Refactor GeoShapeIndexer by extracting polygon / line decomposers (#52422) (#52506)

Refactor GeoShapeIndexer. We extract Polygon and Line decomposers which are in charge of breaking a shape around the dateline if needed.
This commit is contained in:
Ignacio Vera 2020-02-19 12:04:29 +01:00 committed by GitHub
parent 9d40277d4c
commit 8d2261fe47
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 910 additions and 818 deletions

View File

@ -0,0 +1,157 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.common.geo;
import org.elasticsearch.geometry.Line;
import org.elasticsearch.geometry.MultiLine;
import java.util.Arrays;
import java.util.List;
import static org.elasticsearch.common.geo.GeoUtils.normalizePoint;
/**
* Splits lines by datelines.
*/
public class GeoLineDecomposer {
private static final double DATELINE = 180;
private GeoLineDecomposer() {
// no instances
}
public static void decomposeMultiLine(MultiLine multiLine, List<Line> collector) {
for (Line line : multiLine) {
decomposeLine(line, collector);
}
}
/**
* Splits the specified line by datelines and adds them to the supplied lines array
*/
public static void decomposeLine(Line line, List<Line> collector) {
if (line.isEmpty()) {
return;
}
double[] lons = new double[line.length()];
double[] lats = new double[lons.length];
for (int i = 0; i < lons.length; i++) {
double[] lonLat = new double[] {line.getX(i), line.getY(i)};
normalizePoint(lonLat,false, true);
lons[i] = lonLat[0];
lats[i] = lonLat[1];
}
decompose(lons, lats, collector);
}
/**
* Decompose a linestring given as array of coordinates by anti-meridian.
*/
private static void decompose(double[] lons, double[] lats, List<Line> collector) {
int offset = 0;
double shift = 0;
int i = 1;
while (i < lons.length) {
// Check where the line is going east (+1), west (-1) or directly north/south (0)
int direction = Double.compare(lons[i], lons[i - 1]);
double newShift = calculateShift(lons[i - 1], direction < 0);
// first point lon + shift is always between -180.0 and +180.0
if (i - offset > 1 && newShift != shift) {
// Jumping over anti-meridian - we need to start a new segment
double[] partLons = Arrays.copyOfRange(lons, offset, i);
double[] partLats = Arrays.copyOfRange(lats, offset, i);
performShift(shift, partLons);
shift = newShift;
offset = i - 1;
collector.add(new Line(partLons, partLats));
} else {
// Check if new point intersects with anti-meridian
shift = newShift;
double t = intersection(lons[i - 1] + shift, lons[i] + shift);
if (Double.isNaN(t) == false) {
// Found intersection, all previous segments are now part of the linestring
double[] partLons = Arrays.copyOfRange(lons, offset, i + 1);
double[] partLats = Arrays.copyOfRange(lats, offset, i + 1);
lons[i - 1] = partLons[partLons.length - 1] = (direction > 0 ? DATELINE : -DATELINE) - shift;
lats[i - 1] = partLats[partLats.length - 1] = lats[i - 1] + (lats[i] - lats[i - 1]) * t;
performShift(shift, partLons);
offset = i - 1;
collector.add(new Line(partLons, partLats));
} else {
// Didn't find intersection - just continue checking
i++;
}
}
}
if (offset == 0) {
performShift(shift, lons);
collector.add(new Line(lons, lats));
} else if (offset < lons.length - 1) {
double[] partLons = Arrays.copyOfRange(lons, offset, lons.length);
double[] partLats = Arrays.copyOfRange(lats, offset, lats.length);
performShift(shift, partLons);
collector.add(new Line(partLons, partLats));
}
}
/**
* shifts all coordinates by shift
*/
private static void performShift(double shift, double[] lons) {
if (shift != 0) {
for (int j = 0; j < lons.length; j++) {
lons[j] = lons[j] + shift;
}
}
}
/**
* Calculates how many degres the given longitude needs to be moved east in order to be in -180 - +180. +180 is inclusive only
* if include180 is true.
*/
private static double calculateShift(double lon, boolean include180) {
double normalized = GeoUtils.centeredModulus(lon, 360);
double shift = Math.round(normalized - lon);
if (!include180 && normalized == 180.0) {
shift = shift - 360;
}
return shift;
}
/**
* Checks it the segment from p1x to p2x intersects with anti-meridian
* p1x must be with in -180 +180 range
*/
private static double intersection(double p1x, double p2x) {
if (p1x == p2x) {
return Double.NaN;
}
final double t = ((p1x < p2x ? DATELINE : -DATELINE) - p1x) / (p2x - p1x);
if (t >= 1 || t <= 0) {
return Double.NaN;
} else {
return t;
}
}
}

View File

@ -0,0 +1,735 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.common.geo;
import org.elasticsearch.common.collect.Tuple;
import org.elasticsearch.geometry.LinearRing;
import org.elasticsearch.geometry.MultiPolygon;
import org.elasticsearch.geometry.Point;
import org.elasticsearch.geometry.Polygon;
import org.locationtech.spatial4j.exception.InvalidShapeException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;
import static org.apache.lucene.geo.GeoUtils.orient;
import static org.elasticsearch.common.geo.GeoUtils.normalizeLat;
import static org.elasticsearch.common.geo.GeoUtils.normalizeLon;
/**
* Splits polygons by datelines.
