View File

@ -15,7 +15,6 @@ import java.util.ArrayList;
import java.util.Collections; import java.util.Collections;
import java.util.Comparator; import java.util.Comparator;
import java.util.HashMap; import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List; import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.stream.Collectors; import java.util.stream.Collectors;
@ -139,11 +138,13 @@ public final class InferenceHelpers {
if (v.length == 1) { if (v.length == 1) {
importances.add(FeatureImportance.forRegression(k, v[0])); importances.add(FeatureImportance.forRegression(k, v[0]));
} else { } else {
Map<String, Double> classImportance = new LinkedHashMap<>(v.length, 1.0f); List<FeatureImportance.ClassImportance> classImportance = new ArrayList<>(v.length);
// If the classificationLabels exist, their length must match leaf_value length // If the classificationLabels exist, their length must match leaf_value length
assert classificationLabels == null || classificationLabels.size() == v.length; assert classificationLabels == null || classificationLabels.size() == v.length;
for (int i = 0; i < v.length; i++) { for (int i = 0; i < v.length; i++) {
classImportance.put(classificationLabels == null ? String.valueOf(i) : classificationLabels.get(i), v[i]); classImportance.add(new FeatureImportance.ClassImportance(
classificationLabels == null ? String.valueOf(i) : classificationLabels.get(i),
v[i]));
} }
importances.add(FeatureImportance.forClassification(k, classImportance)); importances.add(FeatureImportance.forClassification(k, classImportance));
} }

View File

@ -261,12 +261,12 @@ public class ClassificationTests extends AbstractBWCSerializationTestCase<Classi
public void testGetExplicitlyMappedFields() { public void testGetExplicitlyMappedFields() {
assertThat(new Classification("foo").getExplicitlyMappedFields(null, "results"), assertThat(new Classification("foo").getExplicitlyMappedFields(null, "results"),
equalTo(Collections.singletonMap("results.feature_importance", MapUtils.featureImportanceMapping()))); equalTo(Collections.singletonMap("results.feature_importance", MapUtils.classificationFeatureImportanceMapping())));
assertThat(new Classification("foo").getExplicitlyMappedFields(Collections.emptyMap(), "results"), assertThat(new Classification("foo").getExplicitlyMappedFields(Collections.emptyMap(), "results"),
equalTo(Collections.singletonMap("results.feature_importance", MapUtils.featureImportanceMapping()))); equalTo(Collections.singletonMap("results.feature_importance", MapUtils.classificationFeatureImportanceMapping())));
assertThat( assertThat(
new Classification("foo").getExplicitlyMappedFields(Collections.singletonMap("foo", "not_a_map"), "results"), new Classification("foo").getExplicitlyMappedFields(Collections.singletonMap("foo", "not_a_map"), "results"),
equalTo(Collections.singletonMap("results.feature_importance", MapUtils.featureImportanceMapping()))); equalTo(Collections.singletonMap("results.feature_importance", MapUtils.classificationFeatureImportanceMapping())));
Map<String, Object> explicitlyMappedFields = new Classification("foo").getExplicitlyMappedFields( Map<String, Object> explicitlyMappedFields = new Classification("foo").getExplicitlyMappedFields(
Collections.singletonMap("foo", Collections.singletonMap("bar", "baz")), Collections.singletonMap("foo", Collections.singletonMap("bar", "baz")),
"results"); "results");
@ -274,7 +274,7 @@ public class ClassificationTests extends AbstractBWCSerializationTestCase<Classi
allOf( allOf(
hasEntry("results.foo_prediction", Collections.singletonMap("bar", "baz")), hasEntry("results.foo_prediction", Collections.singletonMap("bar", "baz")),
hasEntry("results.top_classes.class_name", Collections.singletonMap("bar", "baz")))); hasEntry("results.top_classes.class_name", Collections.singletonMap("bar", "baz"))));
assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.featureImportanceMapping())); assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.classificationFeatureImportanceMapping()));
explicitlyMappedFields = new Classification("foo").getExplicitlyMappedFields( explicitlyMappedFields = new Classification("foo").getExplicitlyMappedFields(
new HashMap<String, Object>() {{ new HashMap<String, Object>() {{
@ -289,7 +289,7 @@ public class ClassificationTests extends AbstractBWCSerializationTestCase<Classi
allOf( allOf(
hasEntry("results.foo_prediction", Collections.singletonMap("type", "long")), hasEntry("results.foo_prediction", Collections.singletonMap("type", "long")),
hasEntry("results.top_classes.class_name", Collections.singletonMap("type", "long")))); hasEntry("results.top_classes.class_name", Collections.singletonMap("type", "long"))));
assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.featureImportanceMapping())); assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.classificationFeatureImportanceMapping()));
assertThat( assertThat(
new Classification("foo").getExplicitlyMappedFields( new Classification("foo").getExplicitlyMappedFields(
@ -298,7 +298,7 @@ public class ClassificationTests extends AbstractBWCSerializationTestCase<Classi
put("path", "missing"); put("path", "missing");
}}), }}),
"results"), "results"),
equalTo(Collections.singletonMap("results.feature_importance", MapUtils.featureImportanceMapping()))); equalTo(Collections.singletonMap("results.feature_importance", MapUtils.classificationFeatureImportanceMapping())));
} }
public void testToXContent_GivenVersionBeforeRandomizeSeedWasIntroduced() throws IOException { public void testToXContent_GivenVersionBeforeRandomizeSeedWasIntroduced() throws IOException {

