Speed up phrase suggestion scoring

Two changes:
1.  In the StupidBackoffScorer only look for the trigram if there is a bigram.
2.  Cache the frequencies in WordScorer so we don't look them up again and
again and again.  This is implemented by wrapping the TermsEnum in a special
purpose wrapper that really only works in context of the WordScorer.

This provides a pretty substantial speedup when there are many candidates.

Closes #5395
This commit is contained in:
Nik Everett 2014-03-13 12:11:16 -04:00 committed by Simon Willnauer
parent d88ac0a95a
commit 917c93d7ee
3 changed files with 264 additions and 30 deletions

View File

@ -54,18 +54,18 @@ public class StupidBackoffScorer extends WordScorer {
@Override @Override
protected double scoreTrigram(Candidate w, Candidate w_1, Candidate w_2) throws IOException { protected double scoreTrigram(Candidate w, Candidate w_1, Candidate w_2) throws IOException {
SuggestUtils.join(separator, spare, w_2.term, w_1.term, w.term); // First see if there are bigrams. If there aren't then skip looking up the trigram. This saves lookups
final long trigramCount = frequency(spare); // when the bigrams and trigrams are rare and we need both anyway.
if (trigramCount < 1) {
SuggestUtils.join(separator, spare, w_1.term, w.term); SuggestUtils.join(separator, spare, w_1.term, w.term);
final long count = frequency(spare); long bigramCount = frequency(spare);
if (count < 1) { if (bigramCount < 1) {
return discount * scoreUnigram(w); return discount * scoreUnigram(w);
} }
return discount * (count / (w_1.frequency + 0.00000000001d)); SuggestUtils.join(separator, spare, w_2.term, w_1.term, w.term);
long trigramCount = frequency(spare);
if (trigramCount < 1) {
return discount * (bigramCount / (w_1.frequency + 0.00000000001d));
} }
SuggestUtils.join(separator, spare, w_1.term, w.term);
final long bigramCount = frequency(spare);
return trigramCount / (bigramCount + 0.00000000001d); return trigramCount / (bigramCount + 0.00000000001d);
} }

View File

@ -18,10 +18,11 @@
*/ */
package org.elasticsearch.search.suggest.phrase; package org.elasticsearch.search.suggest.phrase;
import org.apache.lucene.index.IndexReader; import com.carrotsearch.hppc.ObjectObjectMap;
import org.apache.lucene.index.MultiFields; import com.carrotsearch.hppc.ObjectObjectOpenHashMap;
import org.apache.lucene.index.Terms; import org.apache.lucene.index.*;
import org.apache.lucene.index.TermsEnum; import org.apache.lucene.index.FilterAtomicReader.FilterTermsEnum;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.BytesRef;
import org.elasticsearch.ElasticsearchIllegalArgumentException; import org.elasticsearch.ElasticsearchIllegalArgumentException;
import org.elasticsearch.search.suggest.phrase.DirectCandidateGenerator.Candidate; import org.elasticsearch.search.suggest.phrase.DirectCandidateGenerator.Candidate;
@ -35,7 +36,7 @@ public abstract class WordScorer {
protected final String field; protected final String field;
protected final Terms terms; protected final Terms terms;
protected final long vocabluarySize; protected final long vocabluarySize;
protected double realWordLikelyhood; protected final double realWordLikelyhood;
protected final BytesRef spare = new BytesRef(); protected final BytesRef spare = new BytesRef();
protected final BytesRef separator; protected final BytesRef separator;
protected final TermsEnum termsEnum; protected final TermsEnum termsEnum;
@ -56,7 +57,7 @@ public abstract class WordScorer {
this.vocabluarySize = vocSize == -1 ? reader.maxDoc() : vocSize; this.vocabluarySize = vocSize == -1 ? reader.maxDoc() : vocSize;
this.useTotalTermFreq = vocSize != -1; this.useTotalTermFreq = vocSize != -1;
this.numTerms = terms.size(); this.numTerms = terms.size();
this.termsEnum = terms.iterator(null); this.termsEnum = new FrequencyCachingTermsEnumWrapper(terms.iterator(null));
this.reader = reader; this.reader = reader;
this.realWordLikelyhood = realWordLikelyHood; this.realWordLikelyhood = realWordLikelyHood;
this.separator = separator; this.separator = separator;
@ -102,4 +103,85 @@ public abstract class WordScorer {
public WordScorer newScorer(IndexReader reader, Terms terms, public WordScorer newScorer(IndexReader reader, Terms terms,
String field, double realWordLikelyhood, BytesRef separator) throws IOException; String field, double realWordLikelyhood, BytesRef separator) throws IOException;
} }
/**
* Terms enum wrapper that caches term frequencies in an effort to outright skip seeks. Only works with seekExact(BytesRef), not next or
* not seekCeil. Because of this it really only makes sense in this context.
*/
private static class FrequencyCachingTermsEnumWrapper extends FilterTermsEnum {
private ObjectObjectMap<BytesRef, CacheEntry> cache = new ObjectObjectOpenHashMap<BytesRef, CacheEntry>();
/**
* The last term that the called attempted to seek to.
*/
private CacheEntry last;
public FrequencyCachingTermsEnumWrapper(TermsEnum in) {
super(in);
}
@Override
public boolean seekExact(BytesRef text) throws IOException {
last = cache.get(text);
if (last != null) {
// This'll fail to work properly if the user seeks but doesn't check the frequency, causing us to cache it.
// That is OK because WordScorer only seeks to check the frequency.
return last.ttf != 0 || last.df != 0;
}
last = new CacheEntry();
cache.put(BytesRef.deepCopyOf(text), last);
if (in.seekExact(text)) {
// Found so mark the term uncached.
last.df = -1;
last.ttf = -1;
return true;
}
// Not found. The cache will default to 0 for the freqs, meaning not found.
return false;
}
@Override
public long totalTermFreq() throws IOException {
if (last.ttf == -1) {
last.ttf = in.totalTermFreq();
}
return last.ttf;
}
@Override
public int docFreq() throws IOException {
if (last.df == -1) {
last.df = in.docFreq();
}
return last.df;
}
@Override
public void seekExact(long ord) throws IOException {
throw new UnsupportedOperationException();
}
@Override
public DocsEnum docs(Bits liveDocs, DocsEnum reuse, int flags) throws IOException {
throw new UnsupportedOperationException();
}
@Override
public DocsAndPositionsEnum docsAndPositions(Bits liveDocs, DocsAndPositionsEnum reuse, int flags) throws IOException {
throw new UnsupportedOperationException();
}
public SeekStatus seekCeil(BytesRef text) throws IOException {
throw new UnsupportedOperationException();
}
@Override
public BytesRef next() {
throw new UnsupportedOperationException();
}
private static class CacheEntry {
private long ttf;
private int df;
}
}
} }