*/
public class GeoPolygonDecomposer {
private static final double DATELINE = 180;
private static final Comparator<Edge> INTERSECTION_ORDER = Comparator.comparingDouble(o -> o.intersect.getY());
private GeoPolygonDecomposer() {
// no instances
}
public static void decomposeMultiPolygon(MultiPolygon multiPolygon, boolean orientation, List<Polygon> collector) {
for (Polygon polygon : multiPolygon) {
decomposePolygon(polygon, orientation, collector);
}
}
/**
* Splits the specified polygon by datelines and adds them to the supplied polygon array
*/
public static void decomposePolygon(Polygon polygon, boolean orientation, List<Polygon> collector) {
if (polygon.isEmpty()) {
return;
}
int numEdges = polygon.getPolygon().length() - 1; // Last point is repeated
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
numEdges += polygon.getHole(i).length() - 1;
validateHole(polygon.getPolygon(), polygon.getHole(i));
}
Edge[] edges = new Edge[numEdges];
Edge[] holeComponents = new Edge[polygon.getNumberOfHoles()];
final AtomicBoolean translated = new AtomicBoolean(false);
int offset = createEdges(0, orientation, polygon.getPolygon(), null, edges, 0, translated);
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
int length = createEdges(i + 1, orientation, polygon.getPolygon(), polygon.getHole(i), edges, offset, translated);
holeComponents[i] = edges[offset];
offset += length;
}
int numHoles = holeComponents.length;
numHoles = merge(edges, 0, intersections(+DATELINE, edges), holeComponents, numHoles);
numHoles = merge(edges, 0, intersections(-DATELINE, edges), holeComponents, numHoles);
compose(edges, holeComponents, numHoles, collector);
}
private static void validateHole(LinearRing shell, LinearRing hole) {
Set<Point> exterior = new HashSet<>();
Set<Point> interior = new HashSet<>();
for (int i = 0; i < shell.length(); i++) {
exterior.add(new Point(shell.getX(i), shell.getY(i)));
}
for (int i = 0; i < hole.length(); i++) {
interior.add(new Point(hole.getX(i), hole.getY(i)));
}
exterior.retainAll(interior);
if (exterior.size() >= 2) {
throw new IllegalArgumentException("Invalid polygon, interior cannot share more than one point with the exterior");
}
}
private static Point position(Point p1, Point p2, double position) {
if (position == 0) {
return p1;
} else if (position == 1) {
return p2;
} else {
final double x = p1.getX() + position * (p2.getX() - p1.getX());
final double y = p1.getY() + position * (p2.getY() - p1.getY());
return new Point(x, y);
}
}
private static int createEdges(int component, boolean orientation, LinearRing shell,
LinearRing hole, Edge[] edges, int offset, final AtomicBoolean translated) {
// inner rings (holes) have an opposite direction than the outer rings
// XOR will invert the orientation for outer ring cases (Truth Table:, T/T = F, T/F = T, F/T = T, F/F = F)
boolean direction = (component == 0 ^ orientation);
// set the points array accordingly (shell or hole)
Point[] points = (hole != null) ? points(hole) : points(shell);
ring(component, direction, orientation == false, points, 0, edges, offset, points.length - 1, translated);
return points.length - 1;
}
private static Point[] points(LinearRing linearRing) {
Point[] points = new Point[linearRing.length()];
for (int i = 0; i < linearRing.length(); i++) {
points[i] = new Point(linearRing.getX(i), linearRing.getY(i));
}
return points;
}
/**
* Create a connected list of a list of coordinates
*
* @param points array of point
* @param offset index of the first point
* @param length number of points
* @return Array of edges
*/
private static Edge[] ring(int component, boolean direction, boolean handedness,
Point[] points, int offset, Edge[] edges, int toffset, int length, final AtomicBoolean translated) {
boolean orientation = getOrientation(points, offset, length);
// OGC requires shell as ccw (Right-Handedness) and holes as cw (Left-Handedness)
// since GeoJSON doesn't specify (and doesn't need to) GEO core will assume OGC standards
// thus if orientation is computed as cw, the logic will translate points across dateline
// and convert to a right handed system
// compute the bounding box and calculate range
double[] range = range(points, offset, length);
final double rng = range[1] - range[0];
// translate the points if the following is true
// 1. shell orientation is cw and range is greater than a hemisphere (180 degrees) but not spanning 2 hemispheres
// (translation would result in a collapsed poly)
// 2. the shell of the candidate hole has been translated (to preserve the coordinate system)
boolean incorrectOrientation = component == 0 && handedness != orientation;
if ((incorrectOrientation && (rng > DATELINE && rng != 2 * DATELINE)) || (translated.get() && component != 0)) {
translate(points);
// flip the translation bit if the shell is being translated
if (component == 0) {
translated.set(true);
}
// correct the orientation post translation (ccw for shell, cw for holes)
if (component == 0 || (component != 0 && handedness == orientation)) {
orientation = !orientation;
}
}
return concat(component, direction ^ orientation, points, offset, edges, toffset, length);
}
/**
* Transforms coordinates in the eastern hemisphere (-180:0) to a (180:360) range
*/
private static void translate(Point[] points) {
for (int i = 0; i < points.length; i++) {
if (points[i].getX() < 0) {
points[i] = new Point(points[i].getX() + 2 * DATELINE, points[i].getY());
}
}
}
/**
* @return whether the points are clockwise (true) or anticlockwise (false)
*/
private static boolean getOrientation(Point[] points, int offset, int length) {
// calculate the direction of the points: find the southernmost point
// and check its neighbors orientation.
final int top = top(points, offset, length);
final int prev = (top + length - 1) % length;
final int next = (top + 1) % length;
final int determinantSign = orient(
points[offset + prev].getX(), points[offset + prev].getY(),
points[offset + top].getX(), points[offset + top].getY(),
points[offset + next].getX(), points[offset + next].getY());
if (determinantSign == 0) {
// Points are collinear, but `top` is not in the middle if so, so the edges either side of `top` are intersecting.
throw new InvalidShapeException("Cannot determine orientation: edges adjacent to ("
+ points[offset + top].getX() + "," + points[offset + top].getY() + ") coincide");
}
return determinantSign < 0;
}
/**
* @return the (offset) index of the point that is furthest west amongst
* those points that are the furthest south in the set.
*/
private static int top(Point[] points, int offset, int length) {
int top = 0; // we start at 1 here since top points to 0
for (int i = 1; i < length; i++) {
if (points[offset + i].getY() < points[offset + top].getY()) {
top = i;
} else if (points[offset + i].getY() == points[offset + top].getY()) {
if (points[offset + i].getX() < points[offset + top].getX()) {
top = i;
}
}
}
return top;
}
private static double[] range(Point[] points, int offset, int length) {
double minX = points[0].getX();
double maxX = minX;
double minY = points[0].getY();
double maxY = minY;
// compute the bounding coordinates (@todo: cleanup brute force)
for (int i = 1; i < length; ++i) {
Point point = points[offset + i];
if (point.getX() < minX) {
minX = point.getX();
}
if (point.getX() > maxX) {
maxX = point.getX();
}
if (point.getY() < minY) {
minY = point.getY();
}
if (point.getY() > maxY) {
maxY = point.getY();
}
}
return new double[]{minX, maxX, minY, maxY};
}
private static int merge(Edge[] intersections, int offset, int length, Edge[] holes, int numHoles) {
// Intersections appear pairwise. On the first edge the inner of
// of the polygon is entered. On the second edge the outer face
// is entered. Other kinds of intersections are discard by the
// intersection function
for (int i = 0; i < length; i += 2) {
Edge e1 = intersections[offset + i + 0];
Edge e2 = intersections[offset + i + 1];
// If two segments are connected maybe a hole must be deleted
// Since Edges of components appear pairwise we need to check
// the second edge only (the first edge is either polygon or
// already handled)
if (e2.component > 0) {
//TODO: Check if we could save the set null step
numHoles--;
holes[e2.component - 1] = holes[numHoles];
holes[numHoles] = null;
}
// only connect edges if intersections are pairwise
// 1. per the comment above, the edge array is sorted by y-value of the intersection
// with the dateline. Two edges have the same y intercept when they cross the
// dateline thus they appear sequentially (pairwise) in the edge array. Two edges
// do not have the same y intercept when we're forming a multi-poly from a poly
// that wraps the dateline (but there are 2 ordered intercepts).
// The connect method creates a new edge for these paired edges in the linked list.
// For boundary conditions (e.g., intersect but not crossing) there is no sibling edge
// to connect. Thus the first logic check enforces the pairwise rule
// 2. the second logic check ensures the two candidate edges aren't already connected by an
// existing edge along the dateline - this is necessary due to a logic change in
// ShapeBuilder.intersection that computes dateline edges as valid intersect points
// in support of OGC standards
if (e1.intersect != Edge.MAX_COORDINATE && e2.intersect != Edge.MAX_COORDINATE
&& !(e1.next.next.coordinate.equals(e2.coordinate) && Math.abs(e1.next.coordinate.getX()) == DATELINE
&& Math.abs(e2.coordinate.getX()) == DATELINE)) {
connect(e1, e2);
}
}
return numHoles;
}
private static void connect(Edge in, Edge out) {
assert in != null && out != null;
assert in != out;
// Connecting two Edges by inserting the point at
// dateline intersection and connect these by adding
// two edges between this points. One per direction
if (in.intersect != in.next.coordinate) {
// NOTE: the order of the object creation is crucial here! Don't change it!