View File

@ -206,7 +206,7 @@ public class RegressionTests extends AbstractBWCSerializationTestCase<Regression
public void testGetExplicitlyMappedFields() { public void testGetExplicitlyMappedFields() {
Map<String, Object> explicitlyMappedFields = new Regression("foo").getExplicitlyMappedFields(null, "results"); Map<String, Object> explicitlyMappedFields = new Regression("foo").getExplicitlyMappedFields(null, "results");
assertThat(explicitlyMappedFields, hasEntry("results.foo_prediction", Collections.singletonMap("type", "double"))); assertThat(explicitlyMappedFields, hasEntry("results.foo_prediction", Collections.singletonMap("type", "double")));
assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.featureImportanceMapping())); assertThat(explicitlyMappedFields, hasEntry("results.feature_importance", MapUtils.regressionFeatureImportanceMapping()));
} }
public void testGetStateDocId() { public void testGetStateDocId() {

View File

@ -152,8 +152,15 @@ public class ClassificationInferenceResultsTests extends AbstractWireSerializing
FeatureImportance importance = importanceList.get(i); FeatureImportance importance = importanceList.get(i);
assertThat(objectMap.get("feature_name"), equalTo(importance.getFeatureName())); assertThat(objectMap.get("feature_name"), equalTo(importance.getFeatureName()));
assertThat(objectMap.get("importance"), equalTo(importance.getImportance())); assertThat(objectMap.get("importance"), equalTo(importance.getImportance()));
@SuppressWarnings("unchecked")
List<Map<String, Object>> classImportances = (List<Map<String, Object>>)objectMap.get("classes");
if (importance.getClassImportance() != null) { if (importance.getClassImportance() != null) {
importance.getClassImportance().forEach((k, v) -> assertThat(objectMap.get(k), equalTo(v))); for (int j = 0; j < importance.getClassImportance().size(); j++) {
Map<String, Object> classMap = classImportances.get(j);
FeatureImportance.ClassImportance classImportance = importance.getClassImportance().get(j);
assertThat(classMap.get("class_name"), equalTo(classImportance.getClassName()));
assertThat(classMap.get("importance"), equalTo(classImportance.getImportance()));
}
} }
} }
} }
@ -205,7 +212,7 @@ public class ClassificationInferenceResultsTests extends AbstractWireSerializing
expected = "{\"predicted_value\":\"label1\",\"prediction_probability\":1.0,\"prediction_score\":1.0}"; expected = "{\"predicted_value\":\"label1\",\"prediction_probability\":1.0,\"prediction_score\":1.0}";
assertEquals(expected, stringRep); assertEquals(expected, stringRep);
FeatureImportance fi = new FeatureImportance("foo", 1.0, Collections.emptyMap()); FeatureImportance fi = new FeatureImportance("foo", 1.0, Collections.emptyList());
TopClassEntry tp = new TopClassEntry("class", 1.0, 1.0); TopClassEntry tp = new TopClassEntry("class", 1.0, 1.0);
result = new ClassificationInferenceResults(1.0, "label1", Collections.singletonList(tp), result = new ClassificationInferenceResults(1.0, "label1", Collections.singletonList(tp),
Collections.singletonList(fi), config, Collections.singletonList(fi), config,

View File

@ -10,7 +10,6 @@ import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractSerializingTestCase; import org.elasticsearch.test.AbstractSerializingTestCase;
import java.io.IOException; import java.io.IOException;
import java.util.function.Function;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import java.util.stream.Stream; import java.util.stream.Stream;
@ -29,7 +28,8 @@ public class FeatureImportanceTests extends AbstractSerializingTestCase<FeatureI
randomAlphaOfLength(10), randomAlphaOfLength(10),
Stream.generate(() -> randomAlphaOfLength(10)) Stream.generate(() -> randomAlphaOfLength(10))
.limit(randomLongBetween(2, 10)) .limit(randomLongBetween(2, 10))
.collect(Collectors.toMap(Function.identity(), (k) -> randomDoubleBetween(-10, 10, false)))); .map(name -> new FeatureImportance.ClassImportance(name, randomDoubleBetween(-10, 10, false)))
.collect(Collectors.toList()));
} }
@Override @Override

View File

@ -92,7 +92,7 @@ public class RegressionInferenceResultsTests extends AbstractWireSerializingTest
String expected = "{\"" + resultsField + "\":1.0}"; String expected = "{\"" + resultsField + "\":1.0}";
assertEquals(expected, stringRep); assertEquals(expected, stringRep);
FeatureImportance fi = new FeatureImportance("foo", 1.0, Collections.emptyMap()); FeatureImportance fi = new FeatureImportance("foo", 1.0, Collections.emptyList());
result = new RegressionInferenceResults(1.0, resultsField, Collections.singletonList(fi)); result = new RegressionInferenceResults(1.0, resultsField, Collections.singletonList(fi));
stringRep = Strings.toString(result); stringRep = Strings.toString(result);
expected = "{\"" + resultsField + "\":1.0,\"feature_importance\":[{\"feature_name\":\"foo\",\"importance\":1.0}]}"; expected = "{\"" + resultsField + "\":1.0,\"feature_importance\":[{\"feature_name\":\"foo\",\"importance\":1.0}]}";