View File

@ -20,11 +20,13 @@
package org.elasticsearch.search.suggest; package org.elasticsearch.search.suggest;
import com.google.common.base.Charsets; import com.google.common.base.Charsets;
import com.google.common.collect.ImmutableList;
import com.google.common.io.Resources; import com.google.common.io.Resources;
import org.apache.lucene.util.LuceneTestCase.Slow; import org.apache.lucene.util.LuceneTestCase.Slow;
import org.elasticsearch.ElasticsearchException; import org.elasticsearch.ElasticsearchException;
import org.elasticsearch.ElasticsearchIllegalStateException; import org.elasticsearch.ElasticsearchIllegalStateException;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequestBuilder; import org.elasticsearch.action.admin.indices.create.CreateIndexRequestBuilder;
import org.elasticsearch.action.index.IndexRequestBuilder;
import org.elasticsearch.action.search.*; import org.elasticsearch.action.search.*;
import org.elasticsearch.common.xcontent.XContentBuilder; import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentFactory; import org.elasticsearch.common.xcontent.XContentFactory;
@ -931,6 +933,156 @@ public class SuggestSearchTests extends ElasticsearchIntegrationTest {
assertSuggestion(searchSuggest, 0, 0, "simple_phrase", "nobel prize"); assertSuggestion(searchSuggest, 0, 0, "simple_phrase", "nobel prize");
} }
/**
* If the suggester finds tons of options then picking the right one is slow without <<<INSERT SOLUTION HERE>>>.
*/
@Test
public void suggestWithManyCandidates() throws InterruptedException, ExecutionException, IOException {
CreateIndexRequestBuilder builder = prepareCreate("test").setSettings(settingsBuilder()
.put(indexSettings())
.put(SETTING_NUMBER_OF_SHARDS, 1) // A single shard will help to keep the tests repeatable.
.put(SETTING_NUMBER_OF_REPLICAS, between(0, cluster().size() - 1))
.put("index.analysis.analyzer.text.tokenizer", "standard")
.putArray("index.analysis.analyzer.text.filter", "lowercase", "my_shingle")
.put("index.analysis.filter.my_shingle.type", "shingle")
.put("index.analysis.filter.my_shingle.output_unigrams", true)
.put("index.analysis.filter.my_shingle.min_shingle_size", 2)
.put("index.analysis.filter.my_shingle.max_shingle_size", 3));
XContentBuilder mapping = XContentFactory.jsonBuilder()
.startObject()
.startObject("type1")
.startObject("properties")
.startObject("title")
.field("type", "string")
.field("analyzer", "text")
.endObject()
.endObject()
.endObject()
.endObject();
assertAcked(builder.addMapping("type1", mapping));
ensureGreen();
ImmutableList.Builder<String> titles = ImmutableList.<String>builder();
// We're going to be searching for:
// united states house of representatives elections in washington 2006
// But we need to make sure we generate a ton of suggestions so we add a bunch of candidates.
// Many of these candidates are drawn from page names on English Wikipedia.
// Tons of different options very near the exact query term
titles.add("United States House of Representatives Elections in Washington 1789");
for (int year = 1790; year < 2014; year+= 2) {
titles.add("United States House of Representatives Elections in Washington " + year);
}
// Six of these are near enough to be viable suggestions, just not the top one
// But we can't stop there! Titles that are just a year are pretty common so lets just add one per year
// since 0. Why not?
for (int year = 0; year < 2015; year++) {
titles.add(Integer.toString(year));
}
// That ought to provide more less good candidates for the last term
// Now remove or add plural copies of every term we can
titles.add("State");