// first edge has no point on dateline
Edge e1 = new Edge(in.intersect, in.next);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e2 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e2, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = new Edge(out.intersect, e1, out.intersect);
} else if (in.next != out && in.coordinate != out.intersect) {
// first edge intersects with dateline
Edge e2 = new Edge(out.intersect, in.next, out.intersect);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e1 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e1, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = e2;
}
}
/**
* Concatenate a set of points to a polygon
*
* @param component component id of the polygon
* @param direction direction of the ring
* @param points list of points to concatenate
* @param pointOffset index of the first point
* @param edges Array of edges to write the result to
* @param edgeOffset index of the first edge in the result
* @param length number of points to use
* @return the edges creates
*/
private static Edge[] concat(int component, boolean direction, Point[] points, final int pointOffset, Edge[] edges,
final int edgeOffset, int length) {
assert edges.length >= length + edgeOffset;
assert points.length >= length + pointOffset;
edges[edgeOffset] = new Edge(new Point(points[pointOffset].getX(), points[pointOffset].getY()), null);
for (int i = 1; i < length; i++) {
Point nextPoint = new Point(points[pointOffset + i].getX(), points[pointOffset + i].getY());
if (direction) {
edges[edgeOffset + i] = new Edge(nextPoint, edges[edgeOffset + i - 1]);
edges[edgeOffset + i].component = component;
} else if (!edges[edgeOffset + i - 1].coordinate.equals(nextPoint)) {
edges[edgeOffset + i - 1].next = edges[edgeOffset + i] = new Edge(nextPoint, null);
edges[edgeOffset + i - 1].component = component;
} else {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: (" + nextPoint + ")");
}
}
if (direction) {
edges[edgeOffset].setNext(edges[edgeOffset + length - 1]);
edges[edgeOffset].component = component;
} else {
edges[edgeOffset + length - 1].setNext(edges[edgeOffset]);
edges[edgeOffset + length - 1].component = component;
}
return edges;
}
/**
* Calculate all intersections of line segments and a vertical line. The
* Array of edges will be ordered asc by the y-coordinate of the
* intersections of edges.
*
* @param dateline x-coordinate of the dateline
* @param edges set of edges that may intersect with the dateline
* @return number of intersecting edges
*/
private static int intersections(double dateline, Edge[] edges) {
int numIntersections = 0;
assert !Double.isNaN(dateline);
for (int i = 0; i < edges.length; i++) {
Point p1 = edges[i].coordinate;
Point p2 = edges[i].next.coordinate;
assert !Double.isNaN(p2.getX()) && !Double.isNaN(p1.getX());
edges[i].intersect = Edge.MAX_COORDINATE;
double position = intersection(p1.getX(), p2.getX(), dateline);
if (!Double.isNaN(position)) {
edges[i].intersection(position);
numIntersections++;
}
}
Arrays.sort(edges, INTERSECTION_ORDER);
return numIntersections;
}
private static Edge[] edges(Edge[] edges, int numHoles, List<List<Point[]>> components) {
ArrayList<Edge> mainEdges = new ArrayList<>(edges.length);
for (int i = 0; i < edges.length; i++) {
if (edges[i].component >= 0) {
double[] partitionPoint = new double[3];
int length = component(edges[i], -(components.size() + numHoles + 1), mainEdges, partitionPoint);
List<Point[]> component = new ArrayList<>();
component.add(coordinates(edges[i], new Point[length + 1], partitionPoint));
components.add(component);
}
}
return mainEdges.toArray(new Edge[mainEdges.size()]);
}
private static void compose(Edge[] edges, Edge[] holes, int numHoles, List<Polygon> collector) {
final List<List<Point[]>> components = new ArrayList<>();
assign(holes, holes(holes, numHoles), numHoles, edges(edges, numHoles, components), components);
buildPoints(components, collector);
}
private static void assign(Edge[] holes, Point[][] points, int numHoles, Edge[] edges, List<List<Point[]>> components) {
// Assign Hole to related components
// To find the new component the hole belongs to all intersections of the
// polygon edges with a vertical line are calculated. This vertical line
// is an arbitrary point of the hole. The polygon edge next to this point
// is part of the polygon the hole belongs to.
for (int i = 0; i < numHoles; i++) {
// To do the assignment we assume (and later, elsewhere, check) that each hole is within
// a single component, and the components do not overlap. Based on this assumption, it's
// enough to find a component that contains some vertex of the hole, and
// holes[i].coordinate is such a vertex, so we use that one.
// First, we sort all the edges according to their order of intersection with the line
// of longitude through holes[i].coordinate, in order from south to north. Edges that do
// not intersect this line are sorted to the end of the array and of no further interest
// here.
final Edge current = new Edge(holes[i].coordinate, holes[i].next);
current.intersect = current.coordinate;
final int intersections = intersections(current.coordinate.getX(), edges);
if (intersections == 0) {
// There were no edges that intersect the line of longitude through
// holes[i].coordinate, so there's no way this hole is within the polygon.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
// Next we do a binary search to find the position of holes[i].coordinate in the array.
// The binary search returns the index of an exact match, or (-insertionPoint - 1) if
// the vertex lies between the intersections of edges[insertionPoint] and
// edges[insertionPoint+1]. The latter case is vastly more common.
final int pos;
boolean sharedVertex = false;
if (((pos = Arrays.binarySearch(edges, 0, intersections, current, INTERSECTION_ORDER)) >= 0)
&& !(sharedVertex = (edges[pos].intersect.equals(current.coordinate)))) {
// The binary search returned an exact match, but we checked again using compareTo()
// and it didn't match after all.
// TODO Can this actually happen? Needs a test to exercise it, or else needs to be removed.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
final int index;
if (sharedVertex) {
// holes[i].coordinate lies exactly on an edge.
index = 0; // TODO Should this be pos instead of 0? This assigns exact matches to the southernmost component.
} else if (pos == -1) {
// holes[i].coordinate is strictly south of all intersections. Assign it to the
// southernmost component, and allow later validation to spot that it is not
// entirely within the chosen component.
index = 0;
} else {
// holes[i].coordinate is strictly north of at least one intersection. Assign it to
// the component immediately to its south.
index = -(pos + 2);
}
final int component = -edges[index].component - numHoles - 1;
components.get(component).add(points[i]);
}
}
/**
* This method sets the component id of all edges in a ring to a given id and shifts the
* coordinates of this component according to the dateline
*
* @param edge An arbitrary edge of the component
* @param id id to apply to the component
* @param edges a list of edges to which all edges of the component will be added (could be <code>null</code>)
* @return number of edges that belong to this component
*/
private static int component(final Edge edge, final int id, final ArrayList<Edge> edges, double[] partitionPoint) {
// find a coordinate that is not part of the dateline
Edge any = edge;
while (any.coordinate.getX() == +DATELINE || any.coordinate.getX() == -DATELINE) {
if ((any = any.next) == edge) {
break;
}
}
double shiftOffset = any.coordinate.getX() > DATELINE ? DATELINE : (any.coordinate.getX() < -DATELINE ? -DATELINE : 0);
// run along the border of the component, collect the
// edges, shift them according to the dateline and
// update the component id
int length = 0, connectedComponents = 0;
// if there are two connected components, splitIndex keeps track of where to split the edge array
// start at 1 since the source coordinate is shared
int splitIndex = 1;
Edge current = edge;
Edge prev = edge;
// bookkeep the source and sink of each visited coordinate
HashMap<Point, Tuple<Edge, Edge>> visitedEdge = new HashMap<>();
do {
current.coordinate = shift(current.coordinate, shiftOffset);
current.component = id;
if (edges != null) {
// found a closed loop - we have two connected components so we need to slice into two distinct components
if (visitedEdge.containsKey(current.coordinate)) {
partitionPoint[0] = current.coordinate.getX();
partitionPoint[1] = current.coordinate.getY();
if (connectedComponents > 0 && current.next != edge) {
throw new InvalidShapeException("Shape contains more than one shared point");
}
// a negative id flags the edge as visited for the edges(...) method.
// since we're splitting connected components, we want the edges method to visit
// the newly separated component
final int visitID = -id;
Edge firstAppearance = visitedEdge.get(current.coordinate).v2();
// correct the graph pointers by correcting the 'next' pointer for both the
// first appearance and this appearance of the edge
Edge temp = firstAppearance.next;
firstAppearance.next = current.next;
current.next = temp;
current.component = visitID;
// backtrack until we get back to this coordinate, setting the visit id to
// a non-visited value (anything positive)
do {
prev.component = visitID;
prev = visitedEdge.get(prev.coordinate).v1();
++splitIndex;
} while (!current.coordinate.equals(prev.coordinate));
++connectedComponents;
} else {
visitedEdge.put(current.coordinate, new Tuple<Edge, Edge>(prev, current));
}
edges.add(current);
prev = current;
}
length++;
} while (connectedComponents == 0 && (current = current.next) != edge);
return (splitIndex != 1) ? length - splitIndex : length;
}
/**
* Compute all coordinates of a component
*
* @param component an arbitrary edge of the component
* @param coordinates Array of coordinates to write the result to
* @return the coordinates parameter
*/
private static Point[] coordinates(Edge component, Point[] coordinates, double[] partitionPoint) {
for (int i = 0; i < coordinates.length; i++) {
coordinates[i] = (component = component.next).coordinate;
}
// First and last coordinates must be equal
if (coordinates[0].equals(coordinates[coordinates.length - 1]) == false) {
if (partitionPoint[2] == Double.NaN) {
throw new InvalidShapeException("Self-intersection at or near point ["
+ partitionPoint[0] + "," + partitionPoint[1] + "]");
} else {
throw new InvalidShapeException("Self-intersection at or near point ["
+ partitionPoint[0] + "," + partitionPoint[1] + "," + partitionPoint[2] + "]");
}
}
return coordinates;
}
private static void buildPoints(List<List<Point[]>> components, List<Polygon> collector) {
for (List<Point[]> component : components) {
collector.add(buildPolygon(component));
}
}
private static Polygon buildPolygon(List<Point[]> polygon) {
List<LinearRing> holes;
Point[] shell = polygon.get(0);
if (polygon.size() > 1) {
holes = new ArrayList<>(polygon.size() - 1);
for (int i = 1; i < polygon.size(); ++i) {
Point[] coords = polygon.get(i);
//We do not have holes on the dateline as they get eliminated
//when breaking the polygon around it.
double[] x = new double[coords.length];
double[] y = new double[coords.length];
for (int c = 0; c < coords.length; ++c) {
x[c] = normalizeLon(coords[c].getX());
y[c] = normalizeLat(coords[c].getY());
}
holes.add(new LinearRing(x, y));
}
} else {
holes = Collections.emptyList();
}
double[] x = new double[shell.length];
double[] y = new double[shell.length];
for (int i = 0; i < shell.length; ++i) {
//Lucene Tessellator treats different +180 and -180 and we should keep the sign.
//normalizeLon method excludes -180.
x[i] = normalizeLonMinus180Inclusive(shell[i].getX());
y[i] = normalizeLat(shell[i].getY());
}
return new Polygon(new LinearRing(x, y), holes);
}
private static Point[][] holes(Edge[] holes, int numHoles) {
if (numHoles == 0) {
return new Point[0][];
}
final Point[][] points = new Point[numHoles][];
for (int i = 0; i < numHoles; i++) {
double[] partitionPoint = new double[3];
int length = component(holes[i], -(i + 1), null, partitionPoint); // mark as visited by inverting the sign
points[i] = coordinates(holes[i], new Point[length + 1], partitionPoint);
}
return points;
}
/**
* Normalizes longitude while accepting -180 degrees as a valid value
*/
private static double normalizeLonMinus180Inclusive(double lon) {
return Math.abs(lon) > 180 ? normalizeLon(lon) : lon;
}
private static Point shift(Point coordinate, double dateline) {
if (dateline == 0) {
return coordinate;
} else {
return new Point(-2 * dateline + coordinate.getX(), coordinate.getY());
}
}
/**
* Calculate the intersection of a line segment and a vertical dateline.
*
* @param p1x longitude of the start-point of the line segment
* @param p2x longitude of the end-point of the line segment
* @param dateline x-coordinate of the vertical dateline
* @return position of the intersection in the open range (0..1] if the line
* segment intersects with the line segment. Otherwise this method
* returns {@link Double#NaN}
*/
private static double intersection(double p1x, double p2x, double dateline) {
if (p1x == p2x && p1x != dateline) {
return Double.NaN;
} else if (p1x == p2x && p1x == dateline) {
return 1.0;
} else {
final double t = (dateline - p1x) / (p2x - p1x);
if (t > 1 || t <= 0) {
return Double.NaN;
} else {
return t;
}
}
}
/**
* This helper class implements a linked list for {@link Point}. It contains
* fields for a dateline intersection and component id
*/
private static final class Edge {
Point coordinate; // coordinate of the start point
Edge next; // next segment
Point intersect; // potential intersection with dateline
int component = -1; // id of the component this edge belongs to
static final Point MAX_COORDINATE = new Point(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
Edge(Point coordinate, Edge next, Point intersection) {
this.coordinate = coordinate;
// use setter to catch duplicate point cases
this.setNext(next);
this.intersect = intersection;
if (next != null) {
this.component = next.component;
}
}
Edge(Point coordinate, Edge next) {
this(coordinate, next, Edge.MAX_COORDINATE);
}
void setNext(Edge next) {
// don't bother setting next if its null
if (next != null) {
// self-loop throws an invalid shape
if (this.coordinate.equals(next.coordinate)) {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: " + this.coordinate);
}
this.next = next;
}
}
/**
* Set the intersection of this line segment to the given position
*
* @param position position of the intersection [0..1]
* @return the {@link Point} of the intersection
*/
Point intersection(double position) {
return intersect = position(coordinate, next.coordinate, position);
}
@Override
public String toString() {
return "Edge[Component=" + component + "; start=" + coordinate + " " + "; intersection=" + intersect + "]";
}
}
}

View File

@ -22,8 +22,8 @@ package org.elasticsearch.index.mapper;
import org.apache.lucene.document.LatLonShape;
import org.apache.lucene.index.IndexableField;
import org.elasticsearch.common.collect.Tuple;
import org.elasticsearch.common.geo.GeoUtils;
import org.elasticsearch.common.geo.GeoLineDecomposer;
import org.elasticsearch.common.geo.GeoPolygonDecomposer;
import org.elasticsearch.geometry.Circle;
import org.elasticsearch.geometry.Geometry;
import org.elasticsearch.geometry.GeometryCollection;
@ -36,34 +36,19 @@ import org.elasticsearch.geometry.MultiPolygon;
import org.elasticsearch.geometry.Point;
import org.elasticsearch.geometry.Polygon;
import org.elasticsearch.geometry.Rectangle;
import org.locationtech.spatial4j.exception.InvalidShapeException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;
import static org.apache.lucene.geo.GeoUtils.orient;
import static org.elasticsearch.common.geo.GeoUtils.normalizeLat;
import static org.elasticsearch.common.geo.GeoUtils.normalizeLon;
import static org.elasticsearch.common.geo.GeoUtils.normalizePoint;
/**
* Utility class that converts geometries into Lucene-compatible form
* Utility class that converts geometries into Lucene-compatible form for indexing in a geo_shape field.