titles.add("Houses of Parliament");
titles.add("Representative Government");
titles.add("Election");
// Now some possessive
titles.add("Washington's Birthday");
// And some conjugation
titles.add("Unified Modeling Language");
titles.add("Unite Against Fascism");
titles.add("Stated Income Tax");
titles.add("Media organizations housed within colleges");
// And other stuff
titles.add("Untied shoelaces");
titles.add("Unit circle");
titles.add("Untitled");
titles.add("Unicef");
titles.add("Unrated");
titles.add("UniRed");
titles.add("Jalan UnitenDengkil"); // Highway in Malaysia
titles.add("UNITAS");
titles.add("UNITER");
titles.add("Un-Led-Ed");
titles.add("STATS LLC");
titles.add("Staples");
titles.add("Skates");
titles.add("Statues of the Liberators");
titles.add("Staten Island");
titles.add("Statens Museum for Kunst");
titles.add("Hause"); // The last name or the German word, whichever.
titles.add("Hose");
titles.add("Hoses");
titles.add("Howse Peak");
titles.add("The Hoose-Gow");
titles.add("Hooser");
titles.add("Electron");
titles.add("Electors");
titles.add("Evictions");
titles.add("Coronal mass ejection");
titles.add("Wasington"); // A film?
titles.add("Warrington"); // A town in England
titles.add("Waddington"); // Lots of places have this name
titles.add("Watlington"); // Ditto
titles.add("Waplington"); // Yup, also a town
titles.add("Washing of the Spears"); // Book
for (char c = 'A'; c <= 'Z'; c++) {
// Can't forget lists, glorious lists!
titles.add("List of former members of the United States House of Representatives (" + c + ")");
// Lots of people are named Washington <Middle Initial>. LastName
titles.add("Washington " + c + ". Lastname");
// Lets just add some more to be evil
titles.add("United " + c);
titles.add("States " + c);
titles.add("House " + c);
titles.add("Elections " + c);
titles.add("2006 " + c);
titles.add(c + " United");
titles.add(c + " States");
titles.add(c + " House");
titles.add(c + " Elections");
titles.add(c + " 2006");
}
List<IndexRequestBuilder> builders = new ArrayList<IndexRequestBuilder>();
for (String title: titles.build()) {
builders.add(client().prepareIndex("test", "type1").setSource("title", title));
}
indexRandom(true, builders);
PhraseSuggestionBuilder suggest = phraseSuggestion("title")
.field("title")
.addCandidateGenerator(PhraseSuggestionBuilder.candidateGenerator("title")
.suggestMode("always")
.maxTermFreq(.99f)
.size(1000) // Setting a silly high size helps of generate a larger list of candidates for testing.
.maxInspections(1000) // This too
)
.confidence(0f)
.maxErrors(2f)
.shardSize(30000)
.size(30000);
Suggest searchSuggest = searchSuggest("united states house of representatives elections in washington 2006", suggest);
assertSuggestion(searchSuggest, 0, 0, "title", "united states house of representatives elections in washington 2006");
assertSuggestionSize(searchSuggest, 0, 25480, "title"); // Just to prove that we've run through a ton of options
suggest.size(1);
long start = System.currentTimeMillis();
searchSuggest = searchSuggest("united states house of representatives elections in washington 2006", suggest);
long total = System.currentTimeMillis() - start;
assertSuggestion(searchSuggest, 0, 0, "title", "united states house of representatives elections in washington 2006");
assertThat(total, lessThan(1000L)); // Takes many seconds without fix
}
protected Suggest searchSuggest(SuggestionBuilder<?>... suggestion) { protected Suggest searchSuggest(SuggestionBuilder<?>... suggestion) {
return searchSuggest(null, suggestion); return searchSuggest(null, suggestion);
} }