*/
public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexer<Geometry, Geometry> {
private static final double DATELINE = 180;
protected static final Comparator<Edge> INTERSECTION_ORDER = Comparator.comparingDouble(o -> o.intersect.getY());
private final boolean orientation;
private final String name;
public GeoShapeIndexer(boolean orientation, String name) {
@ -104,8 +89,11 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
@Override
public Geometry visit(Line line) {
// decompose linestrings crossing dateline into array of Lines
List<Line> lines = decomposeGeometry(line, new ArrayList<>());
if (lines.size() == 1) {
List<Line> lines = new ArrayList<>();
GeoLineDecomposer.decomposeLine(line, lines);
if (lines.isEmpty()) {
return GeometryCollection.EMPTY;
} else if (lines.size() == 1) {
return lines.get(0);
} else {
return new MultiLine(lines);
@ -120,9 +108,7 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
@Override
public Geometry visit(MultiLine multiLine) {
List<Line> lines = new ArrayList<>();
for (Line line : multiLine) {
decomposeGeometry(line, lines);
}
GeoLineDecomposer.decomposeMultiLine(multiLine, lines);
if (lines.isEmpty()) {
return GeometryCollection.EMPTY;
} else if (lines.size() == 1) {
@ -150,10 +136,10 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
@Override
public Geometry visit(MultiPolygon multiPolygon) {
List<Polygon> polygons = new ArrayList<>();
for (Polygon polygon : multiPolygon) {
polygons.addAll(decompose(polygon, orientation));
}
if (polygons.size() == 1) {
GeoPolygonDecomposer.decomposeMultiPolygon(multiPolygon, orientation, polygons);
if (polygons.isEmpty()) {
return GeometryCollection.EMPTY;
} else if (polygons.size() == 1) {
return polygons.get(0);
} else {
return new MultiPolygon(polygons);
@ -169,8 +155,11 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
@Override
public Geometry visit(Polygon polygon) {
List<Polygon> polygons = decompose(polygon, orientation);
if (polygons.size() == 1) {
List<Polygon> polygons = new ArrayList<>();
GeoPolygonDecomposer.decomposePolygon(polygon, orientation, polygons);
if (polygons.isEmpty()) {
return GeometryCollection.EMPTY;
} else if (polygons.size() == 1) {
return polygons.get(0);
} else {
return new MultiPolygon(polygons);
@ -196,787 +185,6 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
return visitor.fields();
}
/**
* Calculate the intersection of a line segment and a vertical dateline.
*
* @param p1x longitude of the start-point of the line segment
* @param p2x longitude of the end-point of the line segment
* @param dateline x-coordinate of the vertical dateline
* @return position of the intersection in the open range (0..1] if the line
* segment intersects with the line segment. Otherwise this method
* returns {@link Double#NaN}
*/
protected static double intersection(double p1x, double p2x, double dateline) {
if (p1x == p2x && p1x != dateline) {
return Double.NaN;
} else if (p1x == p2x && p1x == dateline) {
return 1.0;
} else {
final double t = (dateline - p1x) / (p2x - p1x);
if (t > 1 || t <= 0) {
return Double.NaN;
} else {
return t;
}
}
}
/**
* Splits the specified line by datelines and adds them to the supplied lines array
*/
private List<Line> decomposeGeometry(Line line, List<Line> lines) {
double[] lons = new double[line.length()];
double[] lats = new double[lons.length];
for (int i = 0; i < lons.length; i++) {
double[] lonLat = new double[] {line.getX(i), line.getY(i)};
normalizePoint(lonLat,false, true);
lons[i] = lonLat[0];
lats[i] = lonLat[1];
}
lines.addAll(decompose(lons, lats));
return lines;
}
/**
* Calculates how many degres the given longitude needs to be moved east in order to be in -180 - +180. +180 is inclusive only
* if include180 is true.
*/
double calculateShift(double lon, boolean include180) {
double normalized = GeoUtils.centeredModulus(lon, 360);
double shift = Math.round(normalized - lon);
if (!include180 && normalized == 180.0) {
shift = shift - 360;
}
return shift;
}
/**
* Decompose a linestring given as array of coordinates by anti-meridian.
*
* @param lons longitudes of the linestring that should be decomposed
* @param lats latitudes of the linestring that should be decomposed
* @return array of linestrings given as coordinate arrays
*/
private List<Line> decompose(double[] lons, double[] lats) {
int offset = 0;
ArrayList<Line> parts = new ArrayList<>();
double shift = 0;
int i = 1;
while (i < lons.length) {
// Check where the line is going east (+1), west (-1) or directly north/south (0)
int direction = Double.compare(lons[i], lons[i - 1]);
double newShift = calculateShift(lons[i - 1], direction < 0);
// first point lon + shift is always between -180.0 and +180.0
if (i - offset > 1 && newShift != shift) {
// Jumping over anti-meridian - we need to start a new segment
double[] partLons = Arrays.copyOfRange(lons, offset, i);
double[] partLats = Arrays.copyOfRange(lats, offset, i);
performShift(shift, partLons);
shift = newShift;
offset = i - 1;
parts.add(new Line(partLons, partLats));
} else {
// Check if new point intersects with anti-meridian
shift = newShift;
double t = intersection(lons[i - 1] + shift, lons[i] + shift);
if (Double.isNaN(t) == false) {
// Found intersection, all previous segments are now part of the linestring
double[] partLons = Arrays.copyOfRange(lons, offset, i + 1);
double[] partLats = Arrays.copyOfRange(lats, offset, i + 1);
lons[i - 1] = partLons[partLons.length - 1] = (direction > 0 ? DATELINE : -DATELINE) - shift;
lats[i - 1] = partLats[partLats.length - 1] = lats[i - 1] + (lats[i] - lats[i - 1]) * t;
performShift(shift, partLons);
offset = i - 1;
parts.add(new Line(partLons, partLats));
} else {
// Didn't find intersection - just continue checking
i++;
}
}
}
if (offset == 0) {
performShift(shift, lons);
parts.add(new Line(lons, lats));
} else if (offset < lons.length - 1) {
double[] partLons = Arrays.copyOfRange(lons, offset, lons.length);
double[] partLats = Arrays.copyOfRange(lats, offset, lats.length);
performShift(shift, partLons);
parts.add(new Line(partLons, partLats));
}
return parts;
}
/**
* Checks it the segment from p1x to p2x intersects with anti-meridian
* p1x must be with in -180 +180 range
*/
private static double intersection(double p1x, double p2x) {
if (p1x == p2x) {
return Double.NaN;
}
final double t = ((p1x < p2x ? DATELINE : -DATELINE) - p1x) / (p2x - p1x);
if (t >= 1 || t <= 0) {
return Double.NaN;
} else {
return t;
}
}
/**
* shifts all coordinates by shift
*/
private static void performShift(double shift, double[] lons) {
if (shift != 0) {
for (int j = 0; j < lons.length; j++) {
lons[j] = lons[j] + shift;
}
}
}
protected static Point shift(Point coordinate, double dateline) {
if (dateline == 0) {
return coordinate;
} else {
return new Point(-2 * dateline + coordinate.getX(), coordinate.getY());
}
}
private List<Polygon> decompose(Polygon polygon, boolean orientation) {
int numEdges = polygon.getPolygon().length() - 1; // Last point is repeated
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
numEdges += polygon.getHole(i).length() - 1;
validateHole(polygon.getPolygon(), polygon.getHole(i));
}
Edge[] edges = new Edge[numEdges];
Edge[] holeComponents = new Edge[polygon.getNumberOfHoles()];
final AtomicBoolean translated = new AtomicBoolean(false);
int offset = createEdges(0, orientation, polygon.getPolygon(), null, edges, 0, translated);
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
int length = createEdges(i + 1, orientation, polygon.getPolygon(), polygon.getHole(i), edges, offset, translated);
holeComponents[i] = edges[offset];
offset += length;
}
int numHoles = holeComponents.length;
numHoles = merge(edges, 0, intersections(+DATELINE, edges), holeComponents, numHoles);
numHoles = merge(edges, 0, intersections(-DATELINE, edges), holeComponents, numHoles);
return compose(edges, holeComponents, numHoles);
}
private void validateHole(LinearRing shell, LinearRing hole) {
Set<Point> exterior = new HashSet<>();
Set<Point> interior = new HashSet<>();
for (int i = 0; i < shell.length(); i++) {
exterior.add(new Point(shell.getX(i), shell.getY(i)));
}
for (int i = 0; i < hole.length(); i++) {
interior.add(new Point(hole.getX(i), hole.getY(i)));
}
exterior.retainAll(interior);
if (exterior.size() >= 2) {
throw new IllegalArgumentException("Invalid polygon, interior cannot share more than one point with the exterior");
}
}
/**
* This helper class implements a linked list for {@link Point}. It contains
* fields for a dateline intersection and component id
*/
private static final class Edge {
Point coordinate; // coordinate of the start point
Edge next; // next segment
Point intersect; // potential intersection with dateline
int component = -1; // id of the component this edge belongs to
public static final Point MAX_COORDINATE = new Point(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
protected Edge(Point coordinate, Edge next, Point intersection) {
this.coordinate = coordinate;
// use setter to catch duplicate point cases
this.setNext(next);
this.intersect = intersection;
if (next != null) {
this.component = next.component;
}
}
protected Edge(Point coordinate, Edge next) {
this(coordinate, next, Edge.MAX_COORDINATE);
}
protected void setNext(Edge next) {
// don't bother setting next if its null
if (next != null) {
// self-loop throws an invalid shape
if (this.coordinate.equals(next.coordinate)) {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: " + this.coordinate);
}
this.next = next;
}
}
/**
* Set the intersection of this line segment to the given position
*
* @param position position of the intersection [0..1]
* @return the {@link Point} of the intersection
*/
protected Point intersection(double position) {
return intersect = position(coordinate, next.coordinate, position);
}
@Override
public String toString() {
return "Edge[Component=" + component + "; start=" + coordinate + " " + "; intersection=" + intersect + "]";
}
}
protected static Point position(Point p1, Point p2, double position) {
if (position == 0) {
return p1;
} else if (position == 1) {
return p2;
} else {
final double x = p1.getX() + position * (p2.getX() - p1.getX());
final double y = p1.getY() + position * (p2.getY() - p1.getY());
return new Point(x, y);
}
}
private int createEdges(int component, boolean orientation, LinearRing shell,
LinearRing hole, Edge[] edges, int offset, final AtomicBoolean translated) {
// inner rings (holes) have an opposite direction than the outer rings
// XOR will invert the orientation for outer ring cases (Truth Table:, T/T = F, T/F = T, F/T = T, F/F = F)
boolean direction = (component == 0 ^ orientation);
// set the points array accordingly (shell or hole)
Point[] points = (hole != null) ? points(hole) : points(shell);
ring(component, direction, orientation == false, points, 0, edges, offset, points.length - 1, translated);
return points.length - 1;
}
private Point[] points(LinearRing linearRing) {
Point[] points = new Point[linearRing.length()];
for (int i = 0; i < linearRing.length(); i++) {
points[i] = new Point(linearRing.getX(i), linearRing.getY(i));
}
return points;
}
/**
* Create a connected list of a list of coordinates
*
* @param points array of point
* @param offset index of the first point
* @param length number of points
* @return Array of edges
*/
private Edge[] ring(int component, boolean direction, boolean handedness,
Point[] points, int offset, Edge[] edges, int toffset, int length, final AtomicBoolean translated) {
boolean orientation = getOrientation(points, offset, length);
// OGC requires shell as ccw (Right-Handedness) and holes as cw (Left-Handedness)
// since GeoJSON doesn't specify (and doesn't need to) GEO core will assume OGC standards
// thus if orientation is computed as cw, the logic will translate points across dateline
// and convert to a right handed system
// compute the bounding box and calculate range
double[] range = range(points, offset, length);
final double rng = range[1] - range[0];
// translate the points if the following is true
// 1. shell orientation is cw and range is greater than a hemisphere (180 degrees) but not spanning 2 hemispheres
// (translation would result in a collapsed poly)
// 2. the shell of the candidate hole has been translated (to preserve the coordinate system)
boolean incorrectOrientation = component == 0 && handedness != orientation;
if ((incorrectOrientation && (rng > DATELINE && rng != 2 * DATELINE)) || (translated.get() && component != 0)) {
translate(points);
// flip the translation bit if the shell is being translated
if (component == 0) {
translated.set(true);
}
// correct the orientation post translation (ccw for shell, cw for holes)
if (component == 0 || (component != 0 && handedness == orientation)) {
orientation = !orientation;
}
}
return concat(component, direction ^ orientation, points, offset, edges, toffset, length);
}
/**
* Transforms coordinates in the eastern hemisphere (-180:0) to a (180:360) range
*/
private static void translate(Point[] points) {
for (int i = 0; i < points.length; i++) {
if (points[i].getX() < 0) {
points[i] = new Point(points[i].getX() + 2 * DATELINE, points[i].getY());
}
}
}
/**
* @return whether the points are clockwise (true) or anticlockwise (false)
*/
private static boolean getOrientation(Point[] points, int offset, int length) {
// calculate the direction of the points: find the southernmost point
// and check its neighbors orientation.
final int top = top(points, offset, length);
final int prev = (top + length - 1) % length;
final int next = (top + 1) % length;
final int determinantSign = orient(
points[offset + prev].getX(), points[offset + prev].getY(),
points[offset + top].getX(), points[offset + top].getY(),
points[offset + next].getX(), points[offset + next].getY());
if (determinantSign == 0) {
// Points are collinear, but `top` is not in the middle if so, so the edges either side of `top` are intersecting.
throw new InvalidShapeException("Cannot determine orientation: edges adjacent to ("
+ points[offset + top].getX() + "," + points[offset + top].getY() + ") coincide");
}
return determinantSign < 0;
}
/**
* @return the (offset) index of the point that is furthest west amongst
* those points that are the furthest south in the set.
*/
private static int top(Point[] points, int offset, int length) {
int top = 0; // we start at 1 here since top points to 0
for (int i = 1; i < length; i++) {
if (points[offset + i].getY() < points[offset + top].getY()) {
top = i;
} else if (points[offset + i].getY() == points[offset + top].getY()) {
if (points[offset + i].getX() < points[offset + top].getX()) {
top = i;
}
}
}
return top;
}
private static double[] range(Point[] points, int offset, int length) {
double minX = points[0].getX();
double maxX = minX;
double minY = points[0].getY();
double maxY = minY;
// compute the bounding coordinates (@todo: cleanup brute force)
for (int i = 1; i < length; ++i) {
Point point = points[offset + i];
if (point.getX() < minX) {
minX = point.getX();
}
if (point.getX() > maxX) {
maxX = point.getX();
}
if (point.getY() < minY) {
minY = point.getY();
}
if (point.getY() > maxY) {
maxY = point.getY();
}
}
return new double[]{minX, maxX, minY, maxY};
}
private int merge(Edge[] intersections, int offset, int length, Edge[] holes, int numHoles) {
// Intersections appear pairwise. On the first edge the inner of
// of the polygon is entered. On the second edge the outer face
// is entered. Other kinds of intersections are discard by the
// intersection function
for (int i = 0; i < length; i += 2) {
Edge e1 = intersections[offset + i + 0];
Edge e2 = intersections[offset + i + 1];
// If two segments are connected maybe a hole must be deleted
// Since Edges of components appear pairwise we need to check
// the second edge only (the first edge is either polygon or
// already handled)
if (e2.component > 0) {
//TODO: Check if we could save the set null step
numHoles--;
holes[e2.component - 1] = holes[numHoles];
holes[numHoles] = null;
}
// only connect edges if intersections are pairwise
// 1. per the comment above, the edge array is sorted by y-value of the intersection
// with the dateline. Two edges have the same y intercept when they cross the
// dateline thus they appear sequentially (pairwise) in the edge array. Two edges
// do not have the same y intercept when we're forming a multi-poly from a poly
// that wraps the dateline (but there are 2 ordered intercepts).
// The connect method creates a new edge for these paired edges in the linked list.
// For boundary conditions (e.g., intersect but not crossing) there is no sibling edge
// to connect. Thus the first logic check enforces the pairwise rule
// 2. the second logic check ensures the two candidate edges aren't already connected by an
// existing edge along the dateline - this is necessary due to a logic change in
// ShapeBuilder.intersection that computes dateline edges as valid intersect points
// in support of OGC standards
if (e1.intersect != Edge.MAX_COORDINATE && e2.intersect != Edge.MAX_COORDINATE
&& !(e1.next.next.coordinate.equals(e2.coordinate) && Math.abs(e1.next.coordinate.getX()) == DATELINE
&& Math.abs(e2.coordinate.getX()) == DATELINE)) {
connect(e1, e2);
}
}
return numHoles;
}
private void connect(Edge in, Edge out) {
assert in != null && out != null;
assert in != out;
// Connecting two Edges by inserting the point at
// dateline intersection and connect these by adding
// two edges between this points. One per direction
if (in.intersect != in.next.coordinate) {
// NOTE: the order of the object creation is crucial here! Don't change it!
// first edge has no point on dateline
Edge e1 = new Edge(in.intersect, in.next);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e2 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e2, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = new Edge(out.intersect, e1, out.intersect);
} else if (in.next != out && in.coordinate != out.intersect) {
// first edge intersects with dateline
Edge e2 = new Edge(out.intersect, in.next, out.intersect);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e1 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e1, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = e2;
}
}
/**
* Concatenate a set of points to a polygon
*
* @param component component id of the polygon
* @param direction direction of the ring
* @param points list of points to concatenate
* @param pointOffset index of the first point
* @param edges Array of edges to write the result to
* @param edgeOffset index of the first edge in the result
* @param length number of points to use
* @return the edges creates
*/
private static Edge[] concat(int component, boolean direction, Point[] points, final int pointOffset, Edge[] edges,
final int edgeOffset, int length) {
assert edges.length >= length + edgeOffset;
assert points.length >= length + pointOffset;
edges[edgeOffset] = new Edge(new Point(points[pointOffset].getX(), points[pointOffset].getY()), null);
for (int i = 1; i < length; i++) {
Point nextPoint = new Point(points[pointOffset + i].getX(), points[pointOffset + i].getY());
if (direction) {
edges[edgeOffset + i] = new Edge(nextPoint, edges[edgeOffset + i - 1]);
edges[edgeOffset + i].component = component;
} else if (!edges[edgeOffset + i - 1].coordinate.equals(nextPoint)) {
edges[edgeOffset + i - 1].next = edges[edgeOffset + i] = new Edge(nextPoint, null);
edges[edgeOffset + i - 1].component = component;
} else {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: (" + nextPoint + ")");
}
}
if (direction) {
edges[edgeOffset].setNext(edges[edgeOffset + length - 1]);
edges[edgeOffset].component = component;
} else {
edges[edgeOffset + length - 1].setNext(edges[edgeOffset]);
edges[edgeOffset + length - 1].component = component;
}
return edges;
}
/**
* Calculate all intersections of line segments and a vertical line. The
* Array of edges will be ordered asc by the y-coordinate of the
* intersections of edges.
*
* @param dateline x-coordinate of the dateline
* @param edges set of edges that may intersect with the dateline
* @return number of intersecting edges
*/
protected static int intersections(double dateline, Edge[] edges) {
int numIntersections = 0;
assert !Double.isNaN(dateline);
for (int i = 0; i < edges.length; i++) {
Point p1 = edges[i].coordinate;
Point p2 = edges[i].next.coordinate;
assert !Double.isNaN(p2.getX()) && !Double.isNaN(p1.getX());
edges[i].intersect = Edge.MAX_COORDINATE;
double position = intersection(p1.getX(), p2.getX(), dateline);
if (!Double.isNaN(position)) {
edges[i].intersection(position);
numIntersections++;
}
}
Arrays.sort(edges, INTERSECTION_ORDER);
return numIntersections;
}
private static Edge[] edges(Edge[] edges, int numHoles, List<List<Point[]>> components) {
ArrayList<Edge> mainEdges = new ArrayList<>(edges.length);
for (int i = 0; i < edges.length; i++) {
if (edges[i].component >= 0) {
double[] partitionPoint = new double[3];
int length = component(edges[i], -(components.size() + numHoles + 1), mainEdges, partitionPoint);
List<Point[]> component = new ArrayList<>();
component.add(coordinates(edges[i], new Point[length + 1], partitionPoint));
components.add(component);
}
}
return mainEdges.toArray(new Edge[mainEdges.size()]);
}
private static List<Polygon> compose(Edge[] edges, Edge[] holes, int numHoles) {
final List<List<Point[]>> components = new ArrayList<>();
assign(holes, holes(holes, numHoles), numHoles, edges(edges, numHoles, components), components);
return buildPoints(components);
}
private static void assign(Edge[] holes, Point[][] points, int numHoles, Edge[] edges, List<List<Point[]>> components) {
// Assign Hole to related components
// To find the new component the hole belongs to all intersections of the
// polygon edges with a vertical line are calculated. This vertical line
// is an arbitrary point of the hole. The polygon edge next to this point
// is part of the polygon the hole belongs to.
for (int i = 0; i < numHoles; i++) {
// To do the assignment we assume (and later, elsewhere, check) that each hole is within
// a single component, and the components do not overlap. Based on this assumption, it's
// enough to find a component that contains some vertex of the hole, and
// holes[i].coordinate is such a vertex, so we use that one.
// First, we sort all the edges according to their order of intersection with the line
// of longitude through holes[i].coordinate, in order from south to north. Edges that do
// not intersect this line are sorted to the end of the array and of no further interest
// here.
final Edge current = new Edge(holes[i].coordinate, holes[i].next);
current.intersect = current.coordinate;
final int intersections = intersections(current.coordinate.getX(), edges);
if (intersections == 0) {
// There were no edges that intersect the line of longitude through
// holes[i].coordinate, so there's no way this hole is within the polygon.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
// Next we do a binary search to find the position of holes[i].coordinate in the array.
// The binary search returns the index of an exact match, or (-insertionPoint - 1) if
// the vertex lies between the intersections of edges[insertionPoint] and
// edges[insertionPoint+1]. The latter case is vastly more common.
final int pos;
boolean sharedVertex = false;
if (((pos = Arrays.binarySearch(edges, 0, intersections, current, INTERSECTION_ORDER)) >= 0)
&& !(sharedVertex = (edges[pos].intersect.equals(current.coordinate)))) {
// The binary search returned an exact match, but we checked again using compareTo()
// and it didn't match after all.
// TODO Can this actually happen? Needs a test to exercise it, or else needs to be removed.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
final int index;
if (sharedVertex) {
// holes[i].coordinate lies exactly on an edge.
index = 0; // TODO Should this be pos instead of 0? This assigns exact matches to the southernmost component.
} else if (pos == -1) {
// holes[i].coordinate is strictly south of all intersections. Assign it to the
// southernmost component, and allow later validation to spot that it is not
// entirely within the chosen component.
index = 0;
} else {
// holes[i].coordinate is strictly north of at least one intersection. Assign it to
// the component immediately to its south.
index = -(pos + 2);
}
final int component = -edges[index].component - numHoles - 1;
components.get(component).add(points[i]);
}
}
/**
* This method sets the component id of all edges in a ring to a given id and shifts the
* coordinates of this component according to the dateline
*
* @param edge An arbitrary edge of the component
* @param id id to apply to the component
* @param edges a list of edges to which all edges of the component will be added (could be <code>null</code>)
* @return number of edges that belong to this component
*/
private static int component(final Edge edge, final int id, final ArrayList<Edge> edges, double[] partitionPoint) {
// find a coordinate that is not part of the dateline
Edge any = edge;
while (any.coordinate.getX() == +DATELINE || any.coordinate.getX() == -DATELINE) {
if ((any = any.next) == edge) {
break;
}
}
double shiftOffset = any.coordinate.getX() > DATELINE ? DATELINE : (any.coordinate.getX() < -DATELINE ? -DATELINE : 0);
// run along the border of the component, collect the
// edges, shift them according to the dateline and
// update the component id
int length = 0, connectedComponents = 0;
// if there are two connected components, splitIndex keeps track of where to split the edge array
// start at 1 since the source coordinate is shared
int splitIndex = 1;
Edge current = edge;
Edge prev = edge;
// bookkeep the source and sink of each visited coordinate
HashMap<Point, Tuple<Edge, Edge>> visitedEdge = new HashMap<>();
do {
current.coordinate = shift(current.coordinate, shiftOffset);
current.component = id;
if (edges != null) {
// found a closed loop - we have two connected components so we need to slice into two distinct components
if (visitedEdge.containsKey(current.coordinate)) {
partitionPoint[0] = current.coordinate.getX();
partitionPoint[1] = current.coordinate.getY();
if (connectedComponents > 0 && current.next != edge) {
throw new InvalidShapeException("Shape contains more than one shared point");
}
// a negative id flags the edge as visited for the edges(...) method.
// since we're splitting connected components, we want the edges method to visit
// the newly separated component
final int visitID = -id;
Edge firstAppearance = visitedEdge.get(current.coordinate).v2();
// correct the graph pointers by correcting the 'next' pointer for both the
// first appearance and this appearance of the edge
Edge temp = firstAppearance.next;
firstAppearance.next = current.next;
current.next = temp;
current.component = visitID;
// backtrack until we get back to this coordinate, setting the visit id to
// a non-visited value (anything positive)
do {
prev.component = visitID;
prev = visitedEdge.get(prev.coordinate).v1();
++splitIndex;
} while (!current.coordinate.equals(prev.coordinate));
++connectedComponents;
} else {
visitedEdge.put(current.coordinate, new Tuple<Edge, Edge>(prev, current));
}
edges.add(current);
prev = current;
}
length++;
} while (connectedComponents == 0 && (current = current.next) != edge);
return (splitIndex != 1) ? length - splitIndex : length;
}
/**
* Compute all coordinates of a component
*
* @param component an arbitrary edge of the component
* @param coordinates Array of coordinates to write the result to
* @return the coordinates parameter
*/
private static Point[] coordinates(Edge component, Point[] coordinates, double[] partitionPoint) {
for (int i = 0; i < coordinates.length; i++) {
coordinates[i] = (component = component.next).coordinate;
}
// First and last coordinates must be equal
if (coordinates[0].equals(coordinates[coordinates.length - 1]) == false) {
if (partitionPoint[2] == Double.NaN) {
throw new InvalidShapeException("Self-intersection at or near point ["
+ partitionPoint[0] + "," + partitionPoint[1] + "]");
} else {
throw new InvalidShapeException("Self-intersection at or near point ["
+ partitionPoint[0] + "," + partitionPoint[1] + "," + partitionPoint[2] + "]");
}
}
return coordinates;
}
private static List<Polygon> buildPoints(List<List<Point[]>> components) {
List<Polygon> result = new ArrayList<>(components.size());
for (int i = 0; i < components.size(); i++) {
List<Point[]> component = components.get(i);
result.add(buildPolygon(component));
}
return result;
}
private static Polygon buildPolygon(List<Point[]> polygon) {
List<LinearRing> holes;
Point[] shell = polygon.get(0);
if (polygon.size() > 1) {
holes = new ArrayList<>(polygon.size() - 1);
for (int i = 1; i < polygon.size(); ++i) {
Point[] coords = polygon.get(i);
//We do not have holes on the dateline as they get eliminated
//when breaking the polygon around it.
double[] x = new double[coords.length];
double[] y = new double[coords.length];
for (int c = 0; c < coords.length; ++c) {
x[c] = normalizeLon(coords[c].getX());
y[c] = normalizeLat(coords[c].getY());
}
holes.add(new LinearRing(x, y));
}
} else {
holes = Collections.emptyList();
}
double[] x = new double[shell.length];
double[] y = new double[shell.length];
for (int i = 0; i < shell.length; ++i) {
//Lucene Tessellator treats different +180 and -180 and we should keep the sign.
//normalizeLon method excludes -180.
x[i] = normalizeLonMinus180Inclusive(shell[i].getX());
y[i] = normalizeLat(shell[i].getY());
}
return new Polygon(new LinearRing(x, y), holes);
}
private static Point[][] holes(Edge[] holes, int numHoles) {
if (numHoles == 0) {
return new Point[0][];
}
final Point[][] points = new Point[numHoles][];
for (int i = 0; i < numHoles; i++) {
double[] partitionPoint = new double[3];
int length = component(holes[i], -(i + 1), null, partitionPoint); // mark as visited by inverting the sign
points[i] = coordinates(holes[i], new Point[length + 1], partitionPoint);
}
return points;
}
private static class LuceneGeometryIndexer implements GeometryVisitor<Void, RuntimeException> {
private List<IndexableField> fields = new ArrayList<>();
private String name;
@ -1063,7 +271,6 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
}
}
public static org.apache.lucene.geo.Polygon toLucenePolygon(Polygon polygon) {
org.apache.lucene.geo.Polygon[] holes = new org.apache.lucene.geo.Polygon[polygon.getNumberOfHoles()];
for(int i = 0; i<holes.length; i++) {
@ -1071,11 +278,4 @@ public final class GeoShapeIndexer implements AbstractGeometryFieldMapper.Indexe
}
return new org.apache.lucene.geo.Polygon(polygon.getPolygon().getY(), polygon.getPolygon().getX(), holes);
}
/**
* Normalizes longitude while accepting -180 degrees as a valid value
*/
private static double normalizeLonMinus180Inclusive(double lon) {
return Math.abs(lon) > 180 ? normalizeLon(lon) : lon;
}